1
|
Bhatt J, Ghigo A, Hirsch E. PI3K/Akt in IPF: untangling fibrosis and charting therapies. Front Immunol 2025; 16:1549277. [PMID: 40248697 PMCID: PMC12004373 DOI: 10.3389/fimmu.2025.1549277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/13/2025] [Indexed: 04/19/2025] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive lung disease characterized by abnormal epithelial repair, persistent inflammation, and excessive extracellular matrix deposition, leading to irreversible scarring and respiratory failure. Central to its pathogenesis is the dysregulation of the PI3K/Akt signaling pathway, which drives fibroblast activation, epithelial-mesenchymal transition, apoptosis resistance, and cellular senescence. Senescent cells contribute to fibrosis through the secretion of pro-inflammatory and profibrotic factors in the senescence-associated secretory phenotype (SASP). Current antifibrotic therapies, Nintedanib and Pirfenidone, only slow disease progression and are limited by side effects, highlighting the need for novel treatments. This review focuses on the role of PI3K/Akt signaling in IPF pathogenesis, its intersection with inflammation and fibrosis, and emerging therapeutic approaches targeting molecules along this pathway.
Collapse
Affiliation(s)
- Janki Bhatt
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
- Kither Biotech S.r.l., Turin, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
- Kither Biotech S.r.l., Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
- Kither Biotech S.r.l., Turin, Italy
| |
Collapse
|
2
|
Fotook Kiaei SZ, Schwartz DA. Genetic underpinning of idiopathic pulmonary fibrosis: the role of mucin. Expert Rev Respir Med 2025:1-12. [PMID: 39912527 DOI: 10.1080/17476348.2025.2464035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by progressive scarring and reduced survival. The development of IPF is influenced by rare and common genetic variants, cigarette smoking, aging, and environmental exposures. Among the two dozen genetic contributors, the MUC5B promoter variant (rs35705950) is the dominant risk factor, increasing the risk of both familial and sporadic IPF and accounting for nearly 50% of the genetic predisposition to the disease. AREAS COVERED This review provides an expert perspective on the genetic underpinnings of IPF rather than a systematic analysis, emphasizing key insights into its genetic basis. The articles referenced in this review were identified through targeted searches in PubMed, Scopus, and Web of Science for studies published between 2000 and 2023, prioritizing influential research on the genetic factors contributing to IPF. Search terms included 'idiopathic pulmonary fibrosis,' 'genetics,' 'MUC5B,' 'telomere dysfunction,' and 'surfactant proteins.' The selection of studies was guided by the authors' expertise, focusing on the most relevant publications. EXPERT OPINION The identification of genetic variants not only highlights the complexity of IPF but also offers potential for earlier diagnosis and personalized treatment strategies targeting specific genetic pathways, ultimately aiming to improve patient outcomes.
Collapse
Affiliation(s)
| | - David A Schwartz
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, USA
| |
Collapse
|
3
|
Iskandar M, Xiao Barbero M, Jaber M, Chen R, Gomez-Guevara R, Cruz E, Westerheide S. A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches. Cancers (Basel) 2025; 17:257. [PMID: 39858038 PMCID: PMC11764024 DOI: 10.3390/cancers17020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. METHODS We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. RESULTS Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson-Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. CONCLUSIONS The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandy Westerheide
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (M.X.B.); (M.J.); (R.C.); (R.G.-G.); (E.C.)
| |
Collapse
|
4
|
Spagnolo P, Tonelli R, Mura M, Reisman W, Sotiropoulou V, Tzouvelekis A. Investigational gene expression inhibitors for the treatment of idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2025; 34:61-80. [PMID: 39916340 DOI: 10.1080/13543784.2025.2462592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/31/2025] [Indexed: 02/12/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial lung disease of unknown cause that occurs primarily in older adults and is associated with poor quality of life and substantial healthcare utilization. IPF has a dismal prognosis. Indeed, first-line therapy, which includes nintedanib and pirfenidone, does not stop disease progression and is often associated with tolerability issues. Therefore, there remains a high medical need for more efficacious and better tolerated treatments. AREAS COVERED Gene therapy is a relatively unexplored field of research in IPF that has the potential to mitigate a range of profibrotic pathways by introducing genetic material into cells. Here, we summarize and critically discuss publications that have explored the safety and efficacy of gene therapy in experimentally-induced pulmonary fibrosis in animals, as clinical studies in humans have not been published yet. EXPERT OPINION The application of gene therapy in pulmonary fibrosis requires further investigation to address several technical and biological hurdles, improve vectors' design, drug delivery, and target selection, mitigate off-target effects and develop markers of gene penetration into target cells. Long-term clinical data are needed to bring gene therapy in IPF one step closer to practice.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Tonelli
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - William Reisman
- Division of Respirology, Western University, London, Ontario, Canada
| | | | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
5
|
Pennington KM, Simonetto D, Taner T, Mangaonkar AA. Pulmonary, Hepatic, and Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Telomere Biology Disorders. Curr Hematol Malig Rep 2024; 19:293-299. [PMID: 38315384 DOI: 10.1007/s11899-024-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
PURPOSE OF THE REVIEW This study aimed to summarize evidence and provide consensus-based guidelines for management of transplantation in patients with telomere biology disorders (TBD). Specifically, this review focuses on clinical management of lung, liver, and bone marrow transplantation in TBD patients. RECENT FINDINGS TBD patients have specific unique biological vulnerabilities such as T cell immunodeficiency, susceptibility to infections, hypersensitivity to chemotherapy and radiation, and cytopenias. Furthermore, multiple organ involvement at diagnosis makes clinical management especially challenging due to higher degree of organ damage, and stress-induced telomeric crisis. Sequential and combined organ transplants, development of novel radiation and alkylator-free conditioning regimen, and use of novel drugs for graft-versus-host disease prophylaxis are some of the recent updates in the field. Multidisciplinary management is essential to optimize transplant outcomes in patients with TBD. In this review, we provide consensus-based transplant management guidelines for clinical management of transplant in TBD.
Collapse
Affiliation(s)
| | - Douglas Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, USA.
| | - Timucin Taner
- Departments of Surgery and Immunology, Mayo Clinic, Rochester, USA.
| | | |
Collapse
|
6
|
Martens DS, Lammertyn EJ, Goeminne PC, Colpaert K, Proesmans M, Vanaudenaerde BM, Nawrot TS, Dupont LJ. Leukocyte telomere length and attrition in association with disease severity in cystic fibrosis patients. Aging (Albany NY) 2024; 16:11809-11823. [PMID: 39213174 PMCID: PMC11386922 DOI: 10.18632/aging.206093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Cystic fibrosis (CF) is characterized by chronic airway inflammation and premature aging. The link with leukocyte telomere length (LTL) as a marker of biological aging is unclear. We studied disease severity and LTL in 168 CF patients of which 85 patients had a second retrospective LTL assessment. A higher FEV1 was associated with longer LTL, with a stronger effect in men (5.08% longer LTL) compared to women (0.41% longer LTL). A higher FEV1/FVC ratio was associated with 7.05% (P=0.017) longer LTL in men. CF asthma, as defined by the treatment with inhaled corticosteroids, was associated with -6.65% shorter LTL (P=0.028). Men homozygous for the ΔF508 genotype showed a -10.48% (P=0.026) shorter LTL compared to heterozygotes. A genotype-specific non-linear association between LTL shortening and chronological age was observed. Stronger age-related LTL shortening was observed in patients homozygous for the ΔF508 genotype (P-interaction= 0.044). This work showed that disease severity in CF patients negatively influences LTL, with slightly more pronounced effects in men. The homozygous genotype for ΔF508 may play a role in LTL attrition in CF patients. Understanding factors in CF patients that accelerate biological aging provides insights into mechanisms that can extend the overall life quality in CF-diseased.
Collapse
Affiliation(s)
- Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Elise J Lammertyn
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | | | - Kristine Colpaert
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Marijke Proesmans
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, Leuven, Flanders, Belgium
| | - Bart M Vanaudenaerde
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Lieven J Dupont
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Liu Z, Zhang Y, Li D, Fu J. Cellular senescence in chronic lung diseases from newborns to the elderly: An update literature review. Biomed Pharmacother 2024; 173:116463. [PMID: 38503240 DOI: 10.1016/j.biopha.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The role of cellular senescence in age-related diseases has been fully recognized. In various age-related-chronic lung diseases, the function of alveolar epithelial cells (AECs) is impaired and alveolar regeneration disorders, especially in bronchopulmonary dysplasia,pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), cancer, etc. Except for age-related-chronic lung diseases, an increasing number of studies are exploring the role of cellular senescence in developmental chronic lung diseases, which typically originate in childhood and even in the neonatal period. This review provides an overview of cellular senescence and lung diseases from newborns to the elderly, attempting to draw attention to the relationship between cellular senescence and developmental lung diseases.
Collapse
Affiliation(s)
- Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
8
|
Yi ES, Wawryko P, Ryu JH. Diagnosis of interstitial lung diseases: from Averill A. Liebow to artificial intelligence. J Pathol Transl Med 2024; 58:1-11. [PMID: 38229429 DOI: 10.4132/jptm.2023.11.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024] Open
Abstract
Histopathologic criteria of usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF) were defined over the years and endorsed by leading organizations decades after Dr. Averill A. Liebow first coined the term UIP in the 1960s as a distinct pathologic pattern of fibrotic interstitial lung disease. Novel technology and recent research on interstitial lung diseases with genetic component shed light on molecular pathogenesis of UIP/IPF. Two antifibrotic agents introduced in the mid-2010s opened a new era of therapeutic approaches to UIP/IPF, albeit contentious issues regarding their efficacy, side effects, and costs. Recently, the concept of progressive pulmonary fibrosis was introduced to acknowledge additional types of progressive fibrosing interstitial lung diseases with the clinical and pathologic phenotypes comparable to those of UIP/IPF. Likewise, some authors have proposed a paradigm shift by considering UIP as a stand-alone diagnostic entity to encompass other fibrosing interstitial lung diseases that manifest a relentless progression as in IPF. These trends signal a pendulum moving toward the tendency of lumping diagnoses, which poses a risk of obscuring potentially important information crucial to both clinical and research purposes. Recent advances in whole slide imaging for digital pathology and artificial intelligence technology could offer an unprecedented opportunity to enhance histopathologic evaluation of interstitial lung diseases. However, current clinical practice trends of moving away from surgical lung biopsies in interstitial lung disease patients may become a limiting factor in this endeavor as it would be difficult to build a large histopathologic database with correlative clinical data required for artificial intelligence models.
Collapse
Affiliation(s)
- Eunhee S Yi
- Division of Anatomic Pathology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Paul Wawryko
- Division of Anatomic Pathology, Mayo Clinic Arizona, Arizona, FL, USA
| | - Jay H Ryu
- Division of Pulmonary and Critical Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| |
Collapse
|
9
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
10
|
Tesolato S, Vicente-Valor J, Jarabo JR, Calatayud J, Sáiz-Pardo M, Nieto A, Álvaro-Álvarez D, Linares MJ, Fraile CA, Hernándo F, Iniesta P, Gómez-Martínez AM. Role of Telomere Length in Survival of Patients with Idiopathic Pulmonary Fibrosis and Other Interstitial Lung Diseases. Biomedicines 2023; 11:3257. [PMID: 38137478 PMCID: PMC10741059 DOI: 10.3390/biomedicines11123257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Interstitial lung diseases (ILDs) constitute a group of more than 200 disorders, with idiopathic pulmonary fibrosis (IPF) being one of the most frequent. Telomere length (TL) shortening causes loss of function of the lung parenchyma. However, little is known about its role as a prognostic factor in ILD patients. With the aim of investigating the role of TL and telomerase activity in the prognosis of patients affected by ILDs, we analysed lung tissue samples from 61 patients. We measured relative TL and telomerase activity by conventional procedures. Both clinical and molecular parameters were associated with overall survival by the Kaplan-Meier method. Patients with IPF had poorer prognosis than patients with other ILDs (p = 0.034). When patients were classified according to TL, those with shortened telomeres reported lower overall survival (p = 0.085); differences reached statistical significance after excluding ILD patients who developed cancer (p = 0.021). In a Cox regression analysis, TL behaved as a risk-modifying variable for death associated with rheumatic disease (RD) co-occurrence (p = 0.029). Also, in patients without cancer, ferritin was significantly increased in cases with RD and IPF co-occurrence (p = 0.032). In relation to telomerase activity, no significant differences were detected. In conclusion, TL in lung tissue emerges as a prognostic factor in ILD patients. Specifically, in cases with RD and IPF co-occurrence, TL can be considered as a risk-modifying variable for death.
Collapse
Affiliation(s)
- Sofía Tesolato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Ramón y Cajal Sq. (University City), 28040 Madrid, Spain; (S.T.); (J.V.-V.)
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (J.-R.J.); (J.C.); (C.-A.F.); (F.H.); (A.-M.G.-M.)
| | - Juan Vicente-Valor
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Ramón y Cajal Sq. (University City), 28040 Madrid, Spain; (S.T.); (J.V.-V.)
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (J.-R.J.); (J.C.); (C.-A.F.); (F.H.); (A.-M.G.-M.)
| | - Jose-Ramón Jarabo
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (J.-R.J.); (J.C.); (C.-A.F.); (F.H.); (A.-M.G.-M.)
- Department of Surgery, Faculty of Medicine, Complutense University, Ramón y Cajal Sq. (University City), 28040 Madrid, Spain
- Thoracic Surgery Service of the San Carlos Hospital, 28040 Madrid, Spain
| | - Joaquín Calatayud
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (J.-R.J.); (J.C.); (C.-A.F.); (F.H.); (A.-M.G.-M.)
- Department of Surgery, Faculty of Medicine, Complutense University, Ramón y Cajal Sq. (University City), 28040 Madrid, Spain
- Thoracic Surgery Service of the San Carlos Hospital, 28040 Madrid, Spain
| | - Melchor Sáiz-Pardo
- Pathological Anatomy Service of the San Carlos Hospital, 28040 Madrid, Spain;
| | - Asunción Nieto
- Pulmonology Service of the San Carlos Hospital, 28040 Madrid, Spain;
| | | | - María-Jesús Linares
- Pulmonology Service of Alcorcon Foundation University Hospital, 28922 Madrid, Spain;
| | - Carlos-Alfredo Fraile
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (J.-R.J.); (J.C.); (C.-A.F.); (F.H.); (A.-M.G.-M.)
- Department of Surgery, Faculty of Medicine, Complutense University, Ramón y Cajal Sq. (University City), 28040 Madrid, Spain
- Thoracic Surgery Service of the San Carlos Hospital, 28040 Madrid, Spain
| | - Florentino Hernándo
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (J.-R.J.); (J.C.); (C.-A.F.); (F.H.); (A.-M.G.-M.)
- Department of Surgery, Faculty of Medicine, Complutense University, Ramón y Cajal Sq. (University City), 28040 Madrid, Spain
- Thoracic Surgery Service of the San Carlos Hospital, 28040 Madrid, Spain
| | - Pilar Iniesta
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Ramón y Cajal Sq. (University City), 28040 Madrid, Spain; (S.T.); (J.V.-V.)
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (J.-R.J.); (J.C.); (C.-A.F.); (F.H.); (A.-M.G.-M.)
| | - Ana-María Gómez-Martínez
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (J.-R.J.); (J.C.); (C.-A.F.); (F.H.); (A.-M.G.-M.)
- Department of Surgery, Faculty of Medicine, Complutense University, Ramón y Cajal Sq. (University City), 28040 Madrid, Spain
- Thoracic Surgery Service of the San Carlos Hospital, 28040 Madrid, Spain
| |
Collapse
|
11
|
Banaszak LG, Smith-Simmer K, Shoger K, Lovrien L, Malik A, Sandbo N, Sultan S, Guzy R, Lowery EM, Churpek JE. Implementation of a prospective screening strategy to identify adults with a telomere biology disorder among those undergoing lung transplant evaluation for interstitial lung disease. Respir Med 2023; 220:107464. [PMID: 37951311 DOI: 10.1016/j.rmed.2023.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
INTRODUCTION Patients with interstitial lung disease (ILD) secondary to telomere biology disorders (TBD) experience increased morbidity after lung transplantation. Identifying patients with TBD may allow for personalized management to facilitate better outcomes. However, establishing a TBD diagnosis in adults is challenging. METHODS A TBD screening questionnaire was introduced prospectively into the lung transplant evaluation. Patients with ILD screening positive were referred for comprehensive TBD phenotyping and concurrent telomere length measurement and germline genetic testing. RESULTS Of 98 patients, 32 (33%) screened positive. Eight patients (8% of total; 25% of patients with a positive screen) met strict TBD diagnostic criteria, requiring either critically short lymphocyte telomeres (<1st percentile) (n = 4), a pathogenic variant in a TBD-associated gene (n = 1), or both (n = 3) along with a TBD clinical phenotype. Additional patients not meeting strict diagnostic criteria had histories consistent with TBD along with telomere lengths <10th percentile and/or rare variants in TBD-associated genes, highlighting a critical need to refine TBD diagnostic criteria for this patient population. CONCLUSION A TBD phenotype screening questionnaire in patients with ILD undergoing lung transplant evaluation has a diagnostic yield of 25%. Additional gene discovery, rare variant functional testing, and refined TBD diagnostic criteria are needed to realize the maximum benefit of testing for TBD in patients undergoing lung transplantation.
Collapse
Affiliation(s)
- Lauren G Banaszak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Kelcy Smith-Simmer
- Oncology Genetics, University of Wisconsin Carbone Cancer Center, UW Health, Madison, WI, 53705, USA
| | - Kyle Shoger
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lauren Lovrien
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Amy Malik
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Nathan Sandbo
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Samir Sultan
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Robert Guzy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Erin M Lowery
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jane E Churpek
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
12
|
Tomos I, Roussis I, Matthaiou AM, Dimakou K. Molecular and Genetic Biomarkers in Idiopathic Pulmonary Fibrosis: Where Are We Now? Biomedicines 2023; 11:2796. [PMID: 37893169 PMCID: PMC10604739 DOI: 10.3390/biomedicines11102796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) represents a chronic progressive fibrotic interstitial lung disease of unknown cause with an ominous prognosis. It remains an unprecedent clinical challenge due to its delayed diagnosis and unpredictable clinical course. The need for accurate diagnostic, prognostic and predisposition biomarkers in everyday clinical practice becomes more necessary than ever to ensure prompt diagnoses and early treatment. The identification of such blood biomarkers may also unravel novel drug targets against IPF development and progression. So far, the role of diverse blood biomarkers, implicated in various pathogenetic pathways, such as in fibrogenesis (S100A4), extracellular matrix remodelling (YKL-40, MMP-7, ICAM-1, LOXL2, periostin), chemotaxis (CCL-18, IL-8), epithelial cell injury (KL-6, SP-A, SP-D), autophagy and unfolded protein response has been investigated in IPF with various results. Moreover, the recent progress in genetics in IPF allows for a better understanding of the underlying disease mechanisms. So far, the causative mutations in pulmonary fibrosis include mutations in telomere-related genes and in surfactant-related genes, markers that could act as predisposition biomarkers in IPF. The aim of this review is to provide a comprehensive overview from the bench to bedside of current knowledge and recent insights on biomarkers in IPF, and to suggest future directions for research. Large-scale studies are still needed to confirm the exact role of these biomarkers.
Collapse
Affiliation(s)
- Ioannis Tomos
- 5th Department of Respiratory Medicine, ‘SOTIRIA’ Chest Diseases Hospital of Athens, 11527 Athens, Greece; (I.R.); (A.M.M.); (K.D.)
| | - Ioannis Roussis
- 5th Department of Respiratory Medicine, ‘SOTIRIA’ Chest Diseases Hospital of Athens, 11527 Athens, Greece; (I.R.); (A.M.M.); (K.D.)
| | - Andreas M. Matthaiou
- 5th Department of Respiratory Medicine, ‘SOTIRIA’ Chest Diseases Hospital of Athens, 11527 Athens, Greece; (I.R.); (A.M.M.); (K.D.)
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 714 09 Heraklion, Greece
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia 2029, Cyprus
| | - Katerina Dimakou
- 5th Department of Respiratory Medicine, ‘SOTIRIA’ Chest Diseases Hospital of Athens, 11527 Athens, Greece; (I.R.); (A.M.M.); (K.D.)
| |
Collapse
|
13
|
Gobbo F, Zingariello M, Verachi P, Falchi M, Arciprete F, Martelli F, Peli A, Mazzarini M, Vierstra J, Mead-Harvey C, Dueck AC, Sarli G, Nava S, Sgalla G, Richeldi L, Migliaccio AR. GATA1-defective immune-megakaryocytes as possible drivers of idiopathic pulmonary fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.542249. [PMID: 37425686 PMCID: PMC10327123 DOI: 10.1101/2023.06.20.542249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disorder with limited therapeutic options. Insufficient understanding of driver mutations and poor fidelity of currently available animal models has limited the development of effective therapies. Since GATA1 deficient megakaryocytes sustain myelofibrosis, we hypothesized that they may also induce fibrosis in lungs. We discovered that lungs from IPF patients and Gata1low mice contain numerous GATA1negative immune-poised megakaryocytes that, in mice, have defective RNA-seq profiling and increased TGF-β1, CXCL1 and P-selectin content. With age, Gata1low mice develop fibrosis in lungs. Development of lung fibrosis in this model is prevented by P-selectin deletion and rescued by P-selectin, TGF-β1 or CXCL1 inhibition. Mechanistically, P-selectin inhibition decreases TGF-β1 and CXCL1 content and increases GATA1positive megakaryocytes while TGF-β1 or CXCL1 inhibition decreased CXCL1 only. In conclusion, Gata1low mice are a novel genetic-driven model for IPF and provide a link between abnormal immune-megakaryocytes and lung fibrosis.
Collapse
Affiliation(s)
- Francesca Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia (Bologna) 40064, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome 00128, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Mario Falchi
- National Center HIV/AIDS Research, Istituto Superiore di Sanita, Rome 00161, Italy
| | - Francesca Arciprete
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome 00128, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Istituto Superiore di Sanita, Rome 00161, Italy
| | - Angelo Peli
- Department for Life Quality Studies, University of Bologna, Rimini Campus, Rimini 47921, Italy
| | - Maria Mazzarini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Jeff Vierstra
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Carolyn Mead-Harvey
- Mayo Clinic, Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Scottsdale, AZ 85259, USA
| | - Amylou C. Dueck
- Mayo Clinic, Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Scottsdale, AZ 85259, USA
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia (Bologna) 40064, Italy
| | - Stefano Nava
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Respiratory and Critical Care Unit, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Giacomo Sgalla
- Department of Medical and Surgical Sciences Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Universita Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Luca Richeldi
- Department of Medical and Surgical Sciences Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Universita Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Anna Rita Migliaccio
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome 00128, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| |
Collapse
|
14
|
Hoffman TW, van Moorsel CH, van der Vis JJ, Biesma DH, Grutters JC. No effect of danazol treatment in patients with advanced idiopathic pulmonary fibrosis. ERJ Open Res 2023; 9:00131-2023. [PMID: 37753281 PMCID: PMC10518878 DOI: 10.1183/23120541.00131-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
Background Telomere dysfunction can underly the development of idiopathic pulmonary fibrosis (IPF), and recent work suggests that patients with telomere syndromes might benefit from treatment with androgens, such as danazol. Methods This was a prospective observational cohort study. 50 patients with IPF received off-label treatment with danazol after they showed progressive disease under treatment with pirfenidone or nintedanib. The primary outcome was the difference in yearly decline in forced vital capacity (FVC) prior to (pre) and after (post) start of treatment with danazol. Results There was no significant difference in FVC-decline between 1 year pre and 1 year post start of danazol treatment (mean decline pre 395 mL (95% confidence interval (CI) 290-500) compared to post 461 mL (95% CI 259-712); p=0.46; paired t-test). 11 patients (22%) were still on danazol after 1 year, and 39 patients had stopped danazol, mainly because of side-effects (56%) or death (33%). In patients who were still using danazol after 1 year, FVC-decline significantly slowed down under danazol treatment (mean pre 512 mL (95% CI 308-716) versus post 198 mL (95% CI 16-380); p=0.04). Median survival post danazol was 14.9 months (95% CI 11.0-18.8). Conclusion Danazol as a treatment of last resort in patients with IPF did not lead to slowing of lung function decline and was associated with significant side-effects. It remains to be determined if earlier treatment or treatment of specific patient subgroups is beneficial.
Collapse
Affiliation(s)
- Thijs W. Hoffman
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Coline H.M. van Moorsel
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Joanne J. van der Vis
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
- Department of Clinical Chemistry, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Douwe H. Biesma
- Department of Internal Medicine, St Antonius Hospital, Nieuwegein, The Netherlands
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jan C. Grutters
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
15
|
Gredic M, Karnati S, Ruppert C, Guenther A, Avdeev SN, Kosanovic D. Combined Pulmonary Fibrosis and Emphysema: When Scylla and Charybdis Ally. Cells 2023; 12:1278. [PMID: 37174678 PMCID: PMC10177208 DOI: 10.3390/cells12091278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Combined pulmonary fibrosis and emphysema (CPFE) is a recently recognized syndrome that, as its name indicates, involves the existence of both interstitial lung fibrosis and emphysema in one individual, and is often accompanied by pulmonary hypertension. This debilitating, progressive condition is most often encountered in males with an extensive smoking history, and is presented by dyspnea, preserved lung volumes, and contrastingly impaired gas exchange capacity. The diagnosis of the disease is based on computed tomography imaging, demonstrating the coexistence of emphysema and interstitial fibrosis in the lungs, which might be of various types and extents, in different areas of the lung and several relative positions to each other. CPFE bears high mortality and to date, specific and efficient treatment options do not exist. In this review, we will summarize current knowledge about the clinical attributes and manifestations of CPFE. Moreover, we will focus on pathophysiological and pathohistological lung phenomena and suspected etiological factors of this disease. Finally, since there is a paucity of preclinical research performed for this particular lung pathology, we will review existing animal studies and provide suggestions for the development of additional in vivo models of CPFE syndrome.
Collapse
Affiliation(s)
- Marija Gredic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Clemens Ruppert
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
- UGMLC Giessen Biobank & European IPF Registry/Biobank, 35392 Giessen, Germany
| | - Andreas Guenther
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
- UGMLC Giessen Biobank & European IPF Registry/Biobank, 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Lung Clinic, Evangelisches Krankenhaus Mittelhessen, 35398 Giessen, Germany
| | - Sergey N. Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
16
|
Buschulte K, Cottin V, Wijsenbeek M, Kreuter M, Diesler R. The world of rare interstitial lung diseases. Eur Respir Rev 2023; 32:32/167/220161. [PMID: 36754433 PMCID: PMC9910344 DOI: 10.1183/16000617.0161-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/21/2022] [Indexed: 02/10/2023] Open
Abstract
The world of rare interstitial lung diseases (ILDs) is diverse and complex. Diagnosis and therapy usually pose challenges. This review describes a selection of rare and ultrarare ILDs including pulmonary alveolar proteinosis, pulmonary alveolar microlithiasis and pleuroparenchymal fibroelastosis. In addition, monogenic ILDs or ILDs in congenital syndromes and various multiple cystic lung diseases will be discussed. All these conditions are part of the scope of the European Reference Network on rare respiratory diseases (ERN-LUNG). Epidemiology, pathogenesis, diagnostics and treatment of each disease are presented.
Collapse
Affiliation(s)
- Katharina Buschulte
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), ERN-LUNG, Heidelberg, Germany
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, ERN-LUNG, Lyon, France
| | - Marlies Wijsenbeek
- Center for Interstitial Lung Diseases and Sarcoidosis, Department of Respiratory Medicine, Erasmus MC-University Medical Center, ERN-LUNG, Rotterdam, The Netherlands
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), ERN-LUNG, Heidelberg, Germany
| | - Rémi Diesler
- National Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, ERN-LUNG, Lyon, France
| |
Collapse
|
17
|
Doubková M, Vrzalová Z, Štefániková M, Červinek L, Kozubík KS, Blaháková I, Pospíšilová Š, Doubek M. Germline variant of CTC1 gene in a patient with pulmonary fibrosis and myelodysplastic syndrome. Multidiscip Respir Med 2023; 18:909. [PMID: 37404458 PMCID: PMC10316942 DOI: 10.4081/mrm.2023.909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/02/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Telomeropathies are associated with a wide range of diseases and less common combinations of various pulmonary and extrapulmonary disorders. Case presentation In proband with high-risk myelodysplastic syndrome and interstitial pulmonary fibrosis, whole exome sequencing revealed a germline heterozygous variant of CTC1 gene (c.1360delG). This "frameshift" variant results in a premature stop codon and is classified as likely pathogenic/pathogenic. So far, this gene variant has been described in a heterozygous state in adult patients with hematological diseases such as idiopathic aplastic anemia or paroxysmal nocturnal hemoglobinuria, but also in interstitial pulmonary fibrosis. Described CTC1 gene variant affects telomere length and leads to telomeropathies. Conclusions In our case report, we describe a rare case of coincidence of pulmonary fibrosis and hematological malignancy caused by a germline gene mutation in CTC1. Lung diseases and hematologic malignancies associated with short telomeres do not respond well to standard treatment.
Collapse
Affiliation(s)
- Martina Doubková
- Department of Pulmonary Diseases and Tuberculosis, University Hospital and Faculty of Medicine, Brno
| | - Zuzana Vrzalová
- Central European Institute of Technology, Masaryk University, Brno
- Department of Internal Medicine - Hematology and Oncology, University Hospital and Faculty of Medicine, Brno
| | - Marianna Štefániková
- Department of Pulmonary Diseases and Tuberculosis, University Hospital and Faculty of Medicine, Brno
| | - Libor Červinek
- Department of Internal Medicine - Hematology and Oncology, University Hospital and Faculty of Medicine, Brno
| | - Kateřina Staňo Kozubík
- Central European Institute of Technology, Masaryk University, Brno
- Department of Internal Medicine - Hematology and Oncology, University Hospital and Faculty of Medicine, Brno
| | - Ivona Blaháková
- Central European Institute of Technology, Masaryk University, Brno
- Department of Internal Medicine - Hematology and Oncology, University Hospital and Faculty of Medicine, Brno
| | - Šárka Pospíšilová
- Central European Institute of Technology, Masaryk University, Brno
- Department of Internal Medicine - Hematology and Oncology, University Hospital and Faculty of Medicine, Brno
- Department of Medical Genetics and Genomics, University Hospital and Faculty of Medicine, Brno, Czech Republic
| | - Michael Doubek
- Central European Institute of Technology, Masaryk University, Brno
- Department of Internal Medicine - Hematology and Oncology, University Hospital and Faculty of Medicine, Brno
- Department of Medical Genetics and Genomics, University Hospital and Faculty of Medicine, Brno, Czech Republic
| |
Collapse
|
18
|
Tiendrébéogo AJF, Soumagne T, Pellegrin F, Dagouassat M, Tran Van Nhieu J, Caramelle P, Paul EN, Even B, Zysman M, Julé Y, Samb A, Boczkowski J, Lanone S, Schlemmer F. The telomerase activator TA-65 protects from cigarette smoke-induced small airway remodeling in mice through extra-telomeric effects. Sci Rep 2023; 13:25. [PMID: 36646720 PMCID: PMC9842758 DOI: 10.1038/s41598-022-25993-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Small airway remodeling (SAR) is a key phenomenon of airflow obstruction in smokers, leading to chronic obstructive pulmonary disease (COPD). SAR results in an increased thickness of small airway walls, with a combination of peribronchiolar fibrosis with increased fibrous tissue and accumulation of mesenchymal and epithelial cells. SAR pathogenesis is still unclear but recent data suggest that alterations in telomerase activity could represent a possible underlying mechanism of SAR. Our study was dedicated to identify a potential protective role of TA-65, a pharmacological telomerase activator, in a cigarette smoke (CS) model of SAR in mice, and to further precise if extra-telomeric effects of telomerase, involving oxidative stress modulation, could explain it. C57BL/6J mice were daily exposed to air or CS during 4 weeks with or without a concomitant administration of TA-65 starting 7 days before CS exposure. Morphological analyses were performed, and mucus production, myofibroblast differentiation, collagen deposition, as well as transforming growth factor-β1 (TGF-β1) expression in the small airway walls were examined. In addition, the effects of TA-65 treatment on TGF-β expression, fibroblast-to-myofibroblast differentiation, reactive oxygen species (ROS) production and catalase expression and activity were evaluated in primary cultures of pulmonary fibroblasts and/or mouse embryonic fibroblasts in vitro. Exposure to CS during 4 weeks induced SAR in mice, characterized by small airway walls thickening and peribronchiolar fibrosis (increased deposition of collagen, expression of α-SMA in small airway walls), without mucus overproduction. Treatment of mice with TA-65 protected them from CS-induced SAR. This effect was associated with the prevention of CS-induced TGF-β expression in vivo, the blockade of TGF-β-induced myofibroblast differentiation, and the reduction of TGF-β-induced ROS production that correlates with an increase of catalase expression and activity. Our findings demonstrate that telomerase is a critical player of SAR, probably through extra-telomeric anti-oxidant effects, and therefore provide new insights in the understanding and treatment of COPD pathogenesis.
Collapse
Affiliation(s)
- Arnaud Jean Florent Tiendrébéogo
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,Laboratoire de physiologie et d’explorations fonctionnelles physiologiques, Université Cheik Anta Diop, Dakar, Senegal
| | - Thibaud Soumagne
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - François Pellegrin
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Maylis Dagouassat
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Jeanne Tran Van Nhieu
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,grid.412116.10000 0004 1799 3934Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Département de Pathologie, 94000 Créteil, France
| | - Philippe Caramelle
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Emmanuel N. Paul
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Benjamin Even
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Maeva Zysman
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | | | - Abdoulaye Samb
- Laboratoire de physiologie et d’explorations fonctionnelles physiologiques, Université Cheik Anta Diop, Dakar, Senegal
| | - Jorge Boczkowski
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,grid.412116.10000 0004 1799 3934Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Service d’explorations fonctionnelles respiratoires, DHU A-TVB, FHU Senec, 94000 Créteil, France
| | - Sophie Lanone
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Frédéric Schlemmer
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,grid.412116.10000 0004 1799 3934Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Unité de Pneumologie, DHU A-TVB, FHU Senec, 94000 Créteil, France
| |
Collapse
|
19
|
Chan SCW, Yeung WWY, Cheung CK, Kwok WS, Chan LTL, Ho CTK. Rationale and the Protocol for the Rheumatoid Arthritis-Associated ILD: Screening and Evaluation in High-Risk Patients (RAISE) Study. JOURNAL OF CLINICAL RHEUMATOLOGY AND IMMUNOLOGY 2022. [DOI: 10.1142/s2661341722300099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rheumatoid arthritis (RA) is chronic inflammatory joint disease with a prevalence of up to 1%. Various extra-articular manifestations have been reported, including rheumatoid arthritis-associated interstitial lung disease (RA-ILD). RA-ILD contributes to significant morbidity and is a leading cause of death in patients with RA. Detection of lung involvement is therefore important. However, the prevalence of RA-ILD is not well known and varies among different studies depending on the methods of detection. Multiple clinical risk factors and novel biomarkers have been explored. To evaluate the usefulness of these predictors and to evaluate the burden of interstitial lung disease (ILD) among patients with RA, we designed a study (RAISE, Rheumatoid Arthritis-associated ILD: Screening and Evaluation in high-risk patients) to assess the prevalence of RA-ILD among RA patients with high risk, and to identify potential clinical and biochemical markers associated with the condition.
Collapse
Affiliation(s)
- Shirley Chiu Wai Chan
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Winnie Wan Yin Yeung
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Chak Kwan Cheung
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Wing Sum Kwok
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Leo Tsz Long Chan
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Carmen Tze Kwan Ho
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
21
|
Batista LFZ, Dokal I, Parker R. Telomere biology disorders: time for moving towards the clinic? Trends Mol Med 2022; 28:882-891. [PMID: 36057525 PMCID: PMC9509473 DOI: 10.1016/j.molmed.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Abstract
Telomere biology disorders (TBDs) are a group of rare diseases caused by mutations that impair telomere maintenance. Mutations that cause reduced levels of TERC/hTR, the telomerase RNA component, are found in most TBD patients and include loss-of-function mutations in hTR itself, in hTR-binding proteins [NOP10, NHP2, NAF1, ZCCHC8, and dyskerin (DKC1)], and in proteins required for hTR processing (PARN). These patients show diverse clinical presentations that most commonly include bone marrow failure (BMF)/aplastic anemia (AA), pulmonary fibrosis, and liver cirrhosis. There are no curative therapies for TBD patients. An understanding of hTR biogenesis, maturation, and degradation has identified pathways and pharmacological agents targeting the poly(A) polymerase PAPD5, which adds 3'-oligoadenosine tails to hTR to promote hTR degradation, and TGS1, which modifies the 5'-cap structure of hTR to enhance degradation, as possible therapeutic approaches. Critical next steps will be clinical trials to establish the effectiveness and potential side effects of these compounds in TBD patients.
Collapse
Affiliation(s)
- Luis F Z Batista
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Center for Genome Integrity, Washington University in St. Louis, St. Louis, MO, USA; Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Roy Parker
- Department of Biochemistry and Biofrontiers Instiute, University of Colorado, Boulder, CO, USA; Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
22
|
Cottin V, Bonniaud P, Cadranel J, Crestani B, Jouneau S, Marchand-Adam S, Nunes H, Wémeau-Stervinou L, Bergot E, Blanchard E, Borie R, Bourdin A, Chenivesse C, Clément A, Gomez E, Gondouin A, Hirschi S, Lebargy F, Marquette CH, Montani D, Prévot G, Quetant S, Reynaud-Gaubert M, Salaun M, Sanchez O, Trumbic B, Berkani K, Brillet PY, Campana M, Chalabreysse L, Chatté G, Debieuvre D, Ferretti G, Fourrier JM, Just N, Kambouchner M, Legrand B, Le Guillou F, Lhuillier JP, Mehdaoui A, Naccache JM, Paganon C, Rémy-Jardin M, Si-Mohamed S, Terrioux P. [French practical guidelines for the diagnosis and management of IPF - 2021 update, full version]. Rev Mal Respir 2022; 39:e35-e106. [PMID: 35752506 DOI: 10.1016/j.rmr.2022.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Since the previous French guidelines were published in 2017, substantial additional knowledge about idiopathic pulmonary fibrosis has accumulated. METHODS Under the auspices of the French-speaking Learned Society of Pulmonology and at the initiative of the coordinating reference center, practical guidelines for treatment of rare pulmonary diseases have been established. They were elaborated by groups of writers, reviewers and coordinators with the help of the OrphaLung network, as well as pulmonologists with varying practice modalities, radiologists, pathologists, a general practitioner, a head nurse, and a patients' association. The method was developed according to rules entitled "Good clinical practice" in the overall framework of the "Guidelines for clinical practice" of the official French health authority (HAS), taking into account the results of an online vote using a Likert scale. RESULTS After analysis of the literature, 54 recommendations were formulated, improved, and validated by the working groups. The recommendations covered a wide-ranging aspects of the disease and its treatment: epidemiology, diagnostic modalities, quality criteria and interpretation of chest CT, indication and modalities of lung biopsy, etiologic workup, approach to familial disease entailing indications and modalities of genetic testing, evaluation of possible functional impairments and prognosis, indications for and use of antifibrotic therapy, lung transplantation, symptom management, comorbidities and complications, treatment of chronic respiratory failure, diagnosis and management of acute exacerbations of fibrosis. CONCLUSION These evidence-based guidelines are aimed at guiding the diagnosis and the management in clinical practice of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- V Cottin
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France; UMR 754, IVPC, INRAE, Université de Lyon, Université Claude-Bernard Lyon 1, Lyon, France; Membre d'OrphaLung, RespiFil, Radico-ILD2, et ERN-LUNG, Lyon, France.
| | - P Bonniaud
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et soins intensifs respiratoires, centre hospitalo-universitaire de Bourgogne et faculté de médecine et pharmacie, université de Bourgogne-Franche Comté, Dijon ; Inserm U123-1, Dijon, France
| | - J Cadranel
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et oncologie thoracique, Assistance publique-Hôpitaux de Paris (AP-HP), hôpital Tenon, Paris ; Sorbonne université GRC 04 Theranoscan, Paris, France
| | - B Crestani
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - S Jouneau
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Pontchaillou, Rennes ; IRSET UMR1085, université de Rennes 1, Rennes, France
| | - S Marchand-Adam
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, hôpital Bretonneau, service de pneumologie, CHRU, Tours, France
| | - H Nunes
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie, AP-HP, hôpital Avicenne, Bobigny ; université Sorbonne Paris Nord, Bobigny, France
| | - L Wémeau-Stervinou
- Centre de référence constitutif des maladies pulmonaires rares, Institut Cœur-Poumon, service de pneumologie et immuno-allergologie, CHRU de Lille, Lille, France
| | - E Bergot
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie et oncologie thoracique, hôpital Côte de Nacre, CHU de Caen, Caen, France
| | - E Blanchard
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Haut Levêque, CHU de Bordeaux, Pessac, France
| | - R Borie
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - A Bourdin
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, département de pneumologie et addictologie, hôpital Arnaud-de-Villeneuve, CHU de Montpellier, Montpellier ; Inserm U1046, CNRS UMR 921, Montpellier, France
| | - C Chenivesse
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et d'immuno-allergologie, hôpital Albert Calmette ; CHRU de Lille, Lille ; centre d'infection et d'immunité de Lille U1019 - UMR 9017, Université de Lille, CHU Lille, CNRS, Inserm, Institut Pasteur de Lille, Lille, France
| | - A Clément
- Centre de ressources et de compétence de la mucoviscidose pédiatrique, centre de référence des maladies respiratoires rares (RespiRare), service de pneumologie pédiatrique, hôpital d'enfants Armand-Trousseau, CHU Paris Est, Paris ; Sorbonne université, Paris, France
| | - E Gomez
- Centre de compétence pour les maladies pulmonaires rares, département de pneumologie, hôpitaux de Brabois, CHRU de Nancy, Vandoeuvre-les Nancy, France
| | - A Gondouin
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Jean-Minjoz, Besançon, France
| | - S Hirschi
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, Nouvel Hôpital civil, Strasbourg, France
| | - F Lebargy
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Maison Blanche, Reims, France
| | - C-H Marquette
- Centre de compétence pour les maladies pulmonaires rares, FHU OncoAge, département de pneumologie et oncologie thoracique, hôpital Pasteur, CHU de Nice, Nice cedex 1 ; Université Côte d'Azur, CNRS, Inserm, Institute of Research on Cancer and Aging (IRCAN), Nice, France
| | - D Montani
- Centre de compétence pour les maladies pulmonaires rares, centre national coordonnateur de référence de l'hypertension pulmonaire, service de pneumologie et soins intensifs pneumologiques, AP-HP, DMU 5 Thorinno, Inserm UMR S999, CHU Paris-Sud, hôpital de Bicêtre, Le Kremlin-Bicêtre ; Université Paris-Saclay, Faculté de médecine, Le Kremlin-Bicêtre, France
| | - G Prévot
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Larrey, Toulouse, France
| | - S Quetant
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et physiologie, CHU Grenoble Alpes, Grenoble, France
| | - M Reynaud-Gaubert
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, AP-HM, CHU Nord, Marseille ; Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - M Salaun
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, oncologie thoracique et soins intensifs respiratoires & CIC 1404, hôpital Charles Nicole, CHU de Rouen, Rouen ; IRIB, laboratoire QuantiIF-LITIS, EA 4108, université de Rouen, Rouen, France
| | - O Sanchez
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et soins intensifs, hôpital européen Georges-Pompidou, AP-HP, Paris, France
| | | | - K Berkani
- Clinique Pierre de Soleil, Vetraz Monthoux, France
| | - P-Y Brillet
- Université Paris 13, UPRES EA 2363, Bobigny ; service de radiologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - M Campana
- Service de pneumologie et oncologie thoracique, CHR Orléans, Orléans, France
| | - L Chalabreysse
- Service d'anatomie-pathologique, groupement hospitalier est, HCL, Bron, France
| | - G Chatté
- Cabinet de pneumologie et infirmerie protestante, Caluire, France
| | - D Debieuvre
- Service de pneumologie, GHRMSA, hôpital Emile-Muller, Mulhouse, France
| | - G Ferretti
- Université Grenoble Alpes, Grenoble ; service de radiologie diagnostique et interventionnelle, CHU Grenoble Alpes, Grenoble, France
| | - J-M Fourrier
- Association Pierre-Enjalran Fibrose Pulmonaire Idiopathique (APEFPI), Meyzieu, France
| | - N Just
- Service de pneumologie, CH Victor-Provo, Roubaix, France
| | - M Kambouchner
- Service de pathologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - B Legrand
- Cabinet médical de la Bourgogne, Tourcoing ; Université de Lille, CHU Lille, ULR 2694 METRICS, CERIM, Lille, France
| | - F Le Guillou
- Cabinet de pneumologie, pôle santé de l'Esquirol, Le Pradet, France
| | - J-P Lhuillier
- Cabinet de pneumologie, La Varenne Saint-Hilaire, France
| | - A Mehdaoui
- Service de pneumologie et oncologie thoracique, CH Eure-Seine, Évreux, France
| | - J-M Naccache
- Service de pneumologie, allergologie et oncologie thoracique, GH Paris Saint-Joseph, Paris, France
| | - C Paganon
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France
| | - M Rémy-Jardin
- Institut Cœur-Poumon, service de radiologie et d'imagerie thoracique, CHRU de Lille, Lille, France
| | - S Si-Mohamed
- Département d'imagerie cardiovasculaire et thoracique, hôpital Louis-Pradel, HCL, Bron ; Université de Lyon, INSA-Lyon, Université Claude-Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Villeurbanne, France
| | | |
Collapse
|
23
|
Cottin V, Selman M, Inoue Y, Wong AW, Corte TJ, Flaherty KR, Han MK, Jacob J, Johannson KA, Kitaichi M, Lee JS, Agusti A, Antoniou KM, Bianchi P, Caro F, Florenzano M, Galvin L, Iwasawa T, Martinez FJ, Morgan RL, Myers JL, Nicholson AG, Occhipinti M, Poletti V, Salisbury ML, Sin DD, Sverzellati N, Tonia T, Valenzuela C, Ryerson CJ, Wells AU. Syndrome of Combined Pulmonary Fibrosis and Emphysema: An Official ATS/ERS/JRS/ALAT Research Statement. Am J Respir Crit Care Med 2022; 206:e7-e41. [PMID: 35969190 PMCID: PMC7615200 DOI: 10.1164/rccm.202206-1041st] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The presence of emphysema is relatively common in patients with fibrotic interstitial lung disease. This has been designated combined pulmonary fibrosis and emphysema (CPFE). The lack of consensus over definitions and diagnostic criteria has limited CPFE research. Goals: The objectives of this task force were to review the terminology, definition, characteristics, pathophysiology, and research priorities of CPFE and to explore whether CPFE is a syndrome. Methods: This research statement was developed by a committee including 19 pulmonologists, 5 radiologists, 3 pathologists, 2 methodologists, and 2 patient representatives. The final document was supported by a focused systematic review that identified and summarized all recent publications related to CPFE. Results: This task force identified that patients with CPFE are predominantly male, with a history of smoking, severe dyspnea, relatively preserved airflow rates and lung volumes on spirometry, severely impaired DlCO, exertional hypoxemia, frequent pulmonary hypertension, and a dismal prognosis. The committee proposes to identify CPFE as a syndrome, given the clustering of pulmonary fibrosis and emphysema, shared pathogenetic pathways, unique considerations related to disease progression, increased risk of complications (pulmonary hypertension, lung cancer, and/or mortality), and implications for clinical trial design. There are varying features of interstitial lung disease and emphysema in CPFE. The committee offers a research definition and classification criteria and proposes that studies on CPFE include a comprehensive description of radiologic and, when available, pathological patterns, including some recently described patterns such as smoking-related interstitial fibrosis. Conclusions: This statement delineates the syndrome of CPFE and highlights research priorities.
Collapse
Affiliation(s)
- Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, University of Lyon, INRAE, Lyon, France
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | | | | | - Tamera J. Corte
- Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | | | | | - Joseph Jacob
- University College London, London, United Kingdom
| | - Kerri A. Johannson
- Department of Medicine and Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | | | - Joyce S. Lee
- University of Colorado Denver Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Katerina M. Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, University of Crete, Heraklion, Greece
| | | | - Fabian Caro
- Hospital de Rehabilitación Respiratoria "María Ferrer", Buenos Aires, Argentina
| | | | - Liam Galvin
- European idiopathic pulmonary fibrosis and related disorders federation
| | - Tae Iwasawa
- Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | | | | | | | - Andrew G. Nicholson
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | | | | | - Don D. Sin
- University of British Columbia, Vancouver, Canada
| | - Nicola Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University of Parma, Italy
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Claudia Valenzuela
- Pulmonology Department, Hospital Universitario de la Princesa, Departamento Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
24
|
French practical guidelines for the diagnosis and management of idiopathic pulmonary fibrosis - 2021 update. Full-length version. Respir Med Res 2022; 83:100948. [PMID: 36630775 DOI: 10.1016/j.resmer.2022.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Since the latest 2017 French guidelines, knowledge about idiopathic pulmonary fibrosis has evolved considerably. METHODS Practical guidelines were drafted on the initiative of the Coordinating Reference Center for Rare Pulmonary Diseases, led by the French Language Pulmonology Society (SPLF), by a coordinating group, a writing group, and a review group, with the involvement of the entire OrphaLung network, pulmonologists practicing in various settings, radiologists, pathologists, a general practitioner, a health manager, and a patient association. The method followed the "Clinical Practice Guidelines" process of the French National Authority for Health (HAS), including an online vote using a Likert scale. RESULTS After a literature review, 54 guidelines were formulated, improved, and then validated by the working groups. These guidelines addressed multiple aspects of the disease: epidemiology, diagnostic procedures, quality criteria and interpretation of chest CT scans, lung biopsy indication and procedures, etiological workup, methods and indications for family screening and genetic testing, assessment of the functional impairment and prognosis, indication and use of antifibrotic agents, lung transplantation, management of symptoms, comorbidities and complications, treatment of chronic respiratory failure, diagnosis and management of acute exacerbations of fibrosis. CONCLUSION These evidence-based guidelines are intended to guide the diagnosis and practical management of idiopathic pulmonary fibrosis.
Collapse
|
25
|
Putman RK, Axelsson GT, Ash SY, Sanders JL, Menon AA, Araki T, Nishino M, Yanagawa M, Gudmundsson EF, Qiao D, San José Estépar R, Dupuis J, O'Connor GT, Rosas IO, Washko GR, El-Chemaly S, Raby BA, Gudnason V, DeMeo DL, Silverman EK, Hatabu H, De Vivo I, Cho MH, Gudmundsson G, Hunninghake GM. Interstitial lung abnormalities are associated with decreased mean telomere length. Eur Respir J 2022; 60:2101814. [PMID: 35115336 PMCID: PMC10052789 DOI: 10.1183/13993003.01814-2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/29/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Interstitial lung abnormalities (ILA) share many features with idiopathic pulmonary fibrosis; however, it is not known if ILA are associated with decreased mean telomere length (MTL). METHODS Telomere length was measured with quantitative PCR in the Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) and Age Gene/Environment Susceptibility Reykjavik (AGES-Reykjavik) cohorts and Southern blot analysis was used in the Framingham Heart Study (FHS). Logistic and linear regression were used to assess the association between ILA and MTL; Cox proportional hazards models were used to assess the association between MTL and mortality. RESULTS In all three cohorts, ILA were associated with decreased MTL. In the COPDGene and AGES-Reykjavik cohorts, after adjustment there was greater than twofold increase in the odds of ILA when comparing the shortest quartile of telomere length to the longest quartile (OR 2.2, 95% CI 1.5-3.4, p=0.0001, and OR 2.6, 95% CI 1.4-4.9, p=0.003, respectively). In the FHS, those with ILA had shorter telomeres than those without ILA (-767 bp, 95% CI 76-1584 bp, p=0.03). Although decreased MTL was associated with chronic obstructive pulmonary disease (OR 1.3, 95% CI 1.1-1.6, p=0.01) in COPDGene, the effect estimate was less than that noted with ILA. There was no consistent association between MTL and risk of death when comparing the shortest quartile of telomere length in COPDGene and AGES-Reykjavik (HR 0.82, 95% CI 0.4-1.7, p=0.6, and HR 1.2, 95% CI 0.6-2.2, p=0.5, respectively). CONCLUSION ILA are associated with decreased MTL.
Collapse
Affiliation(s)
- Rachel K Putman
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gisli Thor Axelsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Samuel Y Ash
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason L Sanders
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aravind A Menon
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tetsuro Araki
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mizuki Nishino
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Masahiro Yanagawa
- Dept of Radiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | - Dandi Qiao
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Raúl San José Estépar
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Josée Dupuis
- Dept of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - George T O'Connor
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Ivan O Rosas
- Pulmonary and Critical Care Division, Baylor University Medical Center, Houston, TX, USA
| | - George R Washko
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Souheil El-Chemaly
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Respiratory Diseases, Boston Children's Hospital, Boston, MA, USA
| | | | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hiroto Hatabu
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael H Cho
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Gunnar Gudmundsson
- Icelandic Heart Association, Kopavogur, Iceland
- Dept of Respiratory Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Gary M Hunninghake
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Wang JY, Young LR. Insights into the Pathogenesis of Pulmonary Fibrosis from Genetic Diseases. Am J Respir Cell Mol Biol 2022; 67:20-35. [PMID: 35294321 PMCID: PMC9273221 DOI: 10.1165/rcmb.2021-0557tr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary fibrosis is a disease process associated with significant morbidity and mortality, with limited therapeutic options owing to an incomplete understanding of the underlying pathophysiology. Mechanisms driving the fibrotic cascade have been elucidated through studies of rare and common variants in surfactant-related and telomere-related genes in familial and sporadic forms of pulmonary fibrosis, as well as in multisystem Mendelian genetic disorders that present with pulmonary fibrosis. In this translational review, we outline insights into the pathophysiology of pulmonary fibrosis derived from genetic forms of the disease, with a focus on model systems, shared cellular and molecular mechanisms, and potential targets for therapy.
Collapse
Affiliation(s)
- Joanna Y. Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Lisa R. Young
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Multiwalled Carbon Nanotubes Induce Fibrosis and Telomere Length Alterations. Int J Mol Sci 2022; 23:ijms23116005. [PMID: 35682685 PMCID: PMC9181372 DOI: 10.3390/ijms23116005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Telomere shortening can result in cellular senescence and in increased level of genome instability, which are key events in numerous of cancer types. Despite this, few studies have focused on the effect of nanomaterial exposure on telomere length as a possible mechanism involved in nanomaterial-induced carcinogenesis. In this study, effects of exposure to multiwalled carbon nanotubes (MWCNT) on telomere length were investigated in mice exposed by intrapleural injection, as well as in human lung epithelial and mesothelial cell lines. In addition, cell cycle, apoptosis, and regulation of genes involved in DNA damage repair were assessed. Exposure to MWCNT led to severe fibrosis, infiltration of inflammatory cells in pleura, and mesothelial cell hyperplasia. These histological alterations were accompanied by deregulation of genes involved in fibrosis and immune cell recruitment, as well as a significant shortening of telomeres in the pleura and the lung. Assessment of key carcinogenic mechanisms in vitro confirmed that long-term exposure to the long MWCNT led to a prominent telomere shortening in epithelial cells, which coincided with G1-phase arrest and enhanced apoptosis. Altogether, our data show that telomere shortening resulting in cell cycle arrest and apoptosis may be an important mechanism in long MWCNT-induced inflammation and fibrosis.
Collapse
|
28
|
Abstract
Parenchymal lung disease is the fourth leading cause of death in the United States; among the top causes, it continues on the rise. Telomeres and telomerase have historically been linked to cellular processes related to aging and cancer, but surprisingly, in the recent decade genetic discoveries have linked the most apparent manifestations of telomere and telomerase dysfunction in humans to the etiology of lung disease: both idiopathic pulmonary fibrosis (IPF) and emphysema. The short telomere defect is pervasive in a subset of IPF patients, and human IPF is the phenotype most intimately tied to germline defects in telomere maintenance. One-third of families with pulmonary fibrosis carry germline mutations in telomerase or other telomere maintenance genes, and one-half of patients with apparently sporadic IPF have short telomere length. Beyond explaining genetic susceptibility, short telomere length uncovers clinically relevant syndromic extrapulmonary disease, including a T-cell immunodeficiency and a propensity to myeloid malignancies. Recognition of this subset of patients who share a unifying molecular defect has provided a precision medicine paradigm wherein the telomere-mediated lung disease diagnosis provides more prognostic value than histopathology or multidisciplinary evaluation. Here, we critically evaluate this progress, emphasizing how the genetic findings put forth a new pathogenesis paradigm of age-related lung disease that links telomere abnormalities to alveolar stem senescence, remodeling, and defective gas exchange.
Collapse
Affiliation(s)
- Jonathan K. Alder
- Division of Pulmonary and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh PA, United States
| | - Mary Armanios
- Departments of Oncology and Genetic Medicine, Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
KLF4 regulates TERT expression in alveolar epithelial cells in pulmonary fibrosis. Cell Death Dis 2022; 13:435. [PMID: 35508454 PMCID: PMC9068714 DOI: 10.1038/s41419-022-04886-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) was considered as a telomere-mediated disease. TERT and TERC correlated with telomere length. Although telomerase gene mutations were associated with IPF, majority patients did not carry mutations. The mechanism by which telomerase expression was regulated in IPF are still unclear. In this study, we aimed to delineate the mechanisms that how TERT protein expression were regulated in alveolar epithelial cells (AECs) in pulmonary fibrosis. Here, we found that P16, P21 and fibrosis markers (αSMA and Collagen-I) were prominently increased in lung tissues of IPF patients and bleomycin-induced mouse models, while the expression of KLF4 and TERT were decreased in AECs. In vivo experiments, AAV-6 vectors mediated KLF4 over-expression with specific SP-C promoter was constructed. Over-expression of KLF4 in AECs could protect TERT expression and suppress the development of pulmonary fibrosis in bleomycin-induced mouse models. In the mechanism exploration of TERT regulation, KLF4 and TERT were both down-regulated in bleomycin-induced senescent MLE-12 and BEAS-2B cells. Compared with control group, small-interfering RNA targeting KLF4 significantly reduced the TERT expression and telomerase activity, while overexpression of KLF4 can increased the expression of TERT and telomerase activity in senescent AECs. Furthermore, ChIP showed that KLF4 protein could bind to the TERT promoter region in MLE-12 cells, suggesting that KLF4 could implicate in pathogenesis of lung fibrosis through regulating TERT transcription in AECs. Taken together, this study identified that KLF4 might be a promising potential target for further understanding the mechanism and developing novel strategy for the treatment of lung fibrosis in IPF.
Collapse
|
30
|
Kelich J, Aramburu T, van der Vis JJ, Showe L, Kossenkov A, van der Smagt J, Massink M, Schoemaker A, Hennekam E, Veltkamp M, van Moorsel CH, Skordalakes E. Telomere dysfunction implicates POT1 in patients with idiopathic pulmonary fibrosis. J Exp Med 2022; 219:e20211681. [PMID: 35420632 PMCID: PMC9014792 DOI: 10.1084/jem.20211681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/28/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Exonic sequencing identified a family with idiopathic pulmonary fibrosis (IPF) containing a previously unreported heterozygous mutation in POT1 p.(L259S). The family displays short telomeres and genetic anticipation. We found that POT1(L259S) is defective in binding the telomeric overhang, nuclear accumulation, negative regulation of telomerase, and lagging strand maintenance. Patient cells containing the mutation display telomere loss, lagging strand defects, telomere-induced DNA damage, and premature senescence with G1 arrest. Our data suggest POT1(L259S) is a pathogenic driver of IPF and provide insights into gene therapy options.
Collapse
Affiliation(s)
| | | | - Joanne J. van der Vis
- Department of Pulmonology, Interstitial Lung Disease Center of Excellence, St Antonius Hospital, Nieuwegein, Netherlands
| | | | | | - Jasper van der Smagt
- Department of Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maarten Massink
- Department of Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Angela Schoemaker
- Department of Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eric Hennekam
- Department of Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marcel Veltkamp
- Department of Pulmonology, Interstitial Lung Disease Center of Excellence, St Antonius Hospital, Nieuwegein, Netherlands
| | - Coline H.M. van Moorsel
- Department of Pulmonology, Interstitial Lung Disease Center of Excellence, St Antonius Hospital, Nieuwegein, Netherlands
| | | |
Collapse
|
31
|
Hoffman TW, van der Vis JJ, Biesma DH, Grutters JC, van Moorsel CHM. Extrapulmonary manifestations of a telomere syndrome in patients with idiopathic pulmonary fibrosis are associated with decreased survival. Respirology 2022; 27:959-965. [PMID: 35419815 DOI: 10.1111/resp.14264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is a heterogenous disease with a median survival of 3-4 years. Patients with mutations in telomere-related genes exhibit extrapulmonary signs and symptoms. These patients represent a distinct phenotype of IPF with worse survival. As genetic analyses are not available for most patients with IPF, we sought to determine the predictive value of extrapulmonary signs and symptoms of a telomere syndrome in patients with IPF. METHODS We retrospectively studied 409 patients with IPF. Clinical characteristics, laboratory results and family history suggestive of a telomere syndrome were related to leukocyte telomere length measured by quantitative PCR and patient outcomes. RESULTS The cohort included 293 patients with sporadic IPF and 116 patients with a background of familial pulmonary fibrosis. Any or a combination of a clinical history (haematological disease, liver disease, early greying of hair, nail dystrophy, skin abnormalities), a family history or haematological laboratory abnormalities (macrocytosis, anaemia, thrombopenia or leukopenia) suggestive of a telomere syndrome was present in 27% of IPF patients and associated with shorter leukocyte telomere length and shorter survival (p = 0.002 in a multivariate model). In sporadic IPF, having either a clinical history, family history or haematological laboratory abnormalities was not significantly associated with decreased survival (p = 0.07 in a multivariate model). CONCLUSION Taking a careful clinical and family history focused on extrapulmonary manifestations of a telomere syndrome can provide important prognostic information in patients with IPF, as this is associated with shorter survival.
Collapse
Affiliation(s)
- Thijs W Hoffman
- ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Joanne J van der Vis
- ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands.,Department of Clinical Chemistry, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Douwe H Biesma
- Department of Internal Medicine, St. Antonius Hospital, Nieuwegein, The Netherlands.,Department of Internal Medicine, University Medical Centre, Utrecht, The Netherlands
| | - Jan C Grutters
- ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands.,Division of Heart and Lungs, University Medical Centre, Utrecht, The Netherlands
| | - Coline H M van Moorsel
- ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands.,Division of Heart and Lungs, University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
32
|
Utility of Telomerase Gene Mutation Testing in Patients with Idiopathic Pulmonary Fibrosis in Routine Practice. Cells 2022; 11:cells11030372. [PMID: 35159182 PMCID: PMC8834025 DOI: 10.3390/cells11030372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Recent studies have suggested that causative variants in telomerase complex genes (TCGs) are present in around 10% of individuals with idiopathic pulmonary fibrosis (IPF) regardless of family history of the disease. However, the studies used a case-control rare variant enrichment study design which is not directly translatable to routine practice. To validate the prevalence results and to establish the individual level, routine clinical practice, and utility of those results we performed next generation sequencing of TCGs on a cohort of well-characterized consecutive individuals with IPF (diagnosis established according to ATS/ERS/JRS/ALAT guidelines). Of 27 IPF patients, three had a family history of idiopathic interstitial pneumonia (familial IPF) and 24 did not (sporadic IPF). Pathogenic/likely-pathogenic variants (according to American College of Medical Genetics criteria) in TCG were found in three individuals (11.1%) of the whole cohort; specifically, they were present in 2 out of 24 (8.3%) of the sporadic and in 1 out of 3 (33.3%) of the patients with familial IPF. Our results, which were established on an individual-patient level study design and in routine clinical practice (as opposed to the case-control study design), are roughly in line with the around 10% prevalence of causative TCG variants in patients with IPF.
Collapse
|
33
|
AbdelFattah E, Saeed A, Dwidar I, Elnady K, Nagdy M. Correlation between diaphragmatic mobility by transthoracic ultrasound and echocardiography findings in patients with idiopathic pulmonary fibrosis. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2022. [DOI: 10.4103/ecdt.ecdt_18_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Wang J, Hu K, Cai X, Yang B, He Q, Wang J, Weng Q. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B 2022; 12:18-32. [PMID: 35127370 PMCID: PMC8799876 DOI: 10.1016/j.apsb.2021.07.023] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/13/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial pneumonia with unknown causes. The incidence rate increases year by year and the prognosis is poor without cure. Recently, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway can be considered as a master regulator for IPF. The contribution of the PI3K/AKT in fibrotic processes is increasingly prominent, with PI3K/AKT inhibitors currently under clinical evaluation in IPF. Therefore, PI3K/AKT represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies. This review epitomizes the progress that is being made in understanding the complex interpretation of the cause of IPF, and demonstrates that PI3K/AKT can directly participate to the greatest extent in the formation of IPF or cooperate with other pathways to promote the development of fibrosis. We further summarize promising PI3K/AKT inhibitors with IPF treatment benefits, including inhibitors in clinical trials and pre-clinical studies and natural products, and discuss how these inhibitors mitigate fibrotic progression to explore possible potential agents, which will help to develop effective treatment strategies for IPF in the near future.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kaili Hu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuanyan Cai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
35
|
Hoffman TW, van Moorsel CHM, Kazemier KM, Biesma DH, Grutters JC, van Kessel DA. Humoral Immune Status in Relation to Outcomes in Patients with Idiopathic Pulmonary Fibrosis. Lung 2021; 199:667-676. [PMID: 34714393 DOI: 10.1007/s00408-021-00488-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease, in which inflammation is thought to only play a secondary role. Several factors associated with acute exacerbations of IPF (AE-IPF) have been identified, including infections. This study investigated whether humoral immunodeficiency or increased inflammatory markers at diagnosis were associated with AE-IPF and survival. METHODS Four-hundred-and-nine patients diagnosed with IPF between 2011 and 2017 were retrospectively included. Immune status investigations at diagnosis included measurement of serum immunoglobulins (available in 38%), leukocyte and lymphocyte subsets in blood and bronchoalveolar lavage (BAL) fluid (available in 58%), as well as response to pneumococcal vaccination (available in 64%). RESULTS Serum immunoglobulins or IgG subclass levels were below the lower limit of normal in 6%. The response to pneumococcal vaccination was severely impaired in 1%. Thirteen percent of patients developed an AE-IPF (4.7% per year). AE-IPF were associated with elevated lymphocytes in BAL fluid at diagnosis (p = 0.03). Higher serum IgA and IgG at diagnosis were associated with worse survival (p = 0.01; and p = 0.04), as were an increased BAL lymphocyte percentage (p = 0.005), and higher blood leukocytes and neutrophils (p = 0.01; and p = 0.0005). In a multivariate model, only BAL lymphocyte count retained statistical significance (p = 0.007). CONCLUSION The prevalence of humoral immunodeficiencies was low in patients with IPF and not associated with AE-IPF or survival. Elevated lymphocytes in BAL were associated with the development of AE-IPF and worse survival. Higher serum immunoglobulins and immune cells in blood were also associated with worse survival. The local immune response in the lungs may be a target for future therapies.
Collapse
Affiliation(s)
- T W Hoffman
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435CM, Nieuwegein, The Netherlands.
| | - C H M van Moorsel
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435CM, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Centre, Utrecht, The Netherlands
| | - K M Kazemier
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435CM, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Centre, Utrecht, The Netherlands
- Centre for Translational Immunology, University Medical Centre, Utrecht, The Netherlands
| | - D H Biesma
- Department of Internal Medicine, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - J C Grutters
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435CM, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Centre, Utrecht, The Netherlands
| | - D A van Kessel
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435CM, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
36
|
The role of telomerase in the etiology of primary spontaneous pneumothorax. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2021; 29:377-383. [PMID: 34589257 PMCID: PMC8462098 DOI: 10.5606/tgkdc.dergisi.2021.20522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022]
Abstract
Background
This study aims to investigate the role of telomerase activity in the risk of primary spontaneous pneumothorax, which is most frequently encountered in the practice of thoracic surgery.
Methods
A total of 61 patients (56 males, 5 females; median age: 29.4 years; range, 17 to 43 years) who underwent treatment for primary spontaneous pneumothorax and 19 age- and sex-matched healthy controls (10 males, 9 females; median age: 29.1 years; range, 23 to 43 years) were included in this prospective study between January 2018 - August 2018. Telomerase activity was evaluated with enzyme-linked immunosorbent assay. The correlation between telomerase activity and clinical and demographic parameters was examined.
Results
The mean serum telomerase level was 3.4±0.6 ng/mL in the primary spontaneous pneumothorax group and 1.9±0.5 ng/mL in the control group, indicating significantly higher levels in the patient group (p<0.001). There was no significant association between the telomerase levels and presence of blebs and/or bullae on thoracic computed tomography, extent of pneumothorax, laterality (right, left, or bilateral), and pack years of cigarette smoking.
Conclusion
Telomerase levels of patients with primary spontaneous pneumothorax are significantly higher than healthy individuals. Future genetic studies may ultimately clarify a potential relationship between primary spontaneous pneumothorax and short telomere syndrome.
Collapse
|
37
|
Tomos I, Dimakopoulou K, Manali ED, Papiris SA, Karakatsani A. Long-term personal air pollution exposure and risk for acute exacerbation of idiopathic pulmonary fibrosis. Environ Health 2021; 20:99. [PMID: 34461906 PMCID: PMC8406600 DOI: 10.1186/s12940-021-00786-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/20/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Urban air pollution is involved in the progress of idiopathic pulmonary fibrosis (IPF). Its potential role on the devastating event of Acute Exacerbation of IPF (AE-IPF) needs to be clarified. This study examined the association between long-term personal air pollution exposure and AE- IPF risk taking into consideration inflammatory mediators and telomere length (TL). METHODS All consecutive IPF-patients referred to our Hospital from October 2013-June 2019 were included. AE-IPF events were recorded and inflammatory mediators and TL measured. Long-term personal air pollution exposures were assigned to each patient retrospectively, for O3, NO2, PM2.5 [and PM10, based on geo-coded residential addresses. Logistic regression models assessed the association of air pollutants' levels with AE-IPF and inflammatory mediators adjusting for potential confounders. RESULTS 118 IPF patients (mean age 72 ± 8.3 years) were analyzed. We detected positive significant associations between AE-IPF and a 10 μg/m3 increase in previous-year mean level of NO2 (OR = 1.52, 95%CI:1.15-2.0, p = 0.003), PM2.5 (OR = 2.21, 95%CI:1.16-4.20, p = 0.016) and PM10 (OR = 2.18, 95%CI:1.15-4.15, p = 0.017) independent of age, gender, smoking, lung function and antifibrotic treatment. Introduction of TL in all models of a subgroup of 36 patients did not change the direction of the observed associations. Finally, O3 was positively associated with %change of IL-4 (p = 0.014) whilst PM2.5, PM10 and NO2 were inversely associated with %changes of IL-4 (p = 0.003, p = 0.003, p = 0.032) and osteopontin (p = 0.013, p = 0.013, p = 0.085) respectively. CONCLUSIONS Long-term personal exposure to increased concentrations of air pollutants is an independent risk factor of AE-IPF. Inflammatory mediators implicated in lung repair mechanisms are involved.
Collapse
Affiliation(s)
- Ioannis Tomos
- 2nd Pulmonary Medicine Department, National and Kapodistrian University of Athens, Medical School, “ATTIKON” University Hospital, 1, Rimini street, 12462 Haidari, Greece
| | - Konstantina Dimakopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Effrosyni D. Manali
- 2nd Pulmonary Medicine Department, National and Kapodistrian University of Athens, Medical School, “ATTIKON” University Hospital, 1, Rimini street, 12462 Haidari, Greece
| | - Spyros A. Papiris
- 2nd Pulmonary Medicine Department, National and Kapodistrian University of Athens, Medical School, “ATTIKON” University Hospital, 1, Rimini street, 12462 Haidari, Greece
| | - Anna Karakatsani
- 2nd Pulmonary Medicine Department, National and Kapodistrian University of Athens, Medical School, “ATTIKON” University Hospital, 1, Rimini street, 12462 Haidari, Greece
| |
Collapse
|
38
|
Planas-Cerezales L, Arias-Salgado EG, Berastegui C, Montes-Worboys A, González-Montelongo R, Lorenzo-Salazar JM, Vicens-Zygmunt V, Garcia-Moyano M, Dorca J, Flores C, Perona R, Román A, Molina-Molina M. Lung Transplant Improves Survival and Quality of Life Regardless of Telomere Dysfunction. Front Med (Lausanne) 2021; 8:695919. [PMID: 34395476 PMCID: PMC8362799 DOI: 10.3389/fmed.2021.695919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction: Fibrotic interstitial lung diseases (ILDs) are the first indication for lung transplantation (LT). Telomere dysfunction has been associated with poor post-transplant outcomes. The aim of the study was to evaluate the morbi-mortality and quality of life in fibrotic ILDs after lung transplant depending on telomere biology. Methods: Fibrotic ILD patients that underwent lung transplant were allocated to two arms; with or without telomere dysfunction at diagnosis based on the telomere length and telomerase related gene mutations revealed by whole-exome sequencing. Post-transplant evaluation included: (1) short and long-term mortality and complications and (2) quality of life. Results: Fifty-five percent of patients that underwent LT carried rare coding mutations in telomerase-related genes. Patients with telomere shortening more frequently needed extracorporeal circulation and presented a higher rate of early post-transplant hematological complications, longer stay in the intensive care unit (ICU), and a higher number of long-term hospital admissions. However, post-transplant 1-year survival was higher than 80% regardless of telomere dysfunction, with improvement in the quality of life and oxygen therapy withdrawal. Conclusions: Post-transplant morbidity is higher in patients with telomere dysfunction and differs according to elapsed time from transplantation. However, lung transplant improves survival and quality of life and the associated complications are manageable.
Collapse
Affiliation(s)
- Lurdes Planas-Cerezales
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain
| | - Elena G Arias-Salgado
- Biomedical Research Institute CSIC/UAM, IdIPAZ, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Berastegui
- Respiratory Department, Institute of Research, Hospital Universitari Vall d'Hebrón, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ana Montes-Worboys
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain
| | | | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Vanesa Vicens-Zygmunt
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain
| | | | - Jordi Dorca
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain.,Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Centro Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosario Perona
- Biomedical Research Institute CSIC/UAM, IdIPAZ, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Román
- Respiratory Department, Institute of Research, Hospital Universitari Vall d'Hebrón, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - María Molina-Molina
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain.,Centro Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
39
|
Pintado-Berninches L, Montes-Worboys A, Manguan-García C, Arias-Salgado EG, Serrano A, Fernandez-Varas B, Guerrero-López R, Iarriccio L, Planas L, Guenechea G, Egusquiaguirre SP, Hernandez RM, Igartua M, Luis Pedraz J, Cortijo J, Sastre L, Molina-Molina M, Perona R. GSE4-loaded nanoparticles a potential therapy for lung fibrosis that enhances pneumocyte growth, reduces apoptosis and DNA damage. FASEB J 2021; 35:e21422. [PMID: 33638895 DOI: 10.1096/fj.202001160rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Idiopathic pulmonary fibrosis is a lethal lung fibrotic disease, associated with aging with a mean survival of 2-5 years and no curative treatment. The GSE4 peptide is able to rescue cells from senescence, DNA and oxidative damage, inflammation, and induces telomerase activity. Here, we investigated the protective effect of GSE4 expression in vitro in rat alveolar epithelial cells (AECs), and in vivo in a bleomycin model of lung fibrosis. Bleomycin-injured rat AECs, expressing GSE4 or treated with GSE4-PLGA/PEI nanoparticles showed an increase of telomerase activity, decreased DNA damage, and decreased expression of IL6 and cleaved-caspase 3. In addition, these cells showed an inhibition in expression of fibrotic markers induced by TGF-β such as collagen-I and III among others. Furthermore, treatment with GSE4-PLGA/PEI nanoparticles in a rat model of bleomycin-induced fibrosis, increased telomerase activity and decreased DNA damage in proSP-C cells. Both in preventive and therapeutic protocols GSE4-PLGA/PEI nanoparticles prevented and attenuated lung damage monitored by SPECT-CT and inhibited collagen deposition. Lungs of rats treated with bleomycin and GSE4-PLGA/PEI nanoparticles showed reduced expression of α-SMA and pro-inflammatory cytokines, increased number of pro-SPC-multicellular structures and increased DNA synthesis in proSP-C cells, indicating therapeutic efficacy of GSE4-nanoparticles in experimental lung fibrosis and a possible curative treatment for lung fibrotic patients.
Collapse
Affiliation(s)
- Laura Pintado-Berninches
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ana Montes-Worboys
- ILD Unit, Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Manguan-García
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Adela Serrano
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,CIBER of Respiratory diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | | | - Rosa Guerrero-López
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Laura Iarriccio
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain
| | - Lurdes Planas
- ILD Unit, Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Guillermo Guenechea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Susana P Egusquiaguirre
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Rosa M Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,CIBER of Respiratory diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Maria Molina-Molina
- ILD Unit, Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBER of Respiratory diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
40
|
Chronowski C, Akhanov V, Chan D, Catic A, Finegold M, Sahin E. Fructose Causes Liver Damage, Polyploidy, and Dysplasia in the Setting of Short Telomeres and p53 Loss. Metabolites 2021; 11:metabo11060394. [PMID: 34204343 PMCID: PMC8234056 DOI: 10.3390/metabo11060394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
Studies in humans and model systems have established an important role of short telomeres in predisposing to liver fibrosis through pathways that are incompletely understood. Recent studies have shown that telomere dysfunction impairs cellular metabolism, but whether and how these metabolic alterations contribute to liver fibrosis is not well understood. Here, we investigated whether short telomeres change the hepatic response to metabolic stress induced by fructose, a sugar that is highly implicated in non-alcoholic fatty liver disease. We find that telomere shortening in telomerase knockout mice (TKO) imparts a pronounced susceptibility to fructose as reflected in the activation of p53, increased apoptosis, and senescence, despite lower hepatic fat accumulation in TKO mice compared to wild type mice with long telomeres. The decreased fat accumulation in TKO is mediated by p53 and deletion of p53 normalizes hepatic fat content but also causes polyploidy, polynuclearization, dysplasia, cell death, and liver damage. Together, these studies suggest that liver tissue with short telomers are highly susceptible to fructose and respond with p53 activation and liver damage that is further exacerbated when p53 is lost resulting in dysplastic changes.
Collapse
Affiliation(s)
- Christopher Chronowski
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
| | - Viktor Akhanov
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
| | - Doug Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Andre Catic
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Milton Finegold
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ergün Sahin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
- Department of Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-798-6685; Fax: +1-713-798-4146
| |
Collapse
|
41
|
Luppi F, Kalluri M, Faverio P, Kreuter M, Ferrara G. Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respir Res 2021; 22:109. [PMID: 33865386 PMCID: PMC8052779 DOI: 10.1186/s12931-021-01711-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disorder with an estimated median survival time of 3–5 years after diagnosis. This condition occurs primarily in elderly subjects, and epidemiological studies suggest that the main risk factors, ageing and exposure to cigarette smoke, are associated with both pulmonary and extrapulmonary comorbidities (defined as the occurrence of two or more disorders in a single individual). Ageing and senescence, through interactions with environmental factors, may contribute to the pathogenesis of IPF by various mechanisms, causing lung epithelium damage and increasing the resistance of myofibroblasts to apoptosis, eventually resulting in extracellular matrix accumulation and pulmonary fibrosis. As a paradigm, syndromes featuring short telomeres represent archetypal premature ageing syndromes and are often associated with pulmonary fibrosis. The pathophysiological features induced by ageing and senescence in patients with IPF may translate to pulmonary and extrapulmonary features, including emphysema, pulmonary hypertension, lung cancer, coronary artery disease, gastro-oesophageal reflux, diabetes mellitus and many other chronic diseases, which may lead to substantial negative consequences in terms of various outcome parameters in IPF. Therefore, the careful diagnosis and treatment of comorbidities may represent an outstanding chance to improve quality of life and survival, and it is necessary to contemplate all possible management options for IPF, including early identification and treatment of comorbidities.
Collapse
Affiliation(s)
- Fabrizio Luppi
- Respiratory Unit, University of Milano Bicocca, S. Gerardo Hospital, ASST Monza, Monza, Italy
| | - Meena Kalluri
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-134 Clinical Sciences Building, 11304 83 Ave., Edmonton, AB, T6G 2G3, Canada
| | - Paola Faverio
- Respiratory Unit, University of Milano Bicocca, S. Gerardo Hospital, ASST Monza, Monza, Italy
| | - Michael Kreuter
- Centre for Interstitial and Rare Lung Diseases, Pneumology and Respiratory Critical Care Medicine, University of Heidelberg, German Center for Lung Research, ThoraxklinikHeidelberg, Germany
| | - Giovanni Ferrara
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada. .,Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-134 Clinical Sciences Building, 11304 83 Ave., Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
42
|
Mackintosh JA, Yerkovich ST, Tan ME, Samson L, Hopkins PMA, Chambers DC. Airway Telomere Length in Lung Transplant Recipients. Front Immunol 2021; 12:658062. [PMID: 33936089 PMCID: PMC8085488 DOI: 10.3389/fimmu.2021.658062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Chronic lung allograft dysfunction (CLAD) represents the major impediment to long term survival following lung transplantation. Donor and recipient telomere length have been shown to associate with lung transplant outcomes, including CLAD. In this study we aimed to measure the telomere lengths of bronchial and bronchiolar airway cells in lung allografts early after transplantation and to investigate associations with CLAD and all-cause mortality. Methods This prospective, longitudinal study was performed at The Prince Charles Hospital, Australia. Airway cells were collected via bronchial and bronchiolar airway brushings at post-transplant bronchoscopies. The relative telomere length in airway cells was determined by quantitative PCR based on the T/S ratio. All patients were censored for CLAD and all-cause mortality in August 2020. Results In total 231 bronchoscopies incorporating transbronchial brush and bronchial brush were performed in 120 patients. At the time of censoring, 43% and 35% of patients, respectively, had developed CLAD and had died. Airway bronchiolar and bronchial telomere lengths were strongly correlated (r=0.78, p<0.001), confirming conservation of telomere length with airway branch generation. Both the bronchiolar (r = -0.34, p<0.001) and bronchial (r = -0.31, p<0.001) telomere length decreased with age. Shorter airway telomere length was associated with older donor age and higher donor pack-year smoking history. Neither the bronchiolar nor the bronchial airway telomere length were associated with the development of CLAD (HR 0.39 (0.06-2.3), p=0.30; HR 0.66 (0.2-1.7), p=0.39, respectively) or all-cause mortality (HR 0.92 (0.2-4.5), p=0.92; HR 0.47 (0.1-1.9), p=0.28, respectively). Conclusions In this cohort, airway telomere length was associated with donor age and smoking history but was not associated with the future development of CLAD or all-cause mortality.
Collapse
Affiliation(s)
- John A. Mackintosh
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Stephanie T. Yerkovich
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Maxine E. Tan
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Luke Samson
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Peter MA Hopkins
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Daniel C. Chambers
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
43
|
Choi HS. Diagnosis of idiopathic pulmonary fibrosis. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2021. [DOI: 10.5124/jkma.2021.64.4.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstitial lung disease (ILD) is a group of diseases, involving the inflammation and fibrosis of the interstitium of the lung. ILD is classified according to whether or not the cause is known. Known causes of ILDs include inhalation of environmental substances, drugs, infection, and related connective tissue disease. ILD of unknown cause is called idiopathic ILD. The most common form of idiopathic ILD is idiopathic pulmonary fibrosis (IPF). IPF is a chronic progressive fibrosing ILD that results in the decline of lung function with exertional dyspnea, cough, bibasilar inspiratory crackles, and digital clubbing. The incidence of IPF increases with age, and is predominant in men. The most characteristic feature of IPF is a usual interstitial pneumonia (UIP) pattern detected on high-resolution computed tomography (HRCT). The typical HRCT pattern in case of UIP is honeycombing, with or without traction bronchiectasis or bronchiolectasis; this may be superimposed with fine reticulation. The typical distribution of UIP is subpleural, and there is basal predominance with heterogeneity. A definitive diagnosis of IPF in patients with clinically suspected IPF is made when there is presence of a UIP pattern on HRCT. Bronchoalveolar lavage or surgical lung biopsy is not recommended if a UIP pattern is detected on HRCT. However, bronchoalveolar lavage and surgical lung biopsy are required if probable UIP pattern, indeterminate UIP pattern, or an alternative diagnosis pattern are found on HRCT in order to diagnose IPF. A specific combination of HRCT patterns and histopathological patterns requiring multidisciplinary discussion is necessary to rule in IPF or rule it out.
Collapse
|
44
|
Shoeb M, Meier HCS, Antonini JM. Telomeres in toxicology: Occupational health. Pharmacol Ther 2021; 220:107742. [PMID: 33176178 PMCID: PMC7969441 DOI: 10.1016/j.pharmthera.2020.107742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
The ends of chromosomes shorten at each round of cell division, and this process is thought to be affected by occupational exposures. Occupational hazards may alter telomere length homeostasis resulting in DNA damage, chromosome aberration, mutations, epigenetic alterations and inflammation. Therefore, for the protection of genetic material, nature has provided a unique nucleoprotein structure known as a telomere. Telomeres provide protection by averting an inappropriate activation of the DNA damage response (DDR) at chromosomal ends and preventing recognition of single and double strand DNA (ssDNA and dsDNA) breaks or chromosomal end-to-end fusion. Telomeres and their interacting six shelterin complex proteins in coordination act as inhibitors of DNA damage machinery by blocking DDR activation at chromosomes, thereby preventing the occurrence of genome instability, perturbed cell cycle, cellular senescence and apoptosis. However, inappropriate DNA repair may result in the inadequate distribution of genetic material during cell division, resulting in the eventual development of tumorigenesis and other pathologies. This article reviews the current literature on the association of changes in telomere length and its interacting proteins with different occupational exposures and the potential application of telomere length or changes in the regulatory proteins as potential biomarkers for exposure and health response, including recent findings and future perspectives.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States of America.
| | - Helen C S Meier
- Joseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, WI, United States of America
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States of America
| |
Collapse
|
45
|
Tao N, Li K, Liu J, Fan G, Sun T. Liproxstatin-1 alleviates bleomycin-induced alveolar epithelial cells injury and mice pulmonary fibrosis via attenuating inflammation, reshaping redox equilibrium, and suppressing ROS/p53/α-SMA pathway. Biochem Biophys Res Commun 2021; 551:133-139. [PMID: 33735625 DOI: 10.1016/j.bbrc.2021.02.127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/25/2021] [Indexed: 11/24/2022]
Abstract
With undetermined etiology and limited treatment option, idiopathic pulmonary fibrosis (IPF) an age related disease is extremely lethal. Persistent injury of epithelial cells, abnormal activation of fibroblasts/myofibroblasts, and superabundant deposition of extracellular matrix protein pathologically characterize IPF. Redox imbalance is reported to play a vital role in both IPF development and senescence. This study aim to investigate whether and how Liproxstatin-1 (Lip-1), a strong lipid autoxidation inhibitor, regulates bleomycin (BLM) induced pulmonary fibrosis both in vivo and in vitro. It's demonstrated that Lip-1 exerted a potent anti-fibrotic function in BLM-induced mice pulmonary fibrosis via alleviating inflammatory, reshaping redox equilibrium, and ameliorating collagen deposition. Lip-1 reduced the level of reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA), promoted the expression of glutathione (GSH), catalase (CAT), and total superoxide dismutase (T-SOD) after BLM treatment. Moreover, in vitro experiments verified that Lip-1 protected A549 cells from BLM-induced injury and fibrosis. Lip-1 seemed to attenuate BLM-induced fibrosis by targeting ROS/p53/α-SMA signaling both in vivo and in vitro. In summary, this study demonstrates that Lip-1 administration performs a protective role in against pulmonary fibrosis and lights up the potential of Lip-1 treatment for patient with IPF in future.
Collapse
Affiliation(s)
- Ningning Tao
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China; Graduate School of Peking Union Medical College, Beijing, 100730, China; The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Kang Li
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China; Graduate School of Peking Union Medical College, Beijing, 100730, China; The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jingjing Liu
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China; Graduate School of Peking Union Medical College, Beijing, 100730, China; The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Guoqing Fan
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China; Graduate School of Peking Union Medical College, Beijing, 100730, China; The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Tieying Sun
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China; Graduate School of Peking Union Medical College, Beijing, 100730, China; The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China.
| |
Collapse
|
46
|
Sullivan DI, Jiang M, Hinchie AM, Roth MG, Bahudhanapati H, Nouraie M, Liu J, McDyer JF, Mallampalli RK, Zhang Y, Kass DJ, Finkel T, Alder JK. Transcriptional and Proteomic Characterization of Telomere-Induced Senescence in a Human Alveolar Epithelial Cell Line. Front Med (Lausanne) 2021; 8:600626. [PMID: 33634147 PMCID: PMC7902064 DOI: 10.3389/fmed.2021.600626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/05/2021] [Indexed: 01/16/2023] Open
Abstract
Cellular senescence due to telomere dysfunction has been hypothesized to play a role in age-associated diseases including idiopathic pulmonary fibrosis (IPF). It has been postulated that paracrine mediators originating from senescent alveolar epithelia signal to surrounding mesenchymal cells and contribute to disease pathogenesis. However, murine models of telomere-induced alveolar epithelial senescence fail to display the canonical senescence-associated secretory phenotype (SASP) that is observed in senescent human cells. In an effort to understand human-specific responses to telomere dysfunction, we modeled telomere dysfunction-induced senescence in a human alveolar epithelial cell line. We hypothesized that this system would enable us to probe for differences in transcriptional and proteomic senescence pathways in vitro and to identify novel secreted protein (secretome) changes that potentially contribute to the pathogenesis of IPF. Following induction of telomere dysfunction, a robust senescence phenotype was observed. RNA-seq analysis of the senescent cells revealed the SASP and comparisons to previous murine data highlighted differences in response to telomere dysfunction. We conducted a proteomic analysis of the senescent cells using a novel biotin ligase capable of labeling secreted proteins. Candidate biomarkers selected from our transcriptional and secretome data were then evaluated in IPF and control patient plasma. Four novel proteins were found to be differentially expressed between the patient groups: stanniocalcin-1, contactin-1, tenascin C, and total inhibin. Our data show that human telomere-induced, alveolar epithelial senescence results in a transcriptional SASP that is distinct from that seen in analogous murine cells. Our findings suggest that studies in animal models should be carefully validated given the possibility of species-specific responses to telomere dysfunction. We also describe a pragmatic approach for the study of the consequences of telomere-induced alveolar epithelial cell senescence in humans.
Collapse
Affiliation(s)
- Daniel I. Sullivan
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, United States
| | - Mao Jiang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,The Third Xiangya Hospital, Central South University, Changsha, China
| | - Angela M. Hinchie
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark G. Roth
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Harinath Bahudhanapati
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, United States
| | - Mehdi Nouraie
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, United States
| | - Jie Liu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States,University of Pittsburgh Medical Center, Pittsburgh, PA, United States,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - John F. McDyer
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rama K. Mallampalli
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, United States
| | - Daniel J. Kass
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, United States
| | - Toren Finkel
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States,University of Pittsburgh Medical Center, Pittsburgh, PA, United States,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonathan K. Alder
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, United States,*Correspondence: Jonathan K. Alder
| |
Collapse
|
47
|
Tomos I, Karakatsani A, Manali ED, Kottaridi C, Spathis A, Argentos S, Papiris SA. Telomere length across different UIP fibrotic-Interstitial Lung Diseases: a prospective Greek case-control study. Pulmonology 2020; 28:254-261. [PMID: 33358512 DOI: 10.1016/j.pulmoe.2020.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 10/22/2022] Open
Abstract
INTRODUCTION Short telomeres are recognized as risk factor for idiopathic pulmonary fibrosis (IPF). We aimed to assess the role of telomere length (TL) in fibrotic-Interstitial Lung Diseases (f-ILDs) associated with a usual interstitial pneumonia (UIP) pattern as well as in IPF acute exacerbation (IPF-AE). AIM AND METHODS TL was measured from peripheral white blood cells using a multiplex quantitative polymerase chain reaction in consecutive patients with f-ILDs, all presenting UIP pattern in the high-resolution chest-computed-tomography and compared to age-matched healthy controls. RESULTS Seventy-nine individuals were included (mean age 69.77 ± 0.72 years); 24 stable IPF, 18 IPF-AE, 10 combined pulmonary fibrosis and emphysema, 7 Rheumatoid arthritis-UIP-ILDs and 20 controls. TL in all patients was significantly shorter compared to controls [mean T/S ratio (SE) 0.77 (±0.05) vs 2.26 (±0.36), p < 0.001] as well as separately in each one of f-ILD subgroups. IPF-AE patients presented significantly shorter TL compared to stable IPF (p = 0.029). Patients with IPF and shorter than the median TL (0-0.72) showed reduced overall survival (p = 0.004). T/S < 0.72 was associated with increased risk for IPF-AE (OR = 30.787, 95% CI: 2.153, 440.183, p = 0.012) independent of age, gender, smoking and lung function impairment. A protective effect of TL was observed, as it was inversely associated with risk of death both in UIP-f-ILDs (HR = 0.174, 95%CI: 0.036, 0.846, p = 0.030) and IPF patients (HR = 0.096, 95%CI: 0.011, 0.849, p = 0.035). CONCLUSIONS Shorter TL characterizes different UIP f-ILDs. Although no difference was observed in TL among diverse UIP subgroups, IPF-AE presented shorter TL compared to stable IPF. Reduced overall survival and higher hazard ratio of death are associated with shorter TL in IPF.
Collapse
Affiliation(s)
- I Tomos
- 2nd Pulmonary Medicine Department, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| | - A Karakatsani
- 2nd Pulmonary Medicine Department, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| | - E D Manali
- 2nd Pulmonary Medicine Department, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| | - C Kottaridi
- 2nd Department of Cytopathology, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| | - A Spathis
- 2nd Department of Cytopathology, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| | - S Argentos
- 2nd Department of Radiology, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| | - S A Papiris
- 2nd Pulmonary Medicine Department, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
48
|
Munroe M, Niero EL, Fok WC, Vessoni AT, Jeong H, Brenner KA, Batista LFZ. Telomere Dysfunction Activates p53 and Represses HNF4α Expression Leading to Impaired Human Hepatocyte Development and Function. Hepatology 2020; 72:1412-1429. [PMID: 32516515 PMCID: PMC7693115 DOI: 10.1002/hep.31414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Telomere attrition is a major risk factor for end-stage liver disease. Due to a lack of adequate models and intrinsic difficulties in studying telomerase in physiologically relevant cells, the molecular mechanisms responsible for liver disease in patients with telomere syndromes remain elusive. To circumvent that, we used genome editing to generate isogenic human embryonic stem cells (hESCs) harboring clinically relevant mutations in telomerase and subjected them to an in vitro, stage-specific hepatocyte differentiation protocol that resembles hepatocyte development in vivo. APPROACH AND RESULTS Using this platform, we observed that while telomerase is highly expressed in hESCs, it is quickly silenced, specifically due to telomerase reverse transcriptase component (TERT) down-regulation, immediately after endoderm differentiation and completely absent in in vitro-derived hepatocytes, similar to what is observed in human primary hepatocytes. While endoderm derivation is not impacted by telomere shortening, progressive telomere dysfunction impaired hepatic endoderm formation. Consequently, hepatocyte derivation, as measured by expression of specific hepatic markers as well by albumin expression and secretion, is severely compromised in telomerase mutant cells with short telomeres. Interestingly, this phenotype was not caused by cell death induction or senescence. Rather, telomere shortening prevents the up-regulation and activation of human hepatocyte nuclear factor 4 alpha (HNF4α) in a p53-dependent manner. Both reactivation of telomerase and silencing of p53 rescued hepatocyte formation in telomerase mutants. Likewise, the conditional expression (doxycycline-controlled) of HNF4α, even in cells that retained short telomeres, accrued DNA damage, and exhibited p53 stabilization, successfully restored hepatocyte formation from hESCS. CONCLUSIONS Our data show that telomere dysfunction acts as a major regulator of HNF4α during hepatocyte development, pointing to a target in the treatment of liver disease in telomere-syndrome patients.
Collapse
Affiliation(s)
- Michael Munroe
- Department of MedicineWashington University in St. LouisSt. LouisMO
| | | | - Wilson Chun Fok
- Department of MedicineWashington University in St. LouisSt. LouisMO
| | | | - Ho‐Chang Jeong
- Department of MedicineWashington University in St. LouisSt. LouisMO
| | - Kirsten Ann Brenner
- Department of MedicineWashington University in St. LouisSt. LouisMO
- Present address:
Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMI
| | - Luis Francisco Zirnberger Batista
- Department of MedicineWashington University in St. LouisSt. LouisMO
- Department of Developmental BiologyWashington University in St. LouisSt. LouisMO
- Center of Regenerative MedicineWashington University in St. LouisSt. LouisMO
| |
Collapse
|
49
|
Truta B, Wohler E, Sobreira N, Datta LW, Brant SR. Role of telomere shortening in anticipation of inflammatory bowel disease. World J Gastrointest Pharmacol Ther 2020; 11:69-78. [PMID: 32953227 PMCID: PMC7475772 DOI: 10.4292/wjgpt.v11.i4.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/25/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The existence of genetic anticipation has been long disputed in inflammatory bowel disease (IBD) in the absence of the explanatory mechanism. AIM To determine whether it was predictive of genetic anticipation, we evaluated telomere length in IBD. We hypothesized that multiplex IBD families exhibit a genetic defect impacting telomere maintenance mechanisms. METHODS We studied three IBD families with multiple affected members in three successive generations. We determined telomere length (TL) in lymphocytes and granulocytes from peripheral blood of the affected members using flow cytometry and fluorescence in-situ hybridization (flow FISH). We also performed whole exome sequencing in the blood of all available family members and used PhenoDB to identify potential candidate gene variants with recessive or dominant modes of inheritance. RESULTS Out of twenty-four patients of European descent selected to participate in the study, eleven patients, eight parent-child pairs affected by IBD, were included in the genetic anticipation analysis. Median difference in age at diagnosis between two successive generations was 16.5 years, with earlier age at onset in the younger generations. In most of the affected members, the disease harbored similar gastrointestinal and extraintestinal involvement but was more aggressive among the younger generations. TL was not associated with earlier age at onset or more severe disease in members of successive generations affected by IBD. NOD2 gene mutations were present in the Crohn's disease patients of one family. However, no gene variants were identified as potential candidates for inheritance. CONCLUSION Telomere shortening appears unlikely to be involved in mechanisms of possible genetic anticipation in IBD. Further studies using a larger sample size are required to confirm or refute our findings.
Collapse
Affiliation(s)
- Brindusa Truta
- Steven R Brant, Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, United States
| | - Elizabeth Wohler
- McKusick-Nathan Institute of Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Nara Sobreira
- McKusick-Nathan Institute of Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Lisa W. Datta
- Steven R Brant, Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, United States
| | - Steven R. Brant
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers-Robert Wood Johnson Medical School, NJ, 08901, United States
| |
Collapse
|
50
|
Strikoudis A, Cieślak A, Loffredo L, Chen YW, Patel N, Saqi A, Lederer DJ, Snoeck HW. Modeling of Fibrotic Lung Disease Using 3D Organoids Derived from Human Pluripotent Stem Cells. Cell Rep 2020; 27:3709-3723.e5. [PMID: 31216486 DOI: 10.1016/j.celrep.2019.05.077] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/27/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of idiopathic pulmonary fibrosis (IPF), an intractable interstitial lung disease, is unclear. Recessive mutations in some genes implicated in Hermansky-Pudlak syndrome (HPS) cause HPS-associated interstitial pneumonia (HPSIP), a clinical entity that is similar to IPF. We previously reported that HPS1-/- embryonic stem cell-derived 3D lung organoids showed fibrotic changes. Here, we show that the introduction of all HPS mutations associated with HPSIP promotes fibrotic changes in lung organoids, while the deletion of HPS8, which is not associated with HPSIP, does not. Genome-wide expression analysis revealed the upregulation of interleukin-11 (IL-11) in epithelial cells from HPS mutant fibrotic organoids. IL-11 was detected predominantly in type 2 alveolar epithelial cells in end-stage IPF, but was expressed more broadly in HPSIP. Finally, IL-11 induced fibrosis in WT organoids, while its deletion prevented fibrosis in HPS4-/- organoids, suggesting IL-11 as a therapeutic target. hPSC-derived 3D lung organoids are, therefore, a valuable resource to model fibrotic lung disease.
Collapse
Affiliation(s)
- Alexandros Strikoudis
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA; Division of Pulmonary Medicine, Allergy, and Critical Care, Columbia University Medical Center, New York, NY 10032, USA
| | - Anna Cieślak
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA; Division of Pulmonary Medicine, Allergy, and Critical Care, Columbia University Medical Center, New York, NY 10032, USA
| | - Lucas Loffredo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ya-Wen Chen
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA; Division of Pulmonary Medicine, Allergy, and Critical Care, Columbia University Medical Center, New York, NY 10032, USA
| | - Nina Patel
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Anjali Saqi
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - David J Lederer
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hans-Willem Snoeck
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA; Division of Pulmonary Medicine, Allergy, and Critical Care, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|