1
|
Ashraf A, Zechmann B, Bruce ED. Hypoxia-inducible factor 1α modulates acrolein-induced cellular damage in bronchial epithelial cells. Toxicology 2025; 515:154158. [PMID: 40252947 DOI: 10.1016/j.tox.2025.154158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a widespread environmental pollutant. It is generated during the incomplete combustion of materials such as tobacco smoke, petrol, coal, forest fires, and plastics, as well as from the overheating of frying oils. Acrolein is known to induce cellular damage and oxidative stress. This study investigates the critical role of hypoxia-inducible factor 1α (HIF-1α), which is a transcription factor required to regulate cell survival and angiogenesis, in protecting bronchial epithelial cells from acrolein-induced cytotoxicity and DNA damage under normoxic and hypoxic conditions. To our knowledge, no prior study has comprehensively evaluated the effects of HIF-1α on cellular responses to acrolein under normoxic and hypoxic conditions in vitro. Therefore, the goal of this study was to explore how silencing HIF-1α influences cellular responses to acrolein, and our study focused on changes in cytotoxicity, metabolic activity, DNA damage, and oxidative stress using the BEAS-2B cell line. We observed enhanced cell damage and reduced viability in cells exposed to acrolein when silenced with HIF-1α, particularly in hypoxic environments. While results indicate that silencing HIF-1α significantly increases cytotoxicity and DNA damage under hypoxia compared to normoxic conditions, oxidative stress indicator levels did not rise noticeably under hypoxia following HIF-1α silencing. This research warrants further investigation to indicate the importance of HIF-1α in adapting to environmental and hypoxic stressors, which are commonly found in chronic lung diseases and ischemic conditions.
Collapse
Affiliation(s)
- Asha Ashraf
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76706, USA
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Erica D Bruce
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76706, USA.
| |
Collapse
|
2
|
Ito R, Komaki Y, Ibuki Y. Increased matrix metalloproteinase-1 expression by coexposure to UVA and cigarette sidestream smoke and contribution of histone acetylation. Genes Environ 2025; 47:2. [PMID: 39865280 PMCID: PMC11765920 DOI: 10.1186/s41021-025-00325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Skin is exposed to various environmental factors throughout life, and some of these factors are known to contribute to skin aging. Long-term solar UV exposure is a well-known cause of skin aging, as is cigarette smoke, which contains a number of chemicals. In this study, combined effect of UVA and cigarette sidestream smoke (CSS) on matrix metalloproteinase-1 (MMP-1) induction was investigated. MMP-1 is the main protease that initiates collagen type I fiber fragmentation in human skin and is associated with aging. RESULTS Combined exposure to UVA and CSS enhanced MMP-1 induction, accompanied by collagen type I (COL1A1) gene suppression. The basal expression of MMP-1 was higher in senescent cells than in normal cells, with a pronounced increase after coexposure to UVA and CSS. UVA irradiation resulted in global histone H3 acetylation, and we considered this was responsible for the MMP-1 upregulation. Histone deacetylase inhibitors, sodium acetate, propionate, and butyrate, all enhanced the CSS-induced MMP-1 according to the degree of histone acetylation. CONCLUSION These results suggest that UVA and CSS additively induce MMP-1, which may lead to skin aging, and that such combined effect may further promote aging in aged skin. UVA-induced histone acetylation may contribute to MMP-1 induction.
Collapse
Affiliation(s)
- Ryoma Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52- 1, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52- 1, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52- 1, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
3
|
Martinez JD, Easwaran M, Ramirez D, Erickson-DiRenzo E. Effects of Electronic (E)-cigarette Vapor and Cigarette Smoke in Cultured Vocal Fold Fibroblasts. Laryngoscope 2023; 133:139-146. [PMID: 35213064 DOI: 10.1002/lary.30073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The public use of electronic-cigarettes (e-cigs) is rapidly growing. When heated, e-cigs produce a vapor that is inhaled. The vocal folds are among the first tissues exposed to this insult. However, the impact of e-cigs on vocal fold health is almost entirely unknown. Our objective was to evaluate the effects of e-cig vapor on cultured human vocal fold fibroblasts (hVFFs), the primary cell type of the lamina propria. We compared the cellular effects of e-cig vapor without and with nicotine and conventional cigarette smoke. STUDY DESIGN In vitro. METHODS E-cig vapor extract (EVE) and cigarette smoke extract (CSE) were created by bubbling vapor and smoke, respectively, into the cell culture medium. hVFFs were exposed to EVE without or with nicotine or CSE for 24 hours. Untreated cells were used as a control group. Cells were harvested, and cytotoxicity, extracellular matrix and inflammatory gene expression, and DNA damage were assessed. RESULTS Undiluted EVE without and with nicotine reduced the viability of hVFFs to a cytotoxic level. CSE reduced hVFFs viability to a greater extent than EVE and induced DNA damage as measured by DNA double-strand breaks. No changes in gene expression were observed following EVE or CSE exposure. CONCLUSION EVE induces cytotoxicity in hVFFs. However, cellular responses were greater following exposure to CSE, suggesting cigarette smoke may induce more harm, at least in the short term. Findings from this investigation improve our understanding of responses of hVFFs to e-cigs and form the basis for an in vitro methodology to study the vocal fold responses to these products. LEVEL OF EVIDENCE NA Laryngoscope, 133:139-146, 2023.
Collapse
Affiliation(s)
- Joshua D Martinez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Meena Easwaran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Daniel Ramirez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Elizabeth Erickson-DiRenzo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| |
Collapse
|
4
|
Kato Y, Nishiyama K, Man Lee J, Ibuki Y, Imai Y, Noda T, Kamiya N, Kusakabe T, Kanda Y, Nishida M. TRPC3-Nox2 Protein Complex Formation Increases the Risk of SARS-CoV-2 Spike Protein-Induced Cardiomyocyte Dysfunction through ACE2 Upregulation. Int J Mol Sci 2022; 24:ijms24010102. [PMID: 36613540 PMCID: PMC9820218 DOI: 10.3390/ijms24010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Myocardial damage caused by the newly emerged coronavirus (SARS-CoV-2) infection is one of the key determinants of COVID-19 severity and mortality. SARS-CoV-2 entry to host cells is initiated by binding with its receptor, angiotensin-converting enzyme (ACE) 2, and the ACE2 abundance is thought to reflect the susceptibility to infection. Here, we report that ibudilast, which we previously identified as a potent inhibitor of protein complex between transient receptor potential canonical (TRPC) 3 and NADPH oxidase (Nox) 2, attenuates the SARS-CoV-2 spike glycoprotein pseudovirus-evoked contractile and metabolic dysfunctions of neonatal rat cardiomyocytes (NRCMs). Epidemiologically reported risk factors of severe COVID-19, including cigarette sidestream smoke (CSS) and anti-cancer drug treatment, commonly upregulate ACE2 expression level, and these were suppressed by inhibiting TRPC3-Nox2 complex formation. Exposure of NRCMs to SARS-CoV-2 pseudovirus, as well as CSS and doxorubicin (Dox), induces ATP release through pannexin-1 hemi-channels, and this ATP release potentiates pseudovirus entry to NRCMs and human iPS cell-derived cardiomyocytes (hiPS-CMs). As the pseudovirus entry followed by production of reactive oxygen species was attenuated by inhibiting TRPC3-Nox2 complex in hiPS-CMs, we suggest that TRPC3-Nox2 complex formation triggered by panexin1-mediated ATP release participates in exacerbation of myocardial damage by amplifying ACE2-dependent SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yumiko Imai
- Laboratory of Regulation for Intractable Infectious Diseases, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Takamasa Noda
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
- Department of Brain Bioregulatory Science, The Jikei University Graduate School of Medicine, Tokyo 105-8461, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences (NIHS), Kawasaki 210-9501, Japan
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- National Institute for Physiological Sciences, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Correspondence: ; Tel./Fax: +81-92-642-6556
| |
Collapse
|
5
|
Rahman M, Irmler M, Introna M, Beckers J, Palmberg L, Johanson G, Upadhyay S, Ganguly K. Insight into the pulmonary molecular toxicity of heated tobacco products using human bronchial and alveolar mucosa models at air-liquid interface. Sci Rep 2022; 12:16396. [PMID: 36180488 PMCID: PMC9525689 DOI: 10.1038/s41598-022-20657-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Heated tobacco products (HTP) are novel nicotine delivery products with limited toxicological data. HTP uses heating instead of combustion to generate aerosol (HTP-smoke). Physiologically relevant human bronchial and alveolar lung mucosa models developed at air-liquid interface were exposed to HTP-smoke to assess broad toxicological response (n = 6-7; ISO puffing regimen; compared to sham; non-parametric statistical analysis; significance: p < 0.05). Elevated levels of total cellular reactive oxygen species, stress responsive nuclear factor kappa-B, and DNA damage markers [8-hydroxy-2'-deoxyguanosine, phosphorylated histone H2AX, cleaved poly-(ADP-Ribose) polymerase] were detected in HTP-smoke exposed bronchial and/or alveolar models. RNA sequencing detected differential regulation of 724 genes in the bronchial- and 121 genes in the alveolar model following HTP-smoke exposure (cut off: p ≤ 0.01; fold change: ≥ 2). Common enriched pathways included estrogen biosynthesis, ferroptosis, superoxide radical degradation, xenobiotics, and α-tocopherol degradation. Secreted levels of interleukin (IL)1ꞵ and IL8 increased in the bronchial model whereas in the alveolar model, interferon-γ and IL4 increased and IL13 decreased following HTP-smoke exposure. Increased lipid peroxidation was detected in HTP-smoke exposed bronchial and alveolar models which was inhibited by ferrostatin-1. The findings form a basis to perform independent risk assessment studies on different flavours of HTP using different puffing topography and corresponding chemical characterization.
Collapse
Affiliation(s)
- Mizanur Rahman
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Micol Introna
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD E.V.), 85764, Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, 85354, Freising, Germany
| | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Gunnar Johanson
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
6
|
2-Mercaptoethanol protects against DNA double-strand breaks after kidney ischemia and reperfusion injury through GPX4 upregulation. Pharmacol Rep 2022; 74:1041-1053. [PMID: 35989399 DOI: 10.1007/s43440-022-00403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 10/25/2022]
Abstract
BACKGROUND Kidney ischemia reperfusion injury (IRI) is characterized by tubular cell death. DNA double-strand breaks is one of the major sources of tubular cell death induced by IRI. 2-Mercaptoethanol (2-ME) is protective against DNA double-strand breaks derived from calf thymus and bovine embryo. Here, we sought to determine whether treatment with 2-ME attenuated DNA double-strand breaks, resulting in reduced kidney dysfunction and structural damage in IRI. METHODS Kidney IRI or sham-operation in mice was carried out. The mice were treated with 2-ME, Ras-selective lethal 3, or vehicle. Kidney function, tubular injury, DNA damage, antioxidant enzyme expression, and DNA damage response (DDR) kinases activation were assessed. RESULTS Treatment with 2-ME significantly attenuated kidney dysfunction, tubular injury, and DNA double-strand breaks after IRI. Among DDR kinases, IRI induced phosphorylation of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR), but IRI reduced phosphorylation of other DDR kinases including ataxia telangiectasia and Rad3 related, checkpoint kinase 1 (Chk1), Chk2, and Chinese hamster cells 1 (XRCC1). Treatment with 2-ME enhanced phosphorylation of ATM and ATM-mediated effector kinases in IRI-subjected kidneys, suggesting that 2-ME activates ATM-mediated DDR signaling pathway. Furthermore, 2-ME dramatically upregulated glutathione peroxidase 4 (GPX4) in IRI-subjected kidneys. Inhibition of GPX4 augmented adverse IRI consequences including kidney dysfunction, tubular injury, DNA double-strand breaks, and inactivation of ATM-mediated DDR signaling pathway after IRI in 2-ME-treated kidneys. CONCLUSIONS We have demonstrated that exogenous 2-ME protects against DNA double-strand breaks after kidney IRI through GPX4 upregulation and ATM activation.
Collapse
|
7
|
Zhang J, Xu C, Liu K, Li Y, Wang M, Tao L, Yu H, Zhang C. Deep Sequencing Discovery and Profiling of Known and Novel miRNAs Produced in Response to DNA Damage in Rice. Int J Mol Sci 2021; 22:ijms22189958. [PMID: 34576121 PMCID: PMC8472271 DOI: 10.3390/ijms22189958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Under extreme environmental conditions such as ultraviolet and ionizing radiation, plants may suffer DNA damage. If these damages are not repaired accurately and rapidly, they may lead to chromosomal abnormalities or even cell death. Therefore, organisms have evolved various DNA repair mechanisms to cope with DNA damage which include gene transcription and post-translational regulation. MicroRNA (miRNA) is a type of non-coding single-stranded RNA molecule encoded by endogenous genes. They can promote DNA damage repair by regulating target gene transcription. Here, roots from seedlings of the japonica rice cultivar ‘Yandao 8’ that were treated with bleomycin were collected for transcriptome-level sequencing, using non-treated roots as controls. A total of 14,716,232 and 17,369,981 reads mapping to miRNAs were identified in bleomycin-treated and control groups, respectively, including 513 known and 72 novel miRNAs. Compared with the control group, 150 miRNAs showed differential expression levels. Target predictions of these differentially expressed miRNAs yielded 8731 potential gene targets. KEGG annotation and a gene ontology analysis indicated that the highest-ranked target genes were classified into metabolic processes, RNA degradation, DNA repair, and so on. Notably, the DNA repair process was significantly enriched in both analyses. Among these differentially expressed miRNAs, 58 miRNAs and 41 corresponding potential target genes were predicted to be related to DNA repair. RT-qPCR results confirmed that the expression patterns of 20 selected miRNAs were similar to those from the sequencing results, whereas four miRNAs gave opposite results. The opposing expression patterns of several miRNAs with regards to their target genes relating to the DNA repair process were also validated by RT-qPCR. These findings provide valuable information for further functional studies of miRNA involvement in DNA damage repair in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hengxiu Yu
- Correspondence: (H.Y.); (C.Z.); Tel.: +86-0514-8797-9304 (H.Y. & C.Z.)
| | - Chao Zhang
- Correspondence: (H.Y.); (C.Z.); Tel.: +86-0514-8797-9304 (H.Y. & C.Z.)
| |
Collapse
|
8
|
Yamashita R, Komaki Y, Yang G, Ibuki Y. Cell line-dependent difference in glutathione levels affects the cigarette sidestream smoke-induced inhibition of nucleotide excision repair. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 858-860:503273. [PMID: 33198939 DOI: 10.1016/j.mrgentox.2020.503273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
We recently reported that cigarette sidestream smoke (CSS) induced inhibition of nucleotide excision repair (NER) and the cause was NER molecule degradation by aldehydes contained in CSS [Carcinogenesis39, 56-65, 2018; Mutat. Res.834, 42-50, 2018]. In this study, we examined the relationship between intracellular glutathione (GSH) levels and CSS-induced NER inhibition. CSS treatment decreased the intracellular GSH level in human keratinocytes HaCaT, in which the repair of pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) after UVB irradiation was suppressed. We used l-buthionine-(S,R)-sulfoximine (BSO) to artificially deplete intracellular GSH level. BSO treatment remarkably accelerated the CSS-induced NER inhibition. The NER inhibition by CSS was attributed to the delay of accumulation of NER molecules (TFIIH and XPG) to DNA damaged sites, which was further enhanced by BSO treatment. CSS degraded TFIIH, and BSO promoted it as expected. Formaldehyde (FA), a major constituent of CSS, showed similar intracellular GSH reduction and NER inhibition, and BSO promoted its inhibitory effect. Five cultured cell lines showed considerable variability in intrinsic GSH levels, and CSS-induced NER inhibitory effect was significantly correlated with the GSH levels. Chemicals like aldehydes are known to react not only with proteins but also with DNA, causing DNA lesions targeted by NER. Our results suggest that the tissues and cells with low intrinsic GSH levels are susceptible to treatment with CSS and electrophilic compounds like aldehydes through NER inhibition, thus leading to higher genotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Riko Yamashita
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Guang Yang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan.
| |
Collapse
|
9
|
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019; 12:65. [PMID: 31711545 PMCID: PMC6844059 DOI: 10.1186/s13072-019-0311-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
10
|
Liu H, Liu Z, Lu T, Zhang L, Cheng J, Fu X, Hou Y. Toxic effects of 1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal on the maturation and subsequent development of murine oocyte. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:370-380. [PMID: 31212185 DOI: 10.1016/j.ecoenv.2019.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Cigarette smoke can cause follicle destruction and oocyte dysfunction and increase the risks of spontaneous abortion, stillbirth, and tubal ectopic pregnancy, affecting female reproductive health. Third-hand smoke (THS) is residual tobacco smoke existing in the environment long after cigarettes are extinguished, which can react with other compounds in the environment to produce secondary pollutants. However, the effects of THS on the female reproductive system, particularly the maturation of the oocyte, remain unclear. 1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal (NNA), a component of THS, is a logical biomarker of THS exposure. Thus, this study aims to investigate the toxic effects of NNA on the maturation of murine oocytes and subsequent developmental competence. Herein, murine oocytes were exposed to 0 (control group), 0.1, 1.0, 10, and 50 μM NNA for 24 h. Our results showed that NNA exposure reduced the polar body extrusion rate by causing 8-oxo-deoxyguanosine (8-OHdG) to increase and disrupting the meiotic spindle morphology by inhibiting ERK1/2 activation during in vitro maturation. Additionally, NNA exposure resulted in cleavage and blastocyst rate reduction by altering DNA and histone methylations by reducing 5 mC and H3K4me2 levels and by inducing apoptosis caused by mitochondrial dysfunction and reactive oxygen species accumulation, as shown by the increased superoxide dismutase mRNA level and by the decreased Bcl-x mRNA level. Collectively, our results demonstrate that NNA exposure reduces the maturation and developmental capability of murine oocytes by increasing the risk of DNA damage and abnormal spindle morphology, altering epigenetic modifications, and inducing apoptosis, suggesting the toxic effect of NNA on mammalian productive health.
Collapse
Affiliation(s)
- Huage Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Rd 2, Haidian District, 100193 Beijing, China
| | - Zhiqiang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Rd 2, Haidian District, 100193 Beijing, China
| | - Tengfei Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Rd 2, Haidian District, 100193 Beijing, China
| | - Luyao Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Rd 2, Haidian District, 100193 Beijing, China
| | - Jinmei Cheng
- (b)Nantong University Medical School, Qixiu Rd 19, Chongchuan District, 226001 Nantong, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Rd 2, Haidian District, 100193 Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Rd 2, Haidian District, 100193 Beijing, China.
| |
Collapse
|
11
|
Wan R, Mo Y, Zhang Z, Jiang M, Tang S, Zhang Q. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol 2017; 14:38. [PMID: 28923112 PMCID: PMC5604172 DOI: 10.1186/s12989-017-0219-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We and other groups have demonstrated that exposure to cobalt nanoparticles (Nano-Co) caused oxidative stress and inflammation, which have been shown to be strongly associated with genotoxic and carcinogenic effects. However, few studies have reported Nano-Co-induced genotoxic effects in vivo. Here, we propose that Nano-Co may have high genotoxic effects due to their small size and high surface area, which have high capacity for causing oxidative stress and inflammation. METHODS gpt delta transgenic mice were used as our in vivo study model. They were intratracheally instilled with 50 μg per mouse of Nano-Co. At day 1, 3, 7 and 28 after exposure, bronchoalveolar lavage (BAL) was performed and the number of neutrophils, CXCL1/KC level, LDH activity and concentration of total protein in the BAL fluid (BALF) were determined. Mouse lung tissues were collected for H&E staining, and Ki-67, PCNA and γ-H2AX immunohistochemical staining. 8-OHdG level in the genomic DNA of mouse lungs was determined by an OxiSelect™ Oxidative DNA Damage ELISA Kit, and mutant frequency and mutation spectrum in the gpt gene were also determined in mouse lungs at four months after Nano-Co exposure by 6-TG selection, colony PCR, and DNA sequencing. RESULTS Exposure of mice to Nano-Co (50 μg per mouse) resulted in extensive acute lung inflammation and lung injury which were reflected by increased number of neutrophils, CXCL1/KC level, LDH activity and concentration of total protein in the BALF, and infiltration of large amount of neutrophils and macrophages in the alveolar space and interstitial tissues. Increased immunostaining of cell proliferation markers, Ki-67 and PCNA, and the DNA damage marker, γ-H2AX, was also observed in bronchiolar epithelial cells and hyperplastic type II pneumocytes in mouse lungs at day 7 after Nano-Co exposure. At four months after exposure, extensive interstitial fibrosis and proliferation of interstitial cells with inflammatory cells infiltrating the alveolar septa were observed. Moreover, Nano-Co caused increased level of 8-OHdG in genomic DNA of mouse lung tissues. Nano-Co also induced a much higher mutant frequency as compared to controls, and the most common mutation was G:C to T:A transversion, which may be explained by Nano-Co-induced increased formation of 8-OHdG. CONCLUSION Our study demonstrated that exposure to Nano-Co caused oxidative stress, lung inflammation and injury, and cell proliferation, which further resulted in DNA damage and DNA mutation. These findings have important implications for understanding the potential health effects of nanoparticle exposure.
Collapse
Affiliation(s)
- Rong Wan
- Department of Pathology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Zhenyu Zhang
- Seven-year Program of Clinical Medicine, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Mizu Jiang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
- Department of Gastroenterology, Children’s Hospital, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shichuan Tang
- Beijing Municipal Institute of Labor Protection, Beijing, People’s Republic of China
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
- Beijing Municipal Institute of Labor Protection, Beijing, People’s Republic of China
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122 People’s Republic of China
| |
Collapse
|
12
|
Ibuki Y, Shikata M, Toyooka T. γ-H2AX is a sensitive marker of DNA damage induced by metabolically activated 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Toxicol In Vitro 2015; 29:1831-8. [PMID: 26231820 DOI: 10.1016/j.tiv.2015.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/12/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a nicotine-derived nitrosamine, is a potent pulmonary carcinogen present in tobacco smoke. DNA adducts induced by metabolically activated NNK cause carcinogenesis; however, the DNA adducts are difficult to detect in cultured cells because of low intrinsic metabolic enzyme activity. In this study, we indirectly detected NNK-induced DNA adducts via the phosphorylation of histone H2AX (γ-H2AX) in A549 human lung adenocarcinoma epithelial cells. NNK treatment dose-dependently induced γ-H2AX. This γ-H2AX induction was suppressed by ataxia telangiectasia mutated inhibitors, suggesting that DNA double-strand breaks (DSBs) are formed during replication and repair of DNA adducts; however, DSBs could not be directly detected by biased sinusoidal field gel electrophoresis (BSFGE). CYP2A13-overexpressing cells showed prolonged γ-H2AX induction compared with control cells, and DSBs could be detected by BSFGE in CYP2A13-overexpressing cells as a clear migration of double-stranded DNA. These findings suggest that γ-H2AX is a sensitive marker of DNA adducts and provides a possible system for genotoxicity screening of chemicals such as NNK, which need metabolic activation to induce DNA damage.
Collapse
Affiliation(s)
- Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Mariko Shikata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tatsushi Toyooka
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan; National Institute of Occupational Safety and Health, Kawasaki, Japan
| |
Collapse
|
13
|
Zhong R, Chen X, Chen X, Zhu B, Lou J, Li J, Shen N, Yang Y, Gong Y, Zhu Y, Yuan J, Xia X, Miao X. MAD1L1 Arg558His and MAD2L1 Leu84Met interaction with smoking increase the risk of colorectal cancer. Sci Rep 2015; 5:12202. [PMID: 26183163 PMCID: PMC4505328 DOI: 10.1038/srep12202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022] Open
Abstract
The spindle assembly checkpoint (SAC) has been established as an important mechanism of driving aneuploidy, which occurs at a high frequency in the colorectal tumorigenesis. Two important components of SAC are MAD1L1 and MAD2L1, which function together in an interactive manner to initiate the checkpoint signal. We hypothesize that genetic variants in the binding domains of MAD1L1 and MAD2L1 may modulate protein structures and eventually contribute to CRC susceptibility. A case-control study including 710 CRC cases and 735 controls was performed to examine MAD1L1 Arg558His and MAD2L1 Leu84Met’s conferring susceptibility to CRC. Cytokinesis-block micronucleus cytome assays were applied to assess the effect of two functional variants on chromosomal instability (CIN). Significant associations with CRC risk were observed for MAD1L1 Arg558His (OR = 1.38,95% CI: 1.09–1.75) and MAD2L1 Leu84Met in a dominant model (OR = 1.48,95% CI: 1.09–2.01). Moreover, significant multiplicative gene-smoking interactions were found in MAD1L1 Arg558His (P = 0.019) and MAD2L184 Leu/Met (P = 0.016) to enhance CRC risk. Additionally, the frequencies of lymphocytic micro-nucleated binucleated cells for MAD1L1 Arg558His polymorphism were significantly different in the exposed group (P = 0.013), but not in the control group. The study emphasized that MAD1L1 Arg558His and MAD2L1 Leu84Met can significantly interact with smoking to enhance CRC risk, and the genetic effects of MAD1L1Arg558His on CIN need to be further clarified in follow-up studies.
Collapse
Affiliation(s)
- Rong Zhong
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaohua Chen
- 1] Department of Laboratory Medicine, No 161 Hospital of PLA, Wuhan 430010, China [2] Department of Medical Genetics, school of Basic Medical Science, Wuhan University, Wuhan 430071, China
| | - Xueqin Chen
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Beibei Zhu
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jiao Lou
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jiaoyuan Li
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Na Shen
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaoping Xia
- Clinical Laboratory of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
14
|
Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. DNA damage foci: Meaning and significance. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:491-504. [PMID: 25773265 DOI: 10.1002/em.21944] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The discovery of DNA damage response proteins such as γH2AX, ATM, 53BP1, RAD51, and the MRE11/RAD50/NBS1 complex, that accumulate and/or are modified in the vicinity of a chromosomal DNA double-strand break to form microscopically visible, subnuclear foci, has revolutionized the detection of these lesions and has enabled studies of the cellular machinery that contributes to their repair. Double-strand breaks are induced directly by a number of physical and chemical agents, including ionizing radiation and radiomimetic drugs, but can also arise as secondary lesions during replication and DNA repair following exposure to a wide range of genotoxins. Here we aim to review the biological meaning and significance of DNA damage foci, looking specifically at a range of different settings in which such markers of DNA damage and repair are being studied and interpreted.
Collapse
Affiliation(s)
- Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Radiotherapy, Laboratory of Radiation Biology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Michele Ellender
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Zohaib Rana
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Susanne Burdak-Rothkamm
- Department of Cellular Pathology, Oxford University Hospitals, Headley Way, Headington, Oxford, United Kingdom
| |
Collapse
|
15
|
γ-H2AX induced by linear alkylbenzene sulfonates is due to deoxyribonuclease-1 translocation to the nucleus via actin disruption. Mutat Res 2015; 777:33-42. [PMID: 25938903 DOI: 10.1016/j.mrfmmm.2015.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 12/25/2022]
Abstract
Phosphorylation of histone H2AX (γ-H2AX) occurs following formation of DNA double strand breaks (DSBs). Other types of DNA damage also generate DSBs through DNA replication and repair, leading to the production of γ-H2AX. In the present study, we demonstrated that linear alkylbenzene sulfonates (LAS), the most widely used and non-genotoxic anionic surfactants, could generate γ-H2AX via a novel pathway. Breast adenocarcinoma MCF-7 cells were treated with five kinds of LAS with alkyl chains ranging from 10 to 14 carbon units (C10-C14LAS). The generation of DSBs and subsequent production of γ-H2AX increased in a manner that depended on the number of carbon units in LAS. γ-H2AX could also be generated with non-cytotoxic doses of LAS and was independent of the cell cycle, indicating the non-apoptotic and DNA replication-independent formation of DSBs. The generation of γ-H2AX could be attenuated by EGTA and ZnCl2, deoxyribonuclease-1 (DNase I) inhibitors, as well as by the knockdown of DNase I. LAS weakened the interaction between DNase I and actin, and the enhanced release of DNase I was dependent on the number of carbon units in LAS. DNase I released by the LAS treatment translocated to the nucleus, in which DNase I attacked DNA and generated γ-H2AX. These results suggested that the LAS-induced generation of γ-H2AX could be attributed to the translocation of DNase I to the nucleus through the disruption of actin, and not to LAS-induced DNA damage.
Collapse
|
16
|
Ibuki Y, Toyooka T. Evaluation of chemical phototoxicity, focusing on phosphorylated histone H2AX. JOURNAL OF RADIATION RESEARCH 2015; 56:220-8. [PMID: 25480829 PMCID: PMC4380052 DOI: 10.1093/jrr/rru105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 05/27/2023]
Abstract
Histone H2AX is a minor component of nuclear histone H2A. The phosphorylation of histone H2AX at Ser 139, termed γ-H2AX, was originally identified as an early event after the direct formation of DNA double-strand breaks (DSBs) by ionizing radiation. Now, the generation of γ-H2AX is also considered to occur in association with secondarily formed DSBs by cellular processing such as DNA replication and repair at the site of the initial damage, including DNA adducts, crosslinks, and UV-induced photolesions. Therefore, γ-H2AX is currently attracting attention as a new biomarker for detecting various genotoxic insults. We have determined the toxic impact of various environmental stresses such as chemicals, light and/or their coexposure using γ-H2AX, and found that the γ-H2AX assay exhibited high sensitivity and a low false-positive rate as a detection system of genotoxic potential. In this review, we introduced our recent findings concerning the evaluation of chemical phototoxicity, focusing on γ-H2AX.
Collapse
Affiliation(s)
- Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tatsushi Toyooka
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
17
|
Yoshida I, Ibuki Y. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes. Mutat Res 2014; 770:9-18. [PMID: 25771866 DOI: 10.1016/j.mrfmmm.2014.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications.
Collapse
Affiliation(s)
- Ikuma Yoshida
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
18
|
Zhao X, Toyooka T, Ibuki Y. Silver ions enhance UVB-induced phosphorylation of histone H2AX. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:556-565. [PMID: 24838775 DOI: 10.1002/em.21875] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 06/03/2023]
Abstract
Silver (Ag) is used in a wide range of industries including healthcare, food, cosmetics, and environmental industries due to its antibacterial properties. The rapidly expanding use of Ag has raised issues concerning its toxicity in humans. However, studies investigating the effects of Ag on humans are very limited, and the combined effects of Ag and other environmental factors have not yet been determined. Ultraviolet (UV) radiation in sunlight is the most prominent and ubiquitous physical stressor in our natural environment. In this study, we investigated the genotoxic potential of combined exposure to Ag(+) (AgNO3) and UVB in the human keratinocyte cell line, HaCaT, by measuring the generation of phosphorylated histone H2AX, which is currently attracting attention as a biomarker for the detection of genotoxic insults. We found that the generation of γ-H2AX was synergistically enhanced when cells were coexposed to Ag(+) and UVB. Furthermore, we showed that the enhanced generation of γ-H2AX could be attributed to the increased formation of UVB-induced cyclobutane pyrimidine dimers and (6-4) photoproducts. These lesions, if not repaired properly, are the major causal factor for skin carcinogenesis. Our results provide an important insight into influence of Ag on the genotoxic potency of sunlight.
Collapse
Affiliation(s)
- Xiaoxu Zhao
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka-Shi, Shizuoka, Japan
| | | | | |
Collapse
|
19
|
Itoh M, Tsuji T, Nakamura H, Yamaguchi K, Fuchikami JI, Takahashi M, Morozumi Y, Aoshiba K. Systemic effects of acute cigarette smoke exposure in mice. Inhal Toxicol 2014; 26:464-473. [PMID: 24932561 DOI: 10.3109/08958378.2014.917346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Cigarette smoke (CS) causes both pulmonary and extrapulmonary disorders. OBJECTIVE To determine the pulmonary and extrapulmonary effects of acute CS exposure in regard to inflammation, oxidative stress and DNA damage. MATERIALS AND METHODS Mice were exposed to CS for 10 days and then their lungs, heart, liver, pancreas, kidneys, gastrocnemius muscle and subcutaneous (inguinal and flank) and visceral (retroperitoneum and periuterus) adipose tissues were excised. Bronchoalveolar lavage fluid samples were obtained for differential cell analysis. Inflammatory cell infiltration of the tissues was assessed by immunohistochemistry for Mac-3(+) cells, F4/80(+) cells and CD45(+) cells. Oxidative stress was determined by immunohistochemistry for thymidine glycol (a marker of DNA peroxidation) and 4-hydroxy hexenal (a marker of lipid peroxidation), by enzyme-linked immunosorbent assay for protein carbonyls (a marker of protein peroxidation) and by measurements of enzyme activities of glutathione peroxidase, superoxide dismutase and catalase. DNA double-strand breaks were assessed by immunohistochemistry for γH2AX. RESULTS CS exposure-induced inflammatory cell infiltration, oxidative stress and DNA damage in the lung. Neither inflammatory cell infiltration nor DNA damage was observed in any extrapulmonary organs. However, oxidative stress was increased in the heart and inguinal adipose tissue. DISCUSSIONS Induction of inflammatory cell infiltration and DNA damage by acute CS exposure was confined to the lung. However, an increased oxidative burden occurred in the heart and some adipose tissue, as well as in the lung. CONCLUSIONS Although extrapulmonary effects of CS are relatively modest compared with the pulmonary effects, some extrapulmonary organs are vulnerable to CS-induced oxidative stress.
Collapse
Affiliation(s)
- Masayuki Itoh
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center , Ibaraki , Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gerić M, Gajski G, Garaj-Vrhovac V. γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:13-21. [PMID: 24780228 DOI: 10.1016/j.ecoenv.2014.03.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
The visualisation of DNA damage response proteins enables the indirect measurement of DNA damage. Soon after the occurrence of a DNA double-strand break (DSB), the formation of γ-H2AX histone variants is to be expected. This review is focused on the potential use of the γ-H2AX foci assay in assessing the genotoxicity of environmental contaminants including cytostatic pharmaceuticals, since standard methods may not be sensitive enough to detect the damaging effect of low environmental concentrations of such drugs. These compounds are constantly released into the environment, potentially representing a threat to water quality, aquatic organisms, and, ultimately, human health. Our review of the literature revealed that this method could be used in the biomonitoring and risk assessment of aquatic systems affected by wastewater from the production, usage, and disposal of cytostatic pharmaceuticals.
Collapse
Affiliation(s)
- Marko Gerić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| |
Collapse
|
21
|
Kubota T, Toyooka T, Zhao X, Ibuki Y. Phosphorylation of histone H2AX generated by linear alkylbenzene sulfonates and its suppression by UVB exposure. Photochem Photobiol 2014; 90:845-52. [PMID: 24597763 DOI: 10.1111/php.12268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/27/2014] [Indexed: 01/28/2023]
Abstract
We previously demonstrated that the nonionic surfactants, nonylphenol polyethoxylates (NPEOs) induced the phosphorylation of histone H2AX (γ-H2AX), accompanied by DNA double-strand breaks (DSBs), and that exposure to ultraviolet (UV) degraded NPEOs, which sometimes enhanced their DNA-damaging ability. In this study, we showed that linear alkylbenzene sulfonates (LAS), general anion surfactants, also generated DSBs with γ-H2AX, and this ability was attenuated by UVB exposure. In the human breast adenocarcinoma cell line, MCF-7, γ-H2AX was generated in a dose-dependent manner immediately after cells were treated with LAS, and this was attributed to the formation of DSBs and was independent of cell cycle phases. The ability to generate γ-H2AX was markedly reduced in LAS exposed to UVB. HPLC analysis revealed that LAS were a mixture of various alkyl chain lengths, the peaks of which were detected at individual retention times. UVB evenly decreased all peaks of LAS, without migration of peaks to other retention times, which indicated that UVB may degrade the benzene ring of LAS, but did not shorten the alkyl chains. UVB is an important environmental factor in the degradation of LAS exhibiting the ability to induce DSBs, the most serious type of DNA damage.
Collapse
Affiliation(s)
- Toru Kubota
- Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | |
Collapse
|
22
|
Ibuki Y, Toyooka T, Zhao X, Yoshida I. Cigarette sidestream smoke induces histone H3 phosphorylation via JNK and PI3K/Akt pathways, leading to the expression of proto-oncogenes. Carcinogenesis 2014; 35:1228-37. [PMID: 24398671 DOI: 10.1093/carcin/bgt492] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Post-translational modifications in histones have been associated with cancer. Although cigarette sidestream smoke (CSS) as well as mainstream smoke are carcinogens, the relationship between carcinogenicity and histone modifications has not yet been clarified. Here, we demonstrated that CSS induced phosphorylation of histones, involving a carcinogenic process. Treatment with CSS markedly induced the phosphorylation of histone H3 at serine 10 and 28 residues (H3S10 and H3S28), which was independent from the cell cycle, in the human pulmonary epithelial cell model, A549 and normal human lung fibroblasts, MRC-5 and WI-38. Using specific inhibitors and small interfering RNA, the phosphorylation of H3S10 was found to be mediated by c-jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. These pathways were different from that of the CSS-induced phosphorylation of histone H2AX (γ-H2AX) mediated by Ataxia telangiectasia-mutated (ATM) and ATM-Rad3-related (ATR) protein kinases. A chromatin immunoprecipitation assay revealed that the phosphorylation of H3S10 was increased in the promoter sites of the proto-oncogenes, c-fos and c-jun, which indicated that CSS plays a role in tumor promotion. Because the phosphorylation of H3S10 was decreased in the aldehyde-removed CSS and was significantly induced by treatment with formaldehyde, aldehydes are suspected to partially contribute to this phosphorylation. These findings suggested that any chemicals in CSS, including aldehydes, phosphorylate H3S10 via JNK and PI3K/Akt pathways, which is different from the DNA damage response, resulting in tumor promotion.
Collapse
Affiliation(s)
- Yuko Ibuki
- Institute for Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsushi Toyooka
- Institute for Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Xiaoxu Zhao
- Institute for Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ikuma Yoshida
- Institute for Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
23
|
Aoshiba K, Tsuji T, Yamaguchi K, Itoh M, Nakamura H. The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD. Eur Respir J 2013; 42:1689-1695. [PMID: 23397294 DOI: 10.1183/09031936.00102912] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammation in chronic obstructive pulmonary disease (COPD) is thought to originate from the activation of innate immunity by a danger signal (first hit), although this mechanism does not readily explain why the inflammation becomes chronic. Here, we propose a two-hit hypothesis explaining why inflammation becomes chronic in patients with COPD. A more severe degree of inflammation exists in the lungs of patients who develop COPD than in the lungs of healthy smokers, and the large amounts of reactive oxygen species and reactive nitrogen species released from inflammatory cells are likely to induce DNA double-strand breaks (second hit) in the airways and pulmonary alveolar cells, causing apoptosis and cell senescence. The DNA damage response and senescence-associated secretory phenotype (SASP) are also likely to be activated, resulting in the production of pro-inflammatory cytokines. These pro-inflammatory cytokines further stimulate inflammatory cell infiltration, intensifying cell senescence and SASP through a positive-feedback mechanism. This vicious cycle, characterised by mutually reinforcing inflammation and DNA damage, may cause the inflammation in COPD patients to become chronic. Our hypothesis helps explain why COPD tends to occur in the elderly, why the inflammation worsens progressively, why inflammation continues even after smoking cessation, and why COPD is associated with lung cancer.
Collapse
|
24
|
Matthaios D, Hountis P, Karakitsos P, Bouros D, Kakolyris S. H2AX a Promising Biomarker for Lung Cancer: A Review. Cancer Invest 2013; 31:582-99. [DOI: 10.3109/07357907.2013.849721] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Kim BS, Serebreni L, Hamdan O, Wang L, Parniani A, Sussan T, Scott Stephens R, Boyer L, Damarla M, Hassoun PM, Damico R. Xanthine oxidoreductase is a critical mediator of cigarette smoke-induced endothelial cell DNA damage and apoptosis. Free Radic Biol Med 2013; 60:336-46. [PMID: 23380026 DOI: 10.1016/j.freeradbiomed.2013.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
Cigarette smoke (CS) exposure is unquestionably the most frequent cause of emphysema in the United States. Accelerated pulmonary endothelial cell (EC) apoptosis is an early determinant of lung destruction in emphysema. One of the pathogenic causes of emphysema is an alveolar oxidant and antioxidant imbalance. The enzyme xanthine oxidoreductase (XOR) has been shown to be a source of reactive oxygen species (ROS) in a multitude of diseases (S. Sakao et al., FASEB J.21, 3640-3652; 2007). The contribution of XOR to CS-induced apoptosis is not well defined. Here we demonstrate that C57/bl6 mice exposed to CS have increased pulmonary XOR activity and protein levels compared to filtered-air-exposed controls. In addition, we demonstrate that primary pulmonary human lung microvascular endothelial cells exposed to cigarette smoke extract undergo increased rates of caspase-dependent apoptosis that are reliant on XOR activity, ROS production, and p53 function/expression. We also demonstrate that exogenous XOR is sufficient to increase p53 expression and induce apoptosis, suggesting that XOR is an upstream mediator of p53 in CS-induced EC apoptosis. Furthermore, we show that XOR activation results in DNA double-strand breaks that activate the enzyme ataxia telangiectasia mutated, which phosphorylates histone H2AX and upregulates p53. In conclusion, CS increases XOR expression, and the enzyme is both sufficient and necessary for p53 induction and CS-induced EC apoptosis.
Collapse
Affiliation(s)
- Bo S Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Nusuetrong P, Saito M, Kikuchi H, Oshima Y, Moriya T, Nakahata N. Apoptotic effects of satratoxin H is mediated through DNA double-stranded break in PC12 cells. J Toxicol Sci 2012; 37:803-12. [PMID: 22863859 DOI: 10.2131/jts.37.803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Satratoxin H is an important air- and food-borne mycotoxin, which has been implicated in human health damage. Satratoxin H is known to induce apoptosis as well as genotoxicity in PC12 cells. In the present study, we further investigated the mechanism of apoptotic effects of satratoxin H with focus on caspase-3 and poly-ADP-ribose polymerase (PARP) pathway. We also examined whether it induces DNA damage in PC12 cells. In the cells treated with satratoxin H, caspase-3 was cleaved in a time-dependent manner. Furthermore, satratoxin H induced cleavage of PARP, one of the downstream molecules of caspase-3. The cleavage was inhibited by SB203580, a p38 MAPK inhibitor, or SP600125, a JNK inhibitor. Satratoxin H, however, had no effect on expression levels of Bax and Bcl-2. Furthermore, the micronucleus assay revealed that satratoxin H induced chromosome break. Also, satratoxin H increased the level of phosphorylation of histone H2A, indicating that it caused DNA double-stranded breaks in PC12 cells. Meanwhile, no genotoxicity was detected with any of treatments carried out in the alkaline comet assay. These results imply that satratoxin H induces genotoxicity by DNA double-stranded break. Our results suggest a considerable potential for the genotoxic risk associated with the presence of satratoxin H.
Collapse
Affiliation(s)
- Punnee Nusuetrong
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Darzynkiewicz Z, Zhao H, Halicka HD, Rybak P, Dobrucki J, Wlodkowic D. DNA damage signaling assessed in individual cells in relation to the cell cycle phase and induction of apoptosis. Crit Rev Clin Lab Sci 2012; 49:199-217. [PMID: 23137030 DOI: 10.3109/10408363.2012.738808] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reviewed are the phosphorylation events reporting activation of protein kinases and the key substrates critical for the DNA damage signaling (DDS). These DDS events are detected immunocytochemically using phospho-specific Abs; flow cytometry or image-assisted cytometry provide the means to quantitatively assess them on a cell by cell basis. The multiparameter analysis of the data is used to correlate these events with each other and relate to the cell cycle phase, DNA replication and induction of apoptosis. Expression of γH2AX as a possible marker of induction of DNA double strand breaks is the most widely studied event of DDS. Reviewed are applications of this multiparameter approach to investigate constitutive DDS reporting DNA damage by endogenous oxidants byproducts of oxidative phosphorylation. Also reviewed are its applications to detect and explore mechanisms of DDS induced by variety of exogenous agents targeting DNA such as exogenous oxidants, ionizing radiation, radiomimetic drugs, UV light, DNA topoisomerase I and II inhibitors, DNA crosslinking drugs and variety of environmental genotoxins. Analysis of DDS induced by these agents provides often a wealth of information about mechanism of induction and the type of DNA damage (lesion) and is reviewed in the context of cell cycle phase specificity, DNA replication, and induction of apoptosis or cell senescence. Critically assessed is interpretation of the data as to whether the observed DDS events report induction of a particular type of DNA lesion.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Kubota T, Toyooka T, Ibuki Y. Nonylphenol Polyethoxylates Degraded by Three Different Wavelengths of UV and Their Genotoxic Change-Detected by Generation of γ-H2AX. Photochem Photobiol 2012; 89:461-7. [DOI: 10.1111/php.12002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/19/2012] [Indexed: 01/16/2023]
Affiliation(s)
- Toru Kubota
- Institute for Environmental Sciences; University of Shizuoka; Shizuoka-shi; Shizuoka; Japan
| | - Tatsushi Toyooka
- Institute for Environmental Sciences; University of Shizuoka; Shizuoka-shi; Shizuoka; Japan
| | - Yuko Ibuki
- Institute for Environmental Sciences; University of Shizuoka; Shizuoka-shi; Shizuoka; Japan
| |
Collapse
|
30
|
Toyooka T, Kubota T, Ibuki Y. UVB irradiation changes genotoxic potential of nonylphenolpolyethoxylates— remarkable generation of γ-H2AX with degradation of chemical structure. Mutagenesis 2012; 28:7-14. [DOI: 10.1093/mutage/ges043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Toduka Y, Toyooka T, Ibuki Y. Flow cytometric evaluation of nanoparticles using side-scattered light and reactive oxygen species-mediated fluorescence-correlation with genotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7629-36. [PMID: 22703531 DOI: 10.1021/es300433x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We recently clarified that the side-scatter(ed) light (SSC) of flow cytometry (FCM) could be used as a guide to measure the uptake potential of nanoparticles [ Suzuki et al. Environ. Sci. Technol. 2007 , 41 , 3018 - 3024 ]. In this paper, the method was improved so as to be able to determine simultaneously the uptake potential of nanoparticles and the production of reactive oxygen species (ROS), and correlations with genotoxicity were evaluated. In the FCM analysis, SSC and fluorescence of 6-carboxy-2,7'-diclorodihydrofluorescein diacetate, di(acetoxy ester) based on ROS production were concurrently detected after treatments with ZnO, CuO, Fe(3)O(4), TiO(2), and Ag nanoparticles. The ZnO and CuO nanoparticles caused high ROS production, which was more significant in the cells with higher SSC intensity. The increase of SSC intensity was more significant for TiO(2) than ZnO and CuO, whereas ROS production was higher for ZnO and CuO than TiO(2), suggesting that the extent of ROS production based on the uptake of nanoparticles differed with each kind of nanoparticle. ROS production was correlated with generation of the phosphorylated histone H2AX (γ-H2AX), a marker of DNA damage, and an antioxidant, n-acetylcysteine, could partially suppress the γ-H2AX. This method makes it possible to predict not only uptake potential but also genotoxicity.
Collapse
Affiliation(s)
- Yousuke Toduka
- Institute for Environmental Sciences, University of Shizuoka , 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | | | | |
Collapse
|
32
|
Garcia-Canton C, Anadón A, Meredith C. γH2AX as a novel endpoint to detect DNA damage: applications for the assessment of the in vitro genotoxicity of cigarette smoke. Toxicol In Vitro 2012; 26:1075-86. [PMID: 22735693 DOI: 10.1016/j.tiv.2012.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/17/2012] [Accepted: 06/14/2012] [Indexed: 01/02/2023]
Abstract
Histone H2AX is rapidly phosphorylated to become γH2AX after exposure to DNA-damaging agents that cause double-strand DNA breaks (DSBs). γH2AX can be detected and quantified by numerous methods, giving a direct correlation with the number of DSBs. This relationship has made γH2AX an increasingly utilised endpoint in multiple scientific fields since its discovery in 1998. Applications include its use in pre-clinical drug assessment, as a biomarker of DNA damage and in in vitro mechanistic studies. Here, we review current in vitro regulatory and non-regulatory genotoxicity assays proposing the γH2AX assay as a potential complement to the current test battery. Additionally, we evaluate the use of the γH2AX assay to measure DSBs in vitro in tobacco product testing.
Collapse
Affiliation(s)
- Carolina Garcia-Canton
- British American Tobacco, Group Research and Development, Regents Park Road, Southampton, Hampshire SO15 8TL, UK.
| | | | | |
Collapse
|
33
|
Toyooka T, Amano T, Ibuki Y. Titanium dioxide particles phosphorylate histone H2AX independent of ROS production. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 742:84-91. [DOI: 10.1016/j.mrgentox.2011.12.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/09/2011] [Accepted: 12/18/2011] [Indexed: 11/15/2022]
|
34
|
Toyooka T, Kubota T, Ibuki Y. Nonylphenol polyethoxylates induce phosphorylation of histone H2AX. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 741:57-64. [DOI: 10.1016/j.mrgentox.2011.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/02/2011] [Accepted: 10/09/2011] [Indexed: 10/15/2022]
|
35
|
Toyooka T, Ishihama M, Ibuki Y. Phosphorylation of histone H2AX is a powerful tool for detecting chemical photogenotoxicity. J Invest Dermatol 2011; 131:1313-21. [PMID: 21368771 DOI: 10.1038/jid.2011.28] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several light-absorbing chemicals are known to show phototoxic effects involving many kinds of DNA damage, and are suspected of initiating skin cancer. In this study, we clarified that phosphorylated histone H2AX (γ-H2AX) (phosphorylated histone H2AX), which was produced with the induction of DNA double-strand breaks, is a sensitive photogenotoxic marker. The immortal human keratinocyte line HaCaT was treated with a library of 11 chemicals (including known strong and weak phototoxic chemicals, and nonphototoxic chemicals) and/or UVA exposure. γ-H2AX was generated after treatments with all phototoxic chemicals and UVA. The limit of detection using γ-H2AX was 100-1,000 times lower than that using cell viability and DNA gel electrophoresis. γ-H2AX was not generated following treatments with nonphototoxic chemicals and UVA. These results indicated that γ-H2AX is a powerful tool for detecting chemical photogenotoxicity.
Collapse
Affiliation(s)
- Tatsushi Toyooka
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | |
Collapse
|
36
|
α-pinene triggers oxidative stress and related signaling pathways in A549 and HepG2 cells. Food Sci Biotechnol 2010. [DOI: 10.1007/s10068-010-0189-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
37
|
Song Z, von Figura G, Liu Y, Kraus JM, Torrice C, Dillon P, Rudolph-Watabe M, Ju Z, Kestler HA, Sanoff H, Lenhard Rudolph K. Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell 2010; 9:607-15. [PMID: 20560902 DOI: 10.1111/j.1474-9726.2010.00583.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cellular aging is characterized by telomere shortening, which can lead to uncapping of chromosome ends (telomere dysfunction) and activation of DNA damage responses. There is some evidence that DNA damage accumulates during human aging and that lifestyle factors contribute to the accumulation of DNA damage. Recent studies have identified a set of serum markers that are induced by telomere dysfunction and DNA damage, and these markers showed an increased expression in blood during human aging. Here, we investigated the influence of lifestyle factors (such as exercise, smoking, body mass) on the aging-associated expression of serum markers of DNA damage (CRAMP, EF-1alpha, stathmin, n-acetyl-glucosaminidase and chitinase) in comparison with other described markers of cellular aging (p16(INK4a) upregulation and telomere shortening) in human peripheral blood. The study shows that lifestyle factors have an age-independent impact on the expression level of biomarkers of DNA damage. Smoking and increased body mass indices were associated with elevated levels of biomarkers of DNA damage independent of the age of the individuals. In contrast, exercise was associated with an age-independent reduction in the expression of biomarkers of DNA damage in human blood. The expression of biomarkers of DNA damage correlated positively with p16(INK4a) expression and negatively with telomere length in peripheral blood T-lymphocytes. Together, these data provide experimental evidence that both aging and lifestyle impact on the accumulation of DNA damage during human aging.
Collapse
Affiliation(s)
- Zhangfa Song
- Max-Planck Research Group on Stem Cell Aging, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Zhao H, Albino AP, Jorgensen E, Traganos F, Darzynkiewicz Z. DNA damage response induced by tobacco smoke in normal human bronchial epithelial and A549 pulmonary adenocarcinoma cells assessed by laser scanning cytometry. Cytometry A 2009; 75:840-7. [PMID: 19658174 PMCID: PMC2814777 DOI: 10.1002/cyto.a.20778] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cigarette smoke (CS) is a major cause of lung cancer and a contributor to the development of a wide range of other malignancies. There is an acute need to develop a methodology that can rapidly assess the potential carcinogenic properties of the genotoxic agents present in CS. We recently reported that exposure of normal human bronchial epithelial cells (NHBEs) or A549 pulmonary carcinoma cells to CS induces the activation of ATM through its phosphorylation on Ser1981 and phosphorylation of histone H2AX on Ser139 (gammaH2AX) most likely in response to the formation of potentially carcinogenic DNA double-strand breaks (DSBs). To obtain a more complete view of the DNA damage response (DDR) we explored the correlation between ATM activation, H2AX phosphorylation, activation of Chk2 through its phosphorylation on Thr68, and phosphorylation of p53 on Ser15 in NHBE and A549 cell exposed to CS. Multiparameter analysis by laser scanning cytometry made it possible to relate these DDR events, detected immunocytochemically, with cell cycle phase. The CS-dose-dependent induction and increase in the extent of phosphorylation of ATM, Chk2, H2AX, and p53 were seen in both cell types. ATM and Chk2 were phosphorylated approximately 1 h prior to phosphorylation of H2AX and p53. The dephosphorylation of ATM, Chk2, and H2AX was seen after 2 h following CS exposure. The dose-dependency and kinetics of DDR were essentially similar in both cell types, which provide justification for the use of A549 cells in the assessment of genotoxicity of CS in lieu of normal bronchial epithelial cells. The observation that DDR was more pronounced in S-phase cells is consistent with the mechanism of induction of DSBs occurring as a result of collision of replication forks with primary lesions such as DNA adducts that can be caused by CS-generated oxidants. The cytometric assessment of CS-induced DDR provides a means to estimate the genotoxicity of CS and to explore the mechanisms of the response as a function of cell cycle phase and cell type.
Collapse
Affiliation(s)
- Hong Zhao
- New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
40
|
Dickey JS, Redon CE, Nakamura AJ, Baird BJ, Sedelnikova OA, Bonner WM. H2AX: functional roles and potential applications. Chromosoma 2009; 118:683-92. [PMID: 19707781 DOI: 10.1007/s00412-009-0234-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 07/24/2009] [Accepted: 07/30/2009] [Indexed: 12/28/2022]
Abstract
Upon DNA double-strand break (DSB) induction in mammals, the histone H2A variant, H2AX, becomes rapidly phosphorylated at serine 139. This modified form, termed gamma-H2AX, is easily identified with antibodies and serves as a sensitive indicator of DNA DSB formation. This review focuses on the potential clinical applications of gamma-H2AX detection in cancer and in response to other cellular stresses. In addition, the role of H2AX in homeostasis and disease will be discussed. Recent work indicates that gamma-H2AX detection may become a powerful tool for monitoring genotoxic events associated with cancer development and tumor progression.
Collapse
Affiliation(s)
- Jennifer S Dickey
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|