1
|
Endogenous regulation of the Akt pathway by the aryl hydrocarbon receptor (AhR) in lung fibroblasts. Sci Rep 2021; 11:23189. [PMID: 34848742 PMCID: PMC8632926 DOI: 10.1038/s41598-021-02339-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known to mediate toxic responses to dioxin. However, the role of the AhR in the regulation of cellular physiology has only recently been appreciated, including its ability to control cell cycle progression and apoptosis by unknown mechanisms. We hypothesized that the AhR enhances the activation of the AKT serine/threonine kinase (Akt) pathway to promote cell survival. Utilizing AhR knock-out (Ahr−/−) and wild-type (Ahr+/+) mouse lung fibroblasts (MLFs), we found that Ahr−/− MLFs have significantly higher basal Akt phosphorylation but that AhR did not affect Akt phosphorylation in MLFs exposed to growth factors or AhR ligands. Basal Akt phosphorylation was dependent on PI3K but was unaffected by changes in intracellular glutathione (GSH) or p85α. There was no significant decrease in cell viability in Ahr−/− MLFs treated with LY294002—a PI3K inhibitor—although LY294002 did attenuate MTT reduction, indicating an affect on mitochondrial function. Using a mass spectrometry (MS)-based approach, we identified several proteins that were differentially phosphorylated in the Ahr−/− MLFs compared to control cells, including proteins involved in the regulation of extracellular matrix (ECM), focal adhesion, cytoskeleton remodeling and mitochondrial function. In conclusion, Ahr ablation increased basal Akt phosphorylation in MLFs. Our results indicate that AhR may modulate the phosphorylation of a variety of novel proteins not previously identified as AhR targets, findings that help advance our understanding of the endogenous functions of AhR.
Collapse
|
2
|
Nicolaidou V, Koufaris C. Application of transcriptomic and microRNA profiling in the evaluation of potential liver carcinogens. Toxicol Ind Health 2020; 36:386-397. [PMID: 32419640 DOI: 10.1177/0748233720922710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocarcinogens are agents that increase the incidence of liver cancer in exposed animals or humans. It is now established that carcinogenic exposures have a widespread impact on the transcriptome, inducing both adaptive and adverse changes in the activities of genes and pathways. Chemical hepatocarcinogens have also been shown to affect expression of microRNA (miRNA), the evolutionarily conserved noncoding RNA that regulates gene expression posttranscriptionally. Considerable effort has been invested into examining the involvement of mRNA in chemical hepatocarcinogenesis and their potential usage for the classification and prediction of new chemical entities. For miRNA, there has been an increasing number of studies reported over the past decade, although not to the same degree as for transcriptomic studies. Current data suggest that it is unlikely that any gene or miRNA signature associated with short-term carcinogen exposure can replace the rodent bioassay. In this review, we discuss the application of transcriptomic and miRNA profiles to increase mechanistic understanding of chemical carcinogens and to aid in their classification.
Collapse
Affiliation(s)
- Vicky Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Costas Koufaris
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
3
|
Li G, Xiong H, Saeed K, Ma R, Xing Y, Bi Y, Li C, Huang J, Zhang Y. Comparative toxicity analysis of corannulene and benzo[a]pyrene in mice. Toxicol Lett 2020; 331:130-142. [PMID: 32417428 DOI: 10.1016/j.toxlet.2020.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 11/26/2022]
Abstract
Increasing production of corannulene (COR), a non-planar polycyclic aromatic hydrocarbon (PAH) with promising applications in many fields, has raised a concern about its potential toxic effects. However, no study has been undertaken to evaluate its metabolism and toxicity in mammals. In this study, the acute toxicities of COR in mice were compared with benzo[apyrene (BaP), a typical planar PAH with almost the same molecular weight. After 3-day exposures, the concentrations of COR in both plasma and tissues of mice were higher than that of BaP. However, blood chemistry and tissue weight monitoring showed no observable toxicities in COR-exposed mice. Compared to BaP, exposure to COR resulted in less activation of the aryl hydrocarbon receptor (AhR) and thus less induction of hepatic cytochrome P450 1A(CYP1A) enzymes, which play a critical role in metabolism of both COR and BaP. Additionally, COR also elicited less oxidative stress and microbiota alteration in the intestine than did BaP. RNA-seq analysis revealed that liver transcriptomes are responsive to COR and BaP, with less alterations observed in COR-exposed mice. Unlike BaP, exposure to COR had no effects on hepatic lipid and xenobiotic metabolism pathways. Nonetheless, COR appeared to alter the mRNA expressions of genes involved in carcinogenicity, oxidative stress, and immune-suppression. To conclude, this study for the first time unveils a comparative understanding of the acute toxic effects of COR to BaP in mice, and provides crucial insights into the future safety assessment of COR.
Collapse
Affiliation(s)
- Gentao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Hui Xiong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Khawar Saeed
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ruicong Ma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yufeng Xing
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Caiyu Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
Woeller CF, Thatcher TH, Thakar J, Cornwell A, Smith MR, Jones DP, Hopke PK, Sime PJ, Krahl P, Mallon TM, Phipps RP, Utell MJ. Exposure to Heptachlorodibenzo-p-dioxin (HpCDD) Regulates microRNA Expression in Human Lung Fibroblasts. J Occup Environ Med 2019; 61 Suppl 12:S82-S89. [PMID: 31800454 PMCID: PMC8058852 DOI: 10.1097/jom.0000000000001691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Benzo(ghi)perylene (BghiP) and 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) were elevated in serum from personnel deployed to sites with open burn pits. Here, we investigated the ability of BghiP and HpCDD to regulate microRNA (miRNA) expression through the aryl hydrocarbon receptor (AHR). METHODS Human lung fibroblasts (HLFs) were exposed to BghiP and HpCDD. AHR activity was measured by reporter assay and gene expression. Deployment related miRNA were measured by quantitative polymerase chain reaction. AHR expression was depleted using siRNA. RESULTS BghiP displayed weak AHR agonist activity. HpCDD induced AHR activity in a dose-dependent manner. Let-7d-5p, miR-103-3p, miR-107, and miR-144-3p levels were significantly altered by HpCDD. AHR knockdown attenuated these effects. CONCLUSIONS These studies reveal that miRNAs previously identified in sera from personnel deployed to sites with open burn pits are altered by HpCDD exposure in HLFs.
Collapse
Affiliation(s)
- Collynn F Woeller
- Department of Environmental Medicine (Dr Woeller, Dr Hopke, Dr Phipps, Dr Utell); Department of Medicine (Dr Thatcher, Dr Sime, Dr Utell); Microbiology and Immunology (Dr Thakar, Mr Cornwell, Dr Phipps), University of Rochester Medical Center, Rochester; Center for Air Resources Engineering and Science, Clarkson University, Potsdam (Dr Hopke), New York; Emory University, Atlanta, Georgia (Dr Smith, Dr Jones); Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland (Dr Krahl, Dr Mallon)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Brauze D, Kiwerska K, Bednarek K, Grenman R, Janiszewska J, Giefing M, Jarmuz-Szymczak M. Expression of Serpin Peptidase Inhibitor B2 (SERPINB2) is regulated by Aryl hydrocarbon receptor (AhR). Chem Biol Interact 2019; 309:108700. [DOI: 10.1016/j.cbi.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022]
|
6
|
Zeng N, Jiang H, Fan Q, Wang T, Rong W, Li G, Li R, Xu D, Guo T, Wang F, Zeng L, Huang M, Zheng J, Lu F, Chen W, Hu Q, Huang Z, Wang Q. Aberrant expression of miR-451a contributes to 1,2-dichloroethane-induced hepatic glycerol gluconeogenesis disorder by inhibiting glycerol kinase expression in NIH Swiss mice. J Appl Toxicol 2017; 38:292-303. [DOI: 10.1002/jat.3526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Ni Zeng
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health; Sun Yat-sen University; Guangzhou 510080 China
| | - Hongmei Jiang
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health; Sun Yat-sen University; Guangzhou 510080 China
| | - Qiming Fan
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health; Sun Yat-sen University; Guangzhou 510080 China
| | - Ting Wang
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health; Sun Yat-sen University; Guangzhou 510080 China
| | - Weifeng Rong
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Department of Toxicology; Guangdong Province Hospital for Occupational Disease Prevention and Treatment; Guangzhou 510300 China
| | - Guoliang Li
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Department of Toxicology; Guangdong Province Hospital for Occupational Disease Prevention and Treatment; Guangzhou 510300 China
| | - Ruobi Li
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health; Sun Yat-sen University; Guangzhou 510080 China
| | - Dandan Xu
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health; Sun Yat-sen University; Guangzhou 510080 China
| | - Tao Guo
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health; Sun Yat-sen University; Guangzhou 510080 China
| | - Fei Wang
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health; Sun Yat-sen University; Guangzhou 510080 China
| | - Lihai Zeng
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Department of Toxicology; Guangdong Province Hospital for Occupational Disease Prevention and Treatment; Guangzhou 510300 China
| | - Manqi Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Department of Toxicology; Guangdong Province Hospital for Occupational Disease Prevention and Treatment; Guangzhou 510300 China
| | - Jiewei Zheng
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Department of Toxicology; Guangdong Province Hospital for Occupational Disease Prevention and Treatment; Guangzhou 510300 China
| | - Fengrong Lu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Department of Toxicology; Guangdong Province Hospital for Occupational Disease Prevention and Treatment; Guangzhou 510300 China
| | - Wen Chen
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health; Sun Yat-sen University; Guangzhou 510080 China
| | - Qiansheng Hu
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health; Sun Yat-sen University; Guangzhou 510080 China
| | - Zhenlie Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Department of Toxicology; Guangdong Province Hospital for Occupational Disease Prevention and Treatment; Guangzhou 510300 China
| | - Qing Wang
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health; Sun Yat-sen University; Guangzhou 510080 China
| |
Collapse
|
7
|
Rogers S, de Souza AR, Zago M, Iu M, Guerrina N, Gomez A, Matthews J, Baglole CJ. Aryl hydrocarbon receptor (AhR)-dependent regulation of pulmonary miRNA by chronic cigarette smoke exposure. Sci Rep 2017; 7:40539. [PMID: 28079158 PMCID: PMC5227990 DOI: 10.1038/srep40539] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically known for its toxic responses to man-made pollutants such as dioxin. More recently, the AhR has emerged as a suppressor of inflammation, oxidative stress and apoptosis from cigarette smoke by mechanisms that may involve the regulation of microRNA. However, little is known about the AhR regulation of miRNA expression in the lung in response to inhaled toxicants. Therefore, we exposed Ahr−/− and Ahr+/− mice to cigarette smoke for 4 weeks and evaluated lung miRNA expression by PCR array. There was a dramatic regulation of lung miRNA by the AhR in the absence of exogenous ligand. In response to cigarette smoke, there were more up-regulated miRNA in Ahr−/− mice compared to Ahr+/− mice, including the cancer-associated miRNA miR-96. There was no significant change in the expression of the AhR regulated proteins HuR and cyclooxygenase-2 (COX-2). There were significant increases in the anti-oxidant gene sulfiredoxin 1 (Srxn1) and FOXO3a- predicted targets of miR-96. Collectively, these data support a prominent role for the AhR in regulating lung miRNA expression. Further studies to elucidate a role for these miRNA may further uncover novel biological function for the AhR in respiratory health and disease.
Collapse
Affiliation(s)
- Sarah Rogers
- Departments of Medicine, McGill University, Montreal, Quebec, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre (RI-MUHC), Meakins-Christie Laboratories, Montreal, QC, Canada
| | - Michela Zago
- Departments of Pharmacology &Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Matthew Iu
- Departments of Medicine, McGill University, Montreal, Quebec, Canada
| | - Necola Guerrina
- Departments of Pathology, McGill University, Montreal, Quebec, Canada
| | - Alvin Gomez
- Department of Pharmacology &Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Matthews
- Department of Pharmacology &Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Nutrition, University of Oslo, Oslo, Norway
| | - Carolyn J Baglole
- Departments of Medicine, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre (RI-MUHC), Meakins-Christie Laboratories, Montreal, QC, Canada.,Departments of Pharmacology &Therapeutics, McGill University, Montreal, Quebec, Canada.,Departments of Pathology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Brauze D, Zawierucha P, Kiwerska K, Bednarek K, Oleszak M, Rydzanicz M, Jarmuz-Szymczak M. Induction of expression of aryl hydrocarbon receptor-dependent genes in human HepaRG cell line modified by shRNA and treated with β-naphthoflavone. Mol Cell Biochem 2016; 425:59-75. [PMID: 27796684 PMCID: PMC5225230 DOI: 10.1007/s11010-016-2862-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/22/2016] [Indexed: 11/28/2022]
Abstract
The aryl hydrocarbon receptor (AhR) mediates a variety of biological responses to ubiquitous environmental pollutants. In this study, the effects of administration of β-naphthoflavone (BNF), a potent AhR ligand, on the expression of AhR-dependent genes were examined by microarray and qPCR analysis in both, differentiated and undifferentiated HepaRG cell lines. To prove that BNF-induced changes of investigated genes were indeed AhR-dependent, we knock down the expression of AhR by stable transfection of HepaRG cells with shRNA. Regardless of genetical identity, our results clearly demonstrate different expression profiles of AhR-dependent genes between differentiated and undifferentiated HepaRG cells. Genes involved in metabolism of xenobiotics constitute only minute fraction of all genes regulated by AhR in HepaRG cells. Participation of AhR in induction of expression of genes associated with regulation of apoptosis or involved in cell proliferation as well as AhR-dependent inhibition of genes connected to cell adhesion could support suggestion of involvement of AhR not only in initiation but also in progression of carcinogenesis. Among the AhR-dependent genes known to be involved in metabolism of xenobiotics, cytochromes P4501A1 and 1B1 belong to the most inducible by BNF. On the contrary, expression of GSTA1 and GSTA2 was significantly inhibited after BNF treatment of HepaRG cells. Among the AhR-dependent genes that are not involved in metabolism of xenobiotics SERPINB2, STC2, ARL4C, and TIPARP belong to the most inducible by BNF. Our results imply involvement of Ah receptor in regulation of CYP19A1, the gene-encoding aromatase, and an enzyme responsible for a key step in the biosynthesis of estrogens.
Collapse
Affiliation(s)
- Damian Brauze
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| | - Piotr Zawierucha
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781, Poznan, Poland.,Department of Anatomy, Poznań University of Medical Sciences, 60-781, Poznan, Poland
| | - Katarzyna Kiwerska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Kinga Bednarek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Martyna Oleszak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Malgorzata Rydzanicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.,Department of Medical Genetics, Medical University of Warsaw, Pawinskiego 3c, 02-106, Warsaw, Poland
| | | |
Collapse
|
9
|
Moriya N, Kataoka H, Nishikawa JI, Kugawa F. Identification of Candidate Target Cyp Genes for microRNAs Whose Expression Is Altered by PCN and TCPOBOP, Representative Ligands of PXR and CAR. Biol Pharm Bull 2016; 39:1381-6. [PMID: 27237601 DOI: 10.1248/bpb.b16-00279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are involved in mRNA post-transcriptional regulation. The deregulation of miRNAs affects the expression of drug-metabolizing enzymes, drug transporters, and nuclear receptors, all of which are important in regulating drug metabolism. miRNA expression can be altered by several endogenous or exogenous agents, such as steroid hormones, carcinogens, and therapeutic drugs. However, it is unclear whether hepatic miRNA expression is regulated by nuclear receptors, such as pregnane X receptor (PXR) and constitutive androstane receptor (CAR), which are indispensable for the expression of the CYPs. Here we investigated the effects of the mouse PXR and CAR ligands pregnenolone-16α-carbonitrile (PCN) and 1,4-bis[(3,5-dichloropyridin-2-yl)oxy]benzene (TCPOBOP) on hepatic miRNA expression in mice. We found that the expression of 9 miRNAs was increased (>2-fold) and of 4 miRNAs was decreased (>50%) in response to PCN, while TCPOBOP treatment led to the up-regulation of 8 miRNAs and down-regulation of 6 miRNAs. Using several miRNA target prediction algorithms, we found that the predicted target genes included several lesser known Cyp genes (Cyp1a1, Cyp1b1, Cyp2b10, Cyp2c38, Cyp2u1, Cyp4a12a/b, Cyp4v3, Cyp17a1, Cyp39a1, and Cyp51). We analyzed the expression of these genes in response to PCN and TCPOBOP and found changes in their mRNA levels, some of which were negatively correlated with the expression of their corresponding miRNAs, suggesting that miRNAs may play a role in regulating Cyp enzyme expression. Further studies will be required to fully elucidate the miRNA regulatory mechanisms that contribute to modulating CYP expression.
Collapse
Affiliation(s)
- Nozomu Moriya
- Department of Biopharmaceutics, Hyogo University of Health Sciences
| | | | | | | |
Collapse
|
10
|
Dong H, Curran I, Williams A, Bondy G, Yauk CL, Wade MG. Hepatic miRNA profiles and thyroid hormone homeostasis in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:201-210. [PMID: 26724606 DOI: 10.1016/j.etap.2015.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/30/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Perfluorooctanesulfonate (PFOS) has been widely used in a variety of industrial and commercial applications as a surfactant and stain repellent. PFOS causes liver damage (including liver tumors) in experimental animals, primarily via interaction with PPARα and CAR/PXR. We investigated the involvement of microRNAs (miRNAs) in PFOS-induced hepatotoxicity, and mechanisms involved in abnormal thyroid hormone (TH) homeostasis, in the livers of adult male rats exposed in feed to 50mg PFOS/kg diet for 28 days. PFOS-treated rats exhibited expected histopathological and clinical chemistry changes, and global gene expression changes consistent with the involvement of PPARα and CAR/PXR. Thirty-eight miRNAs were significantly altered. Three members of the miR-200 family were the most increased, while miR-122-5p and miR-21-5p were the most decreased, in PFOS-treated rats. Expression of the miR-23b-3p/27b-3p/24-3p cluster also decreased in PFOS-treated animals. Pathway analysis of miRNAs and associated gene expression changes suggests involvement of epithelial to mesenchymal transition (EMT), which is a primary process of tumor cell motility and cancer metastasis. Our analysis also revealed transcripts that may mediate PFOS-induced effects on TH homeostasis including: activation of the CAR/PXR pathway, phase II/III enzymes, and deiodinase. These changes are consistent with low serum TH due to enhanced metabolic clearance of TH. However, most TH hepatic target genes were not altered in a manner consistent with reduced TH signaling, suggesting that PFOS exposure did not induce functional hypothyroidism. Collectively, the study suggests an important role for miRNAs in PFOS-induced hepatotoxicity and provides insight into the effects of PFOS on TH homeostasis.
Collapse
Affiliation(s)
- Hongyan Dong
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Ivan Curran
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, Canada K1A 0K9
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Genevieve Bondy
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, Canada K1A 0K9
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9.
| |
Collapse
|
11
|
Moffat I, Chepelev N, Labib S, Bourdon-Lacombe J, Kuo B, Buick JK, Lemieux F, Williams A, Halappanavar S, Malik A, Luijten M, Aubrecht J, Hyduke DR, Fornace AJ, Swartz CD, Recio L, Yauk CL. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water. Crit Rev Toxicol 2015; 45:1-43. [PMID: 25605026 DOI: 10.3109/10408444.2014.973934] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lungs 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work.
Collapse
Affiliation(s)
- Ivy Moffat
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Nikolai Chepelev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie Bourdon-Lacombe
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - France Lemieux
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Amal Malik
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Daniel R Hyduke
- Biological Engineering Department, Utah State University, Logan, UT, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Carol D Swartz
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
12
|
Song MK, Lee HS, Ryu JC. Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology 2015; 334:111-21. [DOI: 10.1016/j.tox.2015.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/12/2022]
|
13
|
Rieswijk L, Brauers KJJ, Coonen MLJ, van Breda SGJ, Jennen DGJ, Kleinjans JCS. Evaluating microRNA profiles reveals discriminative responses following genotoxic or non-genotoxic carcinogen exposure in primary mouse hepatocytes. Mutagenesis 2015; 30:771-84. [DOI: 10.1093/mutage/gev036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
14
|
Nicolaidou V, Koufaris C. MicroRNA responses to environmental liver carcinogens: Biological and clinical significance. Clin Chim Acta 2015; 445:25-33. [PMID: 25773117 DOI: 10.1016/j.cca.2015.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 12/18/2022]
Abstract
A large number of biological, chemical, and dietary factors have been implicated in the development of liver cancer. These involve complex and protracted interactions between genetic, epigenetic, and environmental factors. The survival rate for patients diagnosed with late-stage liver cancer is currently low due to the aggressive nature of the disease and resistance to therapy. An increasing body of evidence has offered support for the crucial role of non-coding microRNA (miRNA) in directing hepatic responses to environmental risk factors for liver cancer. In this review we focus on miRNA responses to environmental liver cancer risk factors and their potential biological and clinical significance.
Collapse
Affiliation(s)
- Vicky Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Cyprus; Center for the study of Haematological Malignancies, Nicosia, Cyprus
| | - Costas Koufaris
- Department of Cytogenetics and Genomic, Cyprus Institute of Neurology and Genetics, Cyprus.
| |
Collapse
|
15
|
Moreau M, Ouellet N, Ayotte P, Bouchard M. Effects of intravenous benzo[a]pyrene dose administration on levels of exposure biomarkers, DNA adducts, and gene expression in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:166-184. [PMID: 25506633 DOI: 10.1080/15287394.2014.954072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effects of benzo[a]pyrene (BaP) administration on biomarkers of exposure and early effects were studied in male Sprague-Dawley rats intravenously injected with doses of 0.4, 4, 10, or 40 μmol BaP/kg . Blood, tissues, and excreta were collected 8 and 24 h posttreatment. BaP and several of its metabolites were simultaneously measured in blood, tissues and excreta by ultra-high-performance liquid chromatography (UHPLC)/fluorescence. DNA adducts of BaP diol epoxide (BaPDE) in lungs were quantified using an ultrasensitive immunoassay with chemiluminescence detection. Expression of selected genes in lungs of treated rats (lung RNA) compared to control rats was also assessed by quantitative real-time polymerase chain reaction. There was a dose-dependent increase in blood, tissue, and excreted levels of BaP metabolites. At 8 and 24 h postinjection, BaP and hydroxyBaP were found in higher concentrations in blood and tissues compared to other analytes. However, diolBaP were excreted in greater amounts in urine and apparently more rapidly than hydroxyBaP. Mean percentages (± SD) of injected dose excreted in urine as 4,5-diolBaP during the 0-8 h and 0-24 h period posttreatment were 0.16 ± 0.027% and 0.14 ± 0.083%, respectively. Corresponding values for 3-OHBaP were 0.0045 ± 0.0009% and 0.026 ± 0.014%. BaP-diones were not detectable in blood, tissues, and excreta; 7,8-diolBaP and BaPtetrol were found to be minor metabolites. There was also a dose-dependent increase in DNA adduct formation in lung. Analysis of gene expression further showed a modulation of Cyp1a1, Cyp1b1, Nqo1, Nrf2, Fos, and Ahr expression at 10- and 40-μmol/kg doses, but not at the lower doses. This study provided a better assessment of the influence of absorbed BaP doses on biological levels of diolBaP and OHBaP exposure biomarkers and association of the latter with early biological alterations, such as DNA adducts and gene expression.
Collapse
Affiliation(s)
- Marjory Moreau
- a Department of Environmental and Occupational Health , Chair in Toxicological Risk Assessment and Management and Research Institute of Public Health of the University of Montreal (IRSPUM), University of Montreal , Montreal , Quebec , Canada
| | | | | | | |
Collapse
|
16
|
Moreau M, Ayotte P, Bouchard M. Kinetics of Diol and Hydroxybenzo[a]pyrene Metabolites in Relation to DNA Adduct Formation and Gene Expression in Rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:725-746. [PMID: 26090558 DOI: 10.1080/15287394.2015.1028119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Benzo[a]pyrene (BaP) is a human carcinogen, but there are no validated biomarkers of exposure and the relationship of carcinogenesis with early biological alterations is not fully documented. This study aimed at better documenting the toxicokinetics of diolBaP and hydroxyBaP metabolites as potential biomarkers of exposure to BaP in relation to DNA adduct formation and gene expression. Rats were intravenously (iv) injected with 40 μmol/kg BaP. BaP and several metabolites were measured in blood, tissues, and excreta collected at frequent intervals over 72 h posttreatment. BaP diol epoxide (BaPDE)-DNA adduct formation and gene expression were assessed in lungs. 3-HydroxyBaP (3-OHBaP) and 4,5-diolBaP were the most abundant measured metabolites, and differences in time courses were apparent between the two metabolites. Over the 0-72 h period, mean proportions of BaP dose recovered in urine as 3-OHBaP and 4,5-diolBaP (±SD) were 0.017 ± 0.003% and 0.1 ± 0.03%. Corresponding values in feces were 1.5 ± 0.5% and 0.42 ± 0.052%. BaPDE-DNA adducts were significantly increased in lungs and a correlation was observed with urinary 3-OHBaP and 4,5-diolBaP. Analysis of gene expression showed a modulation of expression of metabolic genes (Cyp1a1, Cyp1b1, Nqo1, Ahr) and oxidative stress and repair genes (Nrf2, Rad51). However, BaPDE adducts formation did not exhibit any significant correlation with expression of genes, except a negative correlation with Rad51 expression. Similarly, there was no significant correlation between urinary excretion of OHBaP and diolBaP and expression of genes, except for urinary 7-OHBaP excretion, which was negatively correlated with Rad51 expression. Results indicate that concomitant measurements of diolBaP and OHBaP may serve to better assess the extent of exposure as compared to single metabolite measurements, given kinetic differences between metabolites. Further, although some urinary metabolites were correlated with BaPDE adducts, links with gene expression need to be further investigated.
Collapse
Affiliation(s)
- Marjory Moreau
- a Department of Environmental and Occupational Health , Chair in Toxicological Risk Assessment and Management and the Research Institute of Public Health of the University of Montreal (IRSPUM), University of Montreal , Montreal , Quebec , Canada
| | | | | |
Collapse
|
17
|
Abstract
We studied the effect of benzo(a)pyrene on activity of nuclear endonucleases and expression of molecular regulator of apoptosis Bcl-2 in liver cells in rats. Intraperitoneal injection of benzo(a)pyrene (in a total dose of 60 mg/kg body weight) reduced activity of nuclear endonucleases in the liver cells, which attests to inhibition of apoptosis by the nuclear pathway. Injection of the toxicant enhanced the expression of intracellular molecular regulator of apoptosis Bcl-2 protein in the liver cells, which attested to triggering of proapoptotic signaling in these cells and organism's attempts to limit the development of apoptosis by the mitochondrial mechanism via activation of Bcl-2-dependent anti-apoptotic defense.
Collapse
|
18
|
Zuo J, Brewer DS, Arlt VM, Cooper CS, Phillips DH. Benzo pyrene-induced DNA adducts and gene expression profiles in target and non-target organs for carcinogenesis in mice. BMC Genomics 2014; 15:880. [PMID: 25297811 PMCID: PMC4209037 DOI: 10.1186/1471-2164-15-880] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gene expression changes induced by carcinogens may identify differences in molecular function between target and non-target organs. Target organs for benzo[a]pyrene (BaP) carcinogenicity in mice (lung, spleen and forestomach) and three non-target organs (liver, colon and glandular stomach) were investigated for DNA adducts by 32P-postlabelling, for gene expression changes by cDNA microarray and for miRNA expression changes by miRNA microarray after exposure of animals to BaP. RESULTS BaP-DNA adduct formation occurred in all six organs at levels that did not distinguish between target and non-target. cDNA microarray analysis showed a variety of genes modulated significantly by BaP in the six organs and the overall gene expression patterns were tissue specific. Gene ontology analysis also revealed that BaP-induced bioactivities were tissue specific; eight genes (Tubb5, Fos, Cdh1, Cyp1a1, Apc, Myc, Ctnnb1 and Cav) showed significant expression difference between three target and three non-target organs. Additionally, several gene expression changes, such as in Trp53 activation and Stat3 activity suggested some similarities in molecular mechanisms in two target organs (lung and spleen), which were not found in the other four organs. Changes in miRNA expression were generally tissue specific, involving, in total, 21/54 miRNAs significantly up- or down-regulated. CONCLUSIONS Altogether, these findings showed that DNA adduct levels and early gene expression changes did not fully distinguish target from non-target organs. However, mechanisms related to early changes in p53, Stat3 and Wnt/β-catenin pathways may play roles in defining BaP organotropism.
Collapse
Affiliation(s)
- Jie Zuo
- />Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, OX3 9DS UK
| | - Daniel S Brewer
- />School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Volker M Arlt
- />Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| | - Colin S Cooper
- />The Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - David H Phillips
- />Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| |
Collapse
|
19
|
Gooderham N, Koufaris C. Using microRNA profiles to predict and evaluate hepatic carcinogenic potential. Toxicol Lett 2014; 228:127-32. [DOI: 10.1016/j.toxlet.2014.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/17/2014] [Accepted: 04/20/2014] [Indexed: 01/17/2023]
|
20
|
Eom HJ, Chatterjee N, Lee J, Choi J. Integrated mRNA and micro RNA profiling reveals epigenetic mechanism of differential sensitivity of Jurkat T cells to AgNPs and Ag ions. Toxicol Lett 2014; 229:311-8. [PMID: 24974767 DOI: 10.1016/j.toxlet.2014.05.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 01/20/2023]
Abstract
In our previous in vitro study of the toxicity on silver nanoparticles (AgNPs), we observed a dramatically higher sensitivity of Jurkat T cells to AgNPs than to Ag ions, and DNA damage and apoptosis were found to be involved in that toxicity. In this study, to understand underlying mechanism of different sensitivity of Jurket T cells to AgNPs and Ag ions, mRNA microarray and micro RNA microarray were concomitantly conducted on AgNPs and Ag ions exposed Jurkat T cells. Surprisingly only a small number of genes were differentially expressed by exposure to each of the silver (15 altered mRNA by AgNPs exposure, whereas 4 altered mRNA by Ag ions exposure, as determined 1.5-fold change as the cut-off value). miRNA microarray revealed that the expression of 63 miRNAs was altered by AgNPs exposure, whereas that of 32 miRNAs was altered by Ag ions exposure. An integrated analysis of mRNA and miRNA expression revealed that the expression of hsa-miR-219-5p, was negatively correlated with the expression of metallothionein 1F (MT1F) and tribbles homolog 3 (TRIB3), in cells exposed to AgNPs; whereas, the expression of hsa-miR-654-3p was negatively correlated with the expression of mRNA, endonuclease G-like 1 (EDGL1) in cells exposed to Ag ions. Network analysis were further conducted on mRNA-miRNA pairs, which revealed that miR-219-5p-MT1F and -TRIB3 pairs by AgNPs are being involved in various cellular processes, such as, oxidative stress, cell cycle and apoptosis, whereas, miR-654-3p and ENDOGL1 pair by Ag ions generated a much simpler network. The putative target genes of AgNPs-induced miR-504, miR-33 and miR-302 identified by Tarbase 6.0 are also found to be involved in DNA damage and apoptosis. These results collectively suggest that distinct epigenetic regulation may be an underlying mechanism of different sensitivity of Jurkat T cells to AgNPs and Ag ion. Further identification of putative target genes of DE miRNA by AgNPs and Ag ions may provide additional clues for the mechanism of differential toxicity. Overall results suggest that epigenetic mechanism is involved in toxicity of AgNPs and Ag ions in Jurkat T cells.
Collapse
Affiliation(s)
- Hyun-Jeong Eom
- School of Environmental Engineering, Graduate School of Energy and Environmental system Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, South Korea
| | - Nivedita Chatterjee
- School of Environmental Engineering, Graduate School of Energy and Environmental system Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, South Korea
| | - Jeongsoo Lee
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, Graduate School of Energy and Environmental system Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, South Korea.
| |
Collapse
|
21
|
MicroRNA regulation of DNA repair gene expression in 4-aminobiphenyl-treated HepG2 cells. Toxicology 2014; 322:69-77. [PMID: 24857880 DOI: 10.1016/j.tox.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 11/22/2022]
Abstract
We examined the role of miRNAs in DNA damage response in HepG2 cells following exposure to 4-aminobiphenyl (4-ABP). The arylamine 4-ABP is a human carcinogen. Using the Comet assay, we showed that 4-ABP (18.75-300μM) induces DNA damage in HepG2 cells after 24h. DNA damage signaling pathway-based PCR arrays were used to investigate expression changes in genes involved in DNA damage response. Results showed down-regulation of 16 DNA repair-related genes in 4-ABP-treated cells. Among them, the expression of selected six genes (UNG, LIG1, EXO1, XRCC2, PCNA, and FANCG) from different DNA repair pathways was decreased with quantitative real-time PCR (qRT-PCR). In parallel, using the miRNA array, we reported that the expression of 27 miRNAs in 4-ABP-treated cells was at least 3-fold higher than that in the control group. Of these differential 27 miRNAs, the most significant expression of miRNA-513a-5p and miRNA-630 was further validated by qRT-PCR, and was predicted to be implicated in the deregulation of FANCG and RAD18 genes, respectively, via bioinformatic analysis. Both FANCG and RAD18 proteins were found to be down-regulated in 4-ABP-treated cells. In addition, overexpression and knockdown of miRNA-513a-5p and miRNA-630 reduced and increased the expression of FANCG and RAD18 proteins, respectively. Based on the above results, we indicated that miRNA-513a-5p and miRNA-630 could play a role in the suppression of DNA repair genes, and eventually lead to DNA damage.
Collapse
|
22
|
Takahashi K, Tatsumi N, Fukami T, Yokoi T, Nakajima M. Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes. Drug Metab Pharmacokinet 2014; 29:333-40. [PMID: 24552687 DOI: 10.2133/dmpk.dmpk-13-rg-114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate mRNA expression, controlling global cell function. Altered expression or function of miRNAs causes various diseases. Chemically induced changes in miRNA expression in human tissues are not fully understood. We investigated the changes in miRNA expression by rifampicin, which modulates the expression of various genes related to drug metabolism and pharmacokinetics, in human hepatocytes, and evaluated the relationship with the gene expression changes. We found that 23 miRNAs were increased (>2-fold) and 17 miRNAs were decreased (<0.5-fold) among 150 detected miRNAs, whereas 60 genes were increased and 105 genes were decreased among 22,673 detected genes upon treatment with 10 µM rifampicin. Changes in 17 intragenic miRNAs out of 40 altered miRNAs did not occur in parallel with alterations in their host genes. We searched for the target mRNAs of the miRNAs altered by rifampicin and found that the changes in expression of 16 mRNA/miRNA pairs were inversely associated. Thus, some mRNA expression altered by rifampicin may result from miRNA regulation. In conclusion, we found that rifampicin altered miRNA expression in human hepatocytes. We obtained new insight on the mechanism of the miRNA expression changes and the complicated relationship with gene transcripts.
Collapse
Affiliation(s)
- Kei Takahashi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University
| | | | | | | | | |
Collapse
|
23
|
Labib S, Guo CH, Williams A, Yauk CL, White PA, Halappanavar S. Toxicogenomic outcomes predictive of forestomach carcinogenesis following exposure to benzo(a)pyrene: Relevance to human cancer risk. Toxicol Appl Pharmacol 2013; 273:269-80. [DOI: 10.1016/j.taap.2013.05.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 02/05/2023]
|
24
|
Koufaris C, Wright J, Osborne M, Currie RA, Gooderham NJ. Time and dose-dependent effects of phenobarbital on the rat liver miRNAome. Toxicology 2013; 314:247-53. [PMID: 24157574 DOI: 10.1016/j.tox.2013.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/07/2013] [Accepted: 10/12/2013] [Indexed: 12/13/2022]
Abstract
In a previous study we had shown that treatment of male Fischer rats with exogenous chemicals for three months resulted in prominent, mode-of-action dependent effects on liver microRNA (miRNA) (Koufaris et al., 2012). Here we investigated how the effects of chemicals on liver miRNA in male Fischer rats relate to the length and dose of exposure to phenobarbital (PB), a drug with multiple established hepatic effects. Importantly, although acute PB treatment (1-7 days) had significant effects on liver mRNA and the expected effects on the liver phenotype (transient hyperplasia, hepatomegaly, cytochrome P450 induction), limited effects on liver miRNA were observed. However, at 14 days of PB treatment clear dose-dependent effects on miRNA were observed. The main effect of PB treatment from days 1 to 90 on liver miRNA was found to be the persistent, progressive, and highly correlated induction of the miR-200a/200b/429 and miR-96/182 clusters, occurring after the termination of the xenobiotic-induced transient hyperplasia. Moreover, in agreement with their reported functions in the literature we found associations between perturbations of miR-29b and miR-200a/200b by PB with global DNA methylation and zeb1/zeb2 proteins respectively. Our data suggest that miRNA are unlikely to play an important role in the acute responses of the adult rodent liver to PB treatment. However, the miRNA responses to longer PB exposures suggest a potential role for maintaining liver homeostasis in response to sub-chronic and chronic xenobiotic-induced perturbations. Similar studies for more chemicals are needed to clarify whether the temporal and dose pattern of miRNA-toxicant interaction identified here for PB are widely applicable to other xenobiotics.
Collapse
Affiliation(s)
- Costas Koufaris
- Surgery and Cancer, Imperial College London, SW72AZ, UK; Department of Cytogenetics and Genomics, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | |
Collapse
|
25
|
Malik AI, Rowan-Carroll A, Williams A, Lemieux CL, Long AS, Arlt VM, Phillips DH, White PA, Yauk CL. Hepatic genotoxicity and toxicogenomic responses in Muta™Mouse males treated with dibenz[a,h]anthracene. Mutagenesis 2013; 28:543-54. [PMID: 23793610 DOI: 10.1093/mutage/get031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dibenz[a,h]anthracene (DB[a,h]A) is a polycyclic aromatic hydrocarbon that is a by-product of combustion and a potent carcinogen. Few studies have investigated the effects of DB[a,h]A on mRNA and microRNA expression to dissect the mechanisms involved in carcinogenesis. In this study, mature male mice (Muta(™)Mouse) were exposed to 6.25, 12.5 and 25mg/kg/day DB[a,h]A by oral gavage for 28 consecutive days. Results were compared with mice similarly exposed to benzo[a]pyrene (B[a]P) in our previous work. Liver DNA adduct levels and lacZ mutant frequency increased dose dependently for both chemicals. Aryl hydrocarbon receptor (AhR) potency was greater for DB[a,h]A than B[a]P using the chemical-activated luciferase expression assay. Microarray analysis revealed 19 up-regulated and 22 down-regulated genes (false discovery rate-adjusted P ≤ 0.05; fold change ≥ 1.5) following treatment with 6.25 mg/kg/day DB[a,h]A. Thirteen transcripts were up-regulated and 32 down-regulated in the 12.5mg/kg/day group. The 25mg/kg/day dose had major effects on mRNA expression with 135 up-regulated and 104 down-regulated genes. Overall, perturbations were greater for DB[a,h]A than for B[a]P; in vitro chemical-activated luciferase expression supports that this may be driven by the AhR. Many of the DB[a,h]A-affected genes are implicated in cancer and are essential in vital biological functions including circadian rhythm, glucose metabolism, lipid metabolism, immune response, cell cycle and apoptosis. Although a number of functional groups were similarly affected by B[a]P and DB[a,h]A, in general the responses generated by each chemical were quite distinct. Commonalities included a DNA damage response leading to induction of cell cycle arrest and apoptosis in both Tp53-dependent and Tp53-independent manners. MicroRNA expression was identical for both chemicals, with only miR-34a showing a dose-dependent increase in treated mice.
Collapse
Affiliation(s)
- Amal I Malik
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Ontario K1A 0K9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
microRNAs (miRNAs) represent the most abundant class of gene expression regulators that bind complementarily to transcripts to repress their translation or mRNA degradation. These small ( 21-23 nucleotides in length) noncoding RNAs are derived through a multistep process by miRNA genes located in genomic DNA. Because miRNAs regulate fundamental cellular functions, their dysregulation affects a large range of physiological processes, such as development, immune responses, metabolism, and diseases as well as toxicological outcomes. Cancer-related miRNAs have been extensively studied; however, the roles of miRNAs in xenobiotic metabolism and in toxicology have only recently been explored. This review focuses on the current knowledge of miRNA-dependent regulation of drug-metabolizing enzymes and nuclear receptors and the associated potential toxicological implications. The potential modulation of toxicology-related changes in miRNA expression, the role of miRNA in immune-mediated drug-induced liver injuries, the use of circulating miRNAs in body fluids as potential toxicological biomarkers, and the link between miRNA-related pharmacogenomics and adverse drug reactions are highlighted.
Collapse
Affiliation(s)
- Tsuyoshi Yokoi
- Department of Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| | | |
Collapse
|
27
|
van Kesteren PCE, Zwart PE, Schaap MM, Pronk TE, van Herwijnen MHM, Kleinjans JCS, Bokkers BGH, Godschalk RWL, Zeilmaker MJ, van Steeg H, Luijten M. Benzo[a]pyrene-induced transcriptomic responses in primary hepatocytes and in vivo liver: toxicokinetics is essential for in vivo-in vitro comparisons. Arch Toxicol 2012; 87:505-15. [PMID: 23052197 DOI: 10.1007/s00204-012-0949-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/18/2012] [Indexed: 12/17/2022]
Abstract
The traditional 2-year cancer bioassay needs replacement by more cost-effective and predictive tests. The use of toxicogenomics in an in vitro system may provide a more high-throughput method to investigate early alterations induced by carcinogens. Recently, the differential gene expression response in wild-type and cancer-prone Xpa (-/-) p53 (+/-) primary mouse hepatocytes after exposure to benzo[a]pyrene (B[a]P) revealed downregulation of cancer-related pathways in Xpa (-/-) p53 (+/-) hepatocytes only. Here, we investigated pathway regulation upon in vivo B[a]P exposure of wild-type and Xpa (-/-) p53 (+/-) mice. In vivo transcriptomics analysis revealed a limited gene expression response in mouse livers, but with a significant induction of DNA replication and apoptotic/anti-apoptotic cellular responses in Xpa (-/-) p53 (+/-) livers only. In order to be able to make a meaningful in vivo-in vitro comparison we estimated internal in vivo B[a]P concentrations using DNA adduct levels and physiologically based kinetic modeling. Based on these results, the in vitro concentration that corresponded best with the internal in vivo dose was chosen. Comparison of in vivo and in vitro data demonstrated similarities in transcriptomics response: xenobiotic metabolism, lipid metabolism and oxidative stress. However, we were unable to detect cancer-related pathways in either wild-type or Xpa (-/-) p53 (+/-) exposed livers, which were previously found to be induced by B[a]P in Xpa (-/-) p53 (+/-) primary hepatocytes. In conclusion, we showed parallels in gene expression responses between livers and primary hepatocytes upon exposure to equivalent concentrations of B[a]P. Furthermore, we recommend considering toxicokinetics when modeling a complex in vivo endpoint with in vitro models.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Benzo(a)pyrene/pharmacokinetics
- Benzo(a)pyrene/toxicity
- Carcinogenicity Tests/methods
- Carcinogens/pharmacokinetics
- Carcinogens/toxicity
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Computer Simulation
- DNA Adducts/metabolism
- DNA Replication/drug effects
- Dose-Response Relationship, Drug
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- High-Throughput Screening Assays
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Primary Cell Culture
- Risk Assessment
- Transcription, Genetic/drug effects
- Tumor Suppressor Protein p53/genetics
- Xeroderma Pigmentosum Group A Protein/genetics
Collapse
Affiliation(s)
- P C E van Kesteren
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Labib S, Yauk C, Williams A, Arlt VM, Phillips DH, White PA, Halappanavar S. Subchronic oral exposure to benzo(a)pyrene leads to distinct transcriptomic changes in the lungs that are related to carcinogenesis. Toxicol Sci 2012; 129:213-24. [PMID: 22610609 PMCID: PMC3430207 DOI: 10.1093/toxsci/kfs177] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 11/29/2022] Open
Abstract
We have previously shown that acute oral exposure to the environmental carcinogen benzo(a)pyrene (BaP) elicits comparable levels of DNA adducts, but distinct transcriptomic changes, in mouse lungs and livers, the two main BaP bioactivating organs. Oral BaP exposure is predominantly associated with lung cancer and not hepatic cancer in some animal models, suggesting that gene expression differences may provide insight into the drivers of tissue-specific carcinogenesis. In the present study, we examine pulmonary DNA adduct formation, lacZ mutant frequency, and mRNA profiles in adult male MutaMouse following subchronic (28 day) oral exposure to BaP (0, 25, 50, and 75 mg/kg/day) and sacrificed 3 days postexposure. The results are compared with those obtained from livers of the same mice (previously published). Although there was a 1.8- to 3.3-fold increase in the levels of DNA adducts in lung compared with liver, the lacZ transgene mutant frequency was similar in both tissues. At the transcriptomic level, a transition from activation of the DNA damage response p53 pathway at the low dose to the induction of genes involved in angiogenesis, evasion of apoptosis and growth signals at the high doses was evident only in the lungs. These results suggest that tissue DNA adducts and mutant frequency are sensitive markers of target tissue exposure and mode of action, whereas early changes in gene expression may provide a better indication of the likelihood of carcinogenic transformation in selected tissues. Moreover, the study provides new information on the underlying mechanisms that contribute to tissue-specific responses to BaP.
Collapse
Affiliation(s)
- Sarah Labib
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; and
| | - Carole Yauk
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; and
| | - Andrew Williams
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; and
| | - Volker M. Arlt
- Analytical and Environmental Sciences Division, King’s College London, London, SE1 9NH, U.K.
| | - David H. Phillips
- Analytical and Environmental Sciences Division, King’s College London, London, SE1 9NH, U.K.
| | - Paul A. White
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; and
| | - Sabina Halappanavar
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; and
| |
Collapse
|
29
|
Jenny MJ, Aluru N, Hahn ME. Effects of short-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos. Toxicol Appl Pharmacol 2012; 264:262-73. [PMID: 22921993 DOI: 10.1016/j.taap.2012.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 12/26/2022]
Abstract
Although many drugs and environmental chemicals are teratogenic, the mechanisms by which most toxicants disrupt embryonic development are not well understood. MicroRNAs, single-stranded RNA molecules of ~22 nt that regulate protein expression by inhibiting mRNA translation and promoting mRNA sequestration or degradation, are important regulators of a variety of cellular processes including embryonic development and cellular differentiation. Recent studies have demonstrated that exposure to xenobiotics can alter microRNA expression and contribute to the mechanisms by which environmental chemicals disrupt embryonic development. In this study we tested the hypothesis that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known teratogen, alters microRNA expression during zebrafish development. We exposed zebrafish embryos to DMSO (0.1%) or TCDD (5nM) for 1h at 30hours post fertilization (hpf) and measured microRNA expression using several methods at 36 and 60hpf. TCDD caused strong induction of CYP1A at 36hpf (62-fold) and 60hpf (135-fold) as determined by real-time RT-PCR, verifying the effectiveness of the exposure. MicroRNA expression profiles were determined using microarrays (Agilent and Exiqon), next-generation sequencing (SOLiD), and real-time RT-PCR. The two microarray platforms yielded results that were similar but not identical; both showed significant changes in expression of miR-451, 23a, 23b, 24 and 27e at 60hpf. Multiple analyses were performed on the SOLiD sequences yielding a total of 16 microRNAs as differentially expressed by TCDD in zebrafish embryos. However, miR-27e was the only microRNA to be identified as differentially expressed by all three methods (both microarrays, SOLiD sequencing, and real-time RT-PCR). These results suggest that TCDD exposure causes modest changes in expression of microRNAs, including some (miR-451, 23a, 23b, 24 and 27e) that are critical for hematopoiesis and cardiovascular development.
Collapse
Affiliation(s)
- Matthew J Jenny
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
30
|
Koufaris C, Wright J, Currie RA, Gooderham NJ. Hepatic microRNA profiles offer predictive and mechanistic insights after exposure to genotoxic and epigenetic hepatocarcinogens. Toxicol Sci 2012; 128:532-43. [PMID: 22584684 DOI: 10.1093/toxsci/kfs170] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In recent years, accumulating evidence supports the importance of microRNAs in liver physiology and disease; however, few studies have examined the involvement of these noncoding genes in chemical hepatocarcinogenesis. Here, we examined the liver microRNA profile of male Fischer rats exposed through their diet to genotoxic (2-acetylaminofluorene) and epigenetic (phenobarbital, diethylhexylphthalate, methapyrilene HCL, monuron, and chlorendic acid) chemical hepatocarcinogens, as well as to non-hepatocarcinogenic treatments (benzophenone, and diethylthiourea) for 3 months. The effects of these treatments on liver pathology, plasma clinical parameters, and liver mRNAs were also determined. All hepatocarcinogens affected the expression of liver mRNAs, while the hepatic microRNA profiles were associated with the mode of action of the chemical treatments and corresponded to chemical carcinogenicity. The three nuclear receptor-activating chemicals (phenobarbital, benzophenone, and diethylhexylphthalate) were characterized by the highly correlated induction of the miR-200a/200b/429, which is involved in protecting the epithelial status of cells and of the miR-96/182 clusters. The four non-nuclear receptor-activating hepatocarcinogens were characterized by the early, persistent induction of miR-34, which was associated with DNA damage and oxidative stress in vivo and in vitro. Repression of this microRNA in a hepatoma cell line led to increased cell growth; thus, miR-34a could act to block abnormal cell proliferation in cells exposed to DNA damage or oxidative stress. This study supports the proposal that hepatic microRNA profiles could assist in the earlier evaluation and identification of hepatocarcinogens, especially those acting by epigenetic mechanisms.
Collapse
Affiliation(s)
- Costas Koufaris
- Biomolecular Medicine, Imperial College London, London SW72AZ, UK
| | | | | | | |
Collapse
|
31
|
Lizarraga D, Gaj S, Brauers KJ, Timmermans L, Kleinjans JC, van Delft JHM. Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol 2012; 25:838-49. [PMID: 22316170 DOI: 10.1021/tx2003799] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toxicological studies assessing the safety of compounds for humans frequently use in vitro systems to characterize toxic responses in combination with transcriptomic analyses. Thus far, changes have mostly been investigated at the mRNA level. Recently, microRNAs have attracted attention because they are powerful negative regulators of mRNA levels and, thus, may be responsible for the modulation of important mRNA networks implicated in toxicity. This study aimed to identify possible microRNA-mRNA networks as novel interactions on the gene expression level after a genotoxic insult. We used benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon, as a model genotoxic/carcinogenic compound. We analyzed time-dependent effects on mRNA and microRNA profiles in HepG2 cells, a widely used human liver cell line that expresses active p53 and is competent for the biotransformation of BaP. Changes in microRNA expression in response to BaP, in combination with multiple alterations of mRNA levels, were observed. Many of these altered mRNAs are targets of altered microRNAs. Using pathway analysis, we evaluated the relevance of such microRNA deregulations to genotoxicity. This revealed eight microRNAs that appear to participate in specific BaP-responsive pathways relevant to genotoxicity, such as apoptotic signaling, cell cycle arrest, DNA damage response, and DNA damage repair. Our results particularly highlight the potential of microRNA-29b, microRNA-26a-1*, and microRNA-122* as novel players in the BaP response. Therefore, this study demonstrates the added value of an integrated microRNA-mRNA approach for identifying molecular mechanisms induced by BaP in an in vitro human model.
Collapse
Affiliation(s)
- Daneida Lizarraga
- Netherlands Toxicogenomics Centre, Maastricht University , P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
On the role of low-dose effects and epigenetics in toxicology. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:499-550. [PMID: 22945581 DOI: 10.1007/978-3-7643-8340-4_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For a long time, scientists considered genotoxic effects as the major issue concerning the influence of environmental chemicals on human health. Over the last decades, a new layer superimposed the genome, i.e., the epigenome, tremendously changing this point of view. The term "epigenetics" comprises stable alterations in gene expression potential arising from variations in DNA methylation and a variety of histone modifications, without changing the underlying DNA sequence. Recently, also gene silencing by small noncoding RNAs (ncRNAs), in particular by microRNAs, was included in the list of epigenetic mechanisms. Multiple studies in vivo as well as in vitro have shown that a multitude of different environmental factors are capable of changing the epigenetic pattern as well as miRNA expression in certain cell types, leading to aberrant gene expression profiles in cells and tissues. These changes may have extensive effects concerning the proper gene expression necessary in a specified cell type and can even lead into a state of disease. Especially the roles of epigenetic modifications and miRNA alterations in tumorigenesis have been a major focus in research over the last years. This chapter will give an overview on epigenetic features and on the spectrum of epigenetic changes observed after exposure against environmental chemicals and pollutants.
Collapse
|
33
|
Malik AI, Williams A, Lemieux CL, White PA, Yauk CL. Hepatic mRNA, microRNA, and miR-34a-target responses in mice after 28 days exposure to doses of benzo(a)pyrene that elicit DNA damage and mutation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:10-21. [PMID: 21964900 PMCID: PMC3525943 DOI: 10.1002/em.20668] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/18/2011] [Accepted: 06/20/2011] [Indexed: 05/04/2023]
Abstract
Benzo(a)pyrene (BaP) is a mutagenic carcinogen that is ubiquitous in our environment. To better understand the toxic effects of BaP and to explore the relationship between toxicity and toxicogenomics profiles, we assessed global mRNA and microRNA (miRNA) expression in Muta™Mouse. Adult male mice were exposed by oral gavage to 25, 50, and 75 mg/kg/day BaP for 28 days. Liver tissue was collected 3 days following the last treatment. Initially, we established that exposure to BaP led to the formation of hepatic DNA adducts and mutations in the lacZ transgene of the Muta™Mouse. We then analyzed hepatic gene expression profiles. Microarray analysis of liver samples revealed 134 differentially expressed transcripts (adjusted P < 0.05; fold changes > 1.5). The mRNAs most affected were involved in xenobiotic metabolism, immune response, and the downstream targets of p53. In this study, we found a significant 2.0 and 3.6-fold increase following exposure to 50 and 75 mg/kg/day BaP, respectively, relative to controls for miR-34a. This miRNA is involved in p53 response. No other significant changes in miRNAs were observed. The protein levels of five experimentally confirmed miR-34a targets were examined, and no major down-regulation was present. The results suggest that liver miRNAs are largely unresponsive to BaP doses that cause both DNA adducts and mutations. In summary, the validated miRNA and mRNA expression profiles following 28 day BaP exposure reflect a DNA damage response and effects on the cell cycle, consistent with the observed increases in DNA adducts and mutations.
Collapse
|
34
|
Elamin BK, Callegari E, Gramantieri L, Sabbioni S, Negrini M. MicroRNA response to environmental mutagens in liver. Mutat Res 2011; 717:67-76. [PMID: 21514310 DOI: 10.1016/j.mrfmmm.2011.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 03/18/2011] [Accepted: 03/31/2011] [Indexed: 05/30/2023]
Abstract
During the recent few years, microRNAs emerged as key molecules in the regulation of mammalian cell functions. It was also shown that their altered expression can promote pathologic conditions, such as cancer and other common diseases. Because environmental exposure to biological, chemical or physical agents may be responsible for human diseases, including cancer, uncovering relationships between exposure to environmental carcinogens and expression of microRNAs may help to disclose early mechanisms of disease and it may potentially lead to the development of useful indicators of toxic exposure or novel biomarkers for carcinogenicity testing. The unique expression profile of microRNAs in different types and at different stages of cancer coupled to their remarkable stability in tissues and in serum/plasma suggests that these little molecules may find application as sensitive biomarkers. This review will concentrate on the alterations in microRNA expression in response to environmental factors in relation to the risk of developing liver cancer.
Collapse
Affiliation(s)
- Bahaeldin K Elamin
- Dipartimento di Medicina Sperimentale e Diagnostica, Università di Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|
35
|
Li D, Wang Q, Liu C, Duan H, Zeng X, Zhang B, Li X, Zhao J, Tang S, Li Z, Xing X, Yang P, Chen L, Zeng J, Zhu X, Zhang S, Zhang Z, Ma L, He Z, Wang E, Xiao Y, Zheng Y, Chen W. Aberrant expression of miR-638 contributes to benzo(a)pyrene-induced human cell transformation. Toxicol Sci 2011; 125:382-91. [PMID: 22048643 DOI: 10.1093/toxsci/kfr299] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Identification of aberrant microRNA (miRNA) expression during chemical carcinogen-induced cell transformation will lead to a better understanding of the substantial role of miRNAs in cancer development. To explore whether aberrant miRNAs expression can be used as biomarkers of chemical exposure in risk assessment of chemical carcinogenesis, we analyzed miRNA expression profiles of human bronchial epithelial cells expressing an oncogenic allele of H-Ras (HBER) at different stages of transformation induced by benzo(a)pyrene (BaP) by miRNA array. It revealed 12 miRNAs differentially expressed in HBER cells at both pretransformed and transformed stages. Differentially expressed miRNAs were confirmed in transformed cells and examined in 50 pairs of primary human non-small-cell lung cancer (NSCLC) tissues using real-time PCR. Among these miRNAs, downregulation of miR-638 was found in 68% (34/50) of NSCLC tissues. However, the expression of miR-638 in HBER cells increased upon treatment of BaP in a dose-dependent manner. The expression of miR-638 was also examined in peripheral lymphocytes from 86 polycyclic aromatic hydrocarbons (PAHs)-exposed (PE) workers. We found that the average expression level of miR-638 in peripheral lymphocytes from 86 PE workers increased by 72% compared with control group. The levels of miR-638 were correlated with the concentration of urinary 1-hydroxypyrene (1-OHP) and external levels of PAHs. Overexpression of miR-638 aggravated cell DNA damage induced by BaP, which might be mediated by suppression of breast cancer 1 (BRCA1), one of the target genes of miR-638. In summary, we suggest that miR-638 is involved in the BaP-induced carcinogenesis by targeting BRCA1.
Collapse
Affiliation(s)
- Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nakajima M, Yokoi T. MicroRNAs from biology to future pharmacotherapy: Regulation of cytochrome P450s and nuclear receptors. Pharmacol Ther 2011; 131:330-7. [DOI: 10.1016/j.pharmthera.2011.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 11/30/2022]
|
37
|
Yokoi T, Nakajima M. Toxicological implications of modulation of gene expression by microRNAs. Toxicol Sci 2011; 123:1-14. [PMID: 21715665 DOI: 10.1093/toxsci/kfr168] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) are a large family of non-coding RNAs that are evolutionarily conserved, endogenous, and 21-23 nucleotides in length. miRNAs regulate gene expression by targeting messenger RNAs (mRNAs) by binding to complementary regions of transcripts to repress their translation or mRNA degradation. miRNAs are encoded by the genome, and more than 1000 human miRNAs have been identified so far. miRNAs are predicted to target ∼60% of human mRNAs and are expressed in all animal cells and have fundamental roles in cellular responses to xenobiotic stresses, which affect a large range of physiological processes such as development, immune responses, metabolism, tumor formation as well as toxicological outcomes. Recently, many reports concerning miRNAs related to cancer have been published; however, the miRNA research in the metabolism of xenobiotics and endobiotics and in toxicology has only recently been established. This review describes the current knowledge on the miRNA-dependent regulation of drug-metabolizing enzymes and nuclear receptors and its potential toxicological implications. In this review, miRNAs with reference to target prediction, potential modulation of toxicology-related changes of miRNA expression, role of miRNA in immune-mediated drug-induced liver injury, miRNA in plasma as potential toxicological biomarkers, and relevance of miRNA-related genetic polymorphisms are discussed.
Collapse
Affiliation(s)
- Tsuyoshi Yokoi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | |
Collapse
|
38
|
Dere E, Forgacs AL, Zacharewski TR, Burgoon LD. Genome-wide computational analysis of dioxin response element location and distribution in the human, mouse, and rat genomes. Chem Res Toxicol 2011; 24:494-504. [PMID: 21370876 DOI: 10.1021/tx100328r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aryl hydrocarbon receptor (AhR) mediates responses elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin by binding to dioxin response elements (DRE) containing the core consensus sequence 5'-GCGTG-3'. The human, mouse, and rat genomes were computationally searched for all DRE cores. Each core was then extended by 7 bp upstream and downstream, and matrix similarity (MS) scores for the resulting 19 bp DRE sequences were calculated using a revised position weight matrix constructed from bona fide functional DREs. In total, 72318 human, 70720 mouse, and 88651 rat high-scoring (MS ≥ 0.8437) putative DREs were identified. Gene-encoding intragenic DNA regions had ∼1.6 times more putative DREs than the noncoding intergenic DNA regions. Furthermore, the promoter region spanning ±1.5 kb of a TSS had the highest density of putative DREs within the genome. Chromosomal analysis found that the putative DRE densities of chromosomes X and Y were significantly lower than the mean chromosomal density. Interestingly, the 10 kb upstream promoter region on chromosome X of the genomes were significantly less dense than the chromosomal mean, while the same region in chromosome Y was the most dense. In addition to providing a detailed genomic map of all DRE cores in the human, mouse, and rat genomes, these data will further aid the elucidation of AhR-mediated signal transduction.
Collapse
Affiliation(s)
- Edward Dere
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
39
|
Celius T, Pansoy A, Matthews J, Okey AB, Henderson MC, Krueger SK, Williams DE. Flavin-containing monooxygenase-3: induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver. Toxicol Appl Pharmacol 2010; 247:60-9. [PMID: 20570689 PMCID: PMC2906660 DOI: 10.1016/j.taap.2010.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/28/2010] [Accepted: 05/25/2010] [Indexed: 12/15/2022]
Abstract
Flavin-containing monooxygenases often are thought not to be inducible but we recently demonstrated aryl hydrocarbon receptor (AHR)-dependent induction of FMO mRNAs in mouse liver by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Celius et al., Drug Metab Dispos 36:2499, 2008). We now evaluated FMO induction by other AHR ligands and xenobiotic chemicals in vivo and in mouse Hepa1c1c7 hepatoma cells (Hepa-1). In mouse liver, 3-methylcholanthrene (3MC) induced FMO3 mRNA 8-fold. In Hepa-1 cells, 3MC and benzo[a]pyrene (BaP) induced FMO3 mRNA >30-fold. Induction by 3MC and BaP was AHR dependent but, surprisingly, the potent AHR agonist, TCDD, did not induce FMO3 mRNA in Hepa-1 cells nor did chromatin immunoprecipitation assays detect recruitment of AHR or ARNT to Fmo3 regulatory elements after exposure to 3MC in liver or in Hepa-1 cells. However, in Hepa-1, 3MC and BaP (but not TCDD) caused recruitment of p53 protein to a p53 response element in the 5'-flanking region of the Fmo3 gene. We tested the possibility that FMO3 induction in Hepa-1 cells might be mediated by Nrf2/anti-oxidant response pathways, but agents known to activate Nrf2 or to induce oxidative stress did not affect FMO3 mRNA levels. The protein synthesis inhibitor, cycloheximide (which causes "superinduction" of CYP1A1 mRNA in TCDD-treated cells), by itself caused dramatic upregulation (>300-fold) of FMO3 mRNA in Hepa-1 suggesting that cycloheximide prevents synthesis of a labile protein that suppresses FMO3 expression. Although FMO3 mRNA is highly induced by 3MC or TCDD in mouse liver and in Hepa-1 cells, FMO protein levels and FMO catalytic function showed only modest elevation.
Collapse
Affiliation(s)
- Trine Celius
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|