1
|
Piccioni M, Di Meo F, Valentino A, Campani V, Arigoni M, Tanori M, Mancuso M, Cuciniello R, Tomasetti M, Monaco F, Goteri G, Spugnini EP, Calogero RA, De Rosa G, Peluso G, Baldi A, Crispi S. miRNA-503 inhibition exerts anticancer effects and reduces tumor growth in mesothelioma. J Exp Clin Cancer Res 2025; 44:65. [PMID: 39984959 PMCID: PMC11846362 DOI: 10.1186/s13046-025-03283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/10/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is a rare and aggressive form of cancer that affects the mesothelial surfaces, associated with exposure to asbestos fibres. To date, no cure is available for MM and therapeutically approved treatments are based on the use of platinum compounds often used in combination with other drugs. We have previously analysed the efficacy of a cisplatin/piroxicam (CDDP/P) combined treatment showing that this treatment was able to reduce in vivo tumor growth. Several studies reported that platinum-drug sensitivity in cancer is connected to modulation of the expression of non-coding RNAs. In this study we analysed if the CDDP/P treatment was able to modulate miRNAs expression in MM. METHODS miRNA sequencing performed on MSTO-211 H cells treated with CDDP with CDDP/P led us to identify miRNA-503 - downregulated by CDDP/P - as a novel miRNA that acts as an oncomiR in MM. The effect of miRNA-503 inhibition was evaluated in vitro in mesothelioma cells analysing apoptosis induction and reduction of cancer properties. Inhibition of miR-503 expression in vivo, was analysed in ectopic mouse model of MM by using LNP encapsulating anti-mir-503 and miR-503 expression was evaluated in human MM samples. RESULTS In vitro and in vivo analysis confirmed miR-503 acts as oncogene in MM since its inhibition was able to reduce cell cancer properties and tumor growth in ectopic mouse model of MM. Its expression was found upregulated in human MM patients compared to normal pleura. Bioinformatic analysis indicated BTG1, CCNG1, EDG1, and TIMP2 as putative target genes of miRNA-503. These genes showed an opposite expression compared to miR-503 levels both in cells and in MM samples. Finally, microarray analysis indicated that miR-503 inhibition affected the expression of the well-known MM biomarkers: CXCL8, SERPINE1 and Osteopontin. CONCLUSIONS Our study is the first reporting an oncomiR role for miR-503 in MM and suggests that its inactivation could have a clinical value in MM patients. This study reveals that miRNA-503 acts as an oncomiR in MM suggesting that its inhibition, through LNP delivery, has the potential to be considered as a novel therapeutic strategy in MM.
Collapse
Affiliation(s)
- Miriam Piccioni
- Institute of Biosciences and Bio-Resources, CNR, Naples, Italy
| | - Francesco Di Meo
- Institute of Biosciences and Bio-Resources, CNR, Naples, Italy
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems, CNR, Naples, Italy
| | - Virginia Campani
- Department of Life Health Sciences and Health Professions, Link Campus University, Rome, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Mirella Tanori
- Division of Biotechnologies, ENEA, Casaccia Research Center, Rome, Italy
| | | | - Rossana Cuciniello
- Institute of Biosciences and Bio-Resources, CNR, Naples, Italy
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, NeuroMarseille, Marseille, France
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | | | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gianfranco Peluso
- Unicamillus, International University of Health and Medical Sciences, Rome, Italy
| | - Alfonso Baldi
- Institute of Biosciences and Bio-Resources, CNR, Naples, Italy
- Department of Life Health Sciences and Health Professions, Link Campus University, Rome, Italy
| | - Stefania Crispi
- Institute of Biosciences and Bio-Resources, CNR, Naples, Italy.
| |
Collapse
|
2
|
Zhang Y, Qiu S, Shao S, Cao Y, Hong Y, Xu X, Fang X, Di C, Yang J, Tan X. NMN partially rescues cuproptosis by upregulating sirt2 to increase intracellular NADPH. Sci Rep 2024; 14:19392. [PMID: 39169144 PMCID: PMC11339376 DOI: 10.1038/s41598-024-70245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Cuproptosis is characterized by lipoylated protein aggregation and loss of iron-sulfur (Fe-S) proteins, which are crucial for a wide range of important cellular functions, including DNA replication and damage repair. Sirt2 and sirt4 are lipoamidases that remove the lipoyl moiety from lipoylated proteins using nicotinamide adenine dinucleotide (NAD+) as a cofactor. However, to date, it is not clear whether nicotinamide mononucleotide (NMN), a precursor of NAD+, affects cellular sensitivity to cuproptosis. Therefore, in the current study, cuproptosis was induced by the copper (Cu) ionophore elesclomol (Es) in HeLa cells. It was also found that Es/Cu treatment increased cellular DNA damage level. On the other hand, NMN treatment partially rescued cuproptosis in a dose-dependent manner, as well as reduced cellular DNA damage level. In addition, NMN upregulated the expression of Fe-S protein POLD1, without affecting the aggregation of lipoylated proteins. Mechanistic study revealed that NMN increased the expression of sirt2 and cellular reduced nicotinamide adenine dinucleotide phosphate (NADPH) level. Overexpression of sirt2 and sirt4 did not change the aggregation of lipoylated proteins, however, sirt2, but not sirt4, increased cellular NADPH levels and partially rescued cuproptosis. Inhibition of NAD+ kinase (NADK), which is responsible for generating NADPH, abolished the rescuing function of NMN and sirt2 for Es/Cu induced cell death. Taken together, our results suggested that DNA damage is a characteristic feature of cuproptosis. NMN can partially rescue cuproptosis by upregulating sirt2, increase intracellular NADPH content and maintain the level of Fe-S proteins, independent of the lipoamidase activity of sirt2.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Shuting Qiu
- School of Public Health, Hangzhou Normal University, Hangzhou, China
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Shihan Shao
- School of Public Health, Hangzhou Normal University, Hangzhou, China
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yuejia Cao
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xianrong Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xuexian Fang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Chunhong Di
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China.
| | - Jun Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, China.
| | - Xiaohua Tan
- School of Public Health, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
3
|
Qiu S, Shao S, Zhang Y, Zhang Y, Yin J, Hong Y, Yang J, Tan X, Di C. Comparison of protective effects of nicotinamide mononucleotide and nicotinamide riboside on DNA damage induced by cisplatin in HeLa cells. Biochem Biophys Rep 2024; 37:101655. [PMID: 38333051 PMCID: PMC10851195 DOI: 10.1016/j.bbrep.2024.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Background Previous studies have shown that the nicotinamide adenine dinucleotide (NAD+) precursors, nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), protect against endogenously or exogenously induced DNA damage. However, whether the two compounds have the same or different efficacy against DNA damage is not clear. In the current study, we systematically compared the effects of NMN and NR on cisplatin-induced DNA damage in HeLa cells. Methods To evaluate the protective effects of NMN or NR, HeLa cells were pretreated with different doses of NMN or NR followed with 10 μM of cisplatin treatment. Cell viability was examined by Trypan blue staining assay. For observing the DNA damage repair process, HeLa cells were treated with 10 μM of cisplatin for 12 h, followed with 10 mM NMN or NR treatment for another 8, 16, 24, or 32 h, DNA damage levels were assessed for each time point by immunofluorescent staining against phosphor-H2AX (γH2AX) and alkaline comet assay. The effects of NMN and NR on intracellular NAD+ and reactive oxygen species (ROS) levels were also determined. Results NMN and NR treatment alone did not have any significant effects on cell viability, however, both can protect HeLa cells from cisplatin-induced decrease of cell viability with similar efficacy in a dose-dependent manner. On the other hand, while both can reduce the DNA damage levels in cisplatin-treated cells, NR exhibited better protective effect. However, both appeared to boost the DNA damage repair process with similar efficacy. NMN or NR treatment alone could increase cellular NAD+ levels, and both can reverse cisplatin-induced decrease of NAD+ levels. Finally, while neither NMN nor NR affected cellular ROS levels, both inhibited cisplatin-induced increase of ROS with no significant difference between them. Conclusion NR have a better protective effect against cisplatin-induced DNA damage than NMN.
Collapse
Affiliation(s)
- Shuting Qiu
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Shihan Shao
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yunheng Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yingying Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Jie Yin
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Jun Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Tan
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
4
|
Hu X, He C, Zhang L, Zhang Y, Chen L, Sun C, Wei J, Yang L, Tan X, Yang J, Zhang Y. Mesenchymal stem cell-derived exosomes attenuate DNA damage response induced by cisplatin and bleomycin. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503651. [PMID: 37491116 DOI: 10.1016/j.mrgentox.2023.503651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 07/27/2023]
Abstract
Stem cell-derived exosomes (SC-Exos) have been shown to protect cells from chemical-induced deoxyribonucleic acid (DNA) damage. However, there has been no systematic comparison of the efficacy of exosomes against different types of DNA damage. Therefore, in this study, we assessed the protective effect of exosomes derived from human embryonic stem cell-induced mesenchymal stem cells (hESC-MSC-Exos) on two types of DNA damage, namely, intra-/inter-strand crosslinks and DNA double-strand breaks induced by cisplatin (Pt) and bleomycin (BLM), respectively, in HeLa cells. The alkaline comet assay demonstrated that hESC-MSC-Exos effectively inhibited Pt- and BLM-induced DNA damage in a dose-dependent manner. When the concentration of hESC-MSC-Exos reaches 2.0 × 106 and 4.0 × 106 particles/mL in Pt- and BLM-treated groups, respectively, there was a significant decrease in tail DNA percentage (Pt: 20.80 ± 1.61 vs 9.40 ± 1.14, p < 0.01; BLM: 21.80 ± 1.31 vs 6.70 ± 0.60, p < 0.01), tail moment (Pt: 10.00 ± 1.21 vs 2.08 ± 0.51, p < 0.01; BLM: 12.00 ± 0.81 vs 2.00 ± 0.21, p < 0.01), and olive tail moment (Pt: 6.01 ± 0.55 vs 2.09 ± 0.25, p < 0.01; BLM: 6.03 ± 0.37 vs 1.53 ± 0.13, p < 0.01). Phospho-histone H2AX (γH2AX) immunofluorescence and western blotting showed an over 50 % decrease in γH2AX expression when the cells were pretreated with hESC-MSC-Exos. As reactive oxygen species (ROS) are important mediators of Pt- and BLM-induced DNA damage, dichloro-dihydro-fluorescein diacetate staining indicated that hESC-MSC-Exos inhibited the increase in intracellular ROS in drug-treated cells. In conclusion, our findings suggest that hESC-MSC-Exos can protect cells from the two types of DNA-damaging drugs and that reduced intracellular ROS is involved in this effect.
Collapse
Affiliation(s)
- Xiaoqiang Hu
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Chuncao He
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Lijun Zhang
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Yunheng Zhang
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Liangjing Chen
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, China
| | - Jun Wei
- State Key Laboratory of Cellular Stress Biology, Xiamen University School of Life Sciences, Xiamen 361005, China
| | - Lei Yang
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Xiaohua Tan
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Jun Yang
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou 311121, China; Center for Uterine Cancer Diagnosis and Therapy Research, The Affiliated Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Yan Zhang
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou 311121, China.
| |
Collapse
|
5
|
Hashemipour M, Boroumand H, Mollazadeh S, Tajiknia V, Nourollahzadeh Z, Rohani Borj M, Pourghadamyari H, Rahimian N, Hamblin MR, Mirzaei H. Exosomal microRNAs and exosomal long non-coding RNAs in gynecologic cancers. Gynecol Oncol 2021; 161:314-327. [PMID: 33581845 DOI: 10.1016/j.ygyno.2021.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 02/08/2023]
Abstract
Gynecologic cancer is a group of any malignancies affecting reproductive tissues and organs of women, including ovaries, uterine, cervix, vagina, vulva, and endometrium. Several types of molecular mechanisms are associated with the progression of gynecologic cancers. Among it can be referred to the most widely studied non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long ncRNAs (lncRNAs). As yet, lncRNAs are known to serve key biological roles via various mechanisms, such as splicing regulation, chromatin rearrangement, translation regulation, cell-cycle control, genetic imprinting and mRNA decay. Besides, miRNAs govern gene expression by modulation of mRNAs and lncRNAs degradation, suggestive of needing more research in this field. Generally, driving gynecological cancers pathways by miRNAs and lncRNAs lead to the current improvement in cancer-related technologies. Exosomes are extracellular microvesicles which can carry cargo molecules among cells. In recent years, more studies have been focused on exosomal non-coding RNAs (exo-ncRNAs) and exosomal microRNAs (exo-miRs) because of being natural carriers of lnc RNAs and microRNAs via programmed process. In this review we summarized recent reports concerning the function of exosomal microRNAs and exosomal long non-coding RNAs in gynecological cancers.
Collapse
Affiliation(s)
| | - Homa Boroumand
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mina Rohani Borj
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Pellarin I, Belletti B, Baldassarre G. RNA splicing alteration in the response to platinum chemotherapy in ovarian cancer: A possible biomarker and therapeutic target. Med Res Rev 2020; 41:586-615. [PMID: 33058230 DOI: 10.1002/med.21741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/09/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022]
Abstract
Since its discovery, alternative splicing has been recognized as a powerful way for a cell to amplify the genetic information and for a living organism to adapt, evolve, and survive. We now know that a very high number of genes are regulated by alternative splicing and that alterations of splicing have been observed in different types of human diseases, including cancer. Here, we review the accumulating knowledge that links the regulation of alternative splicing to the response to chemotherapy, focusing our attention on ovarian cancer and platinum-based treatments. Moreover, we discuss how expanding information could be exploited to identify new possible biomarkers of platinum response, to better select patients, and/or to design new therapies able to overcome platinum resistance.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
7
|
Salimian J, Baradaran B, Azimzadeh Jamalkandi S, Moridikia A, Ahmadi A. MiR-486-5p enhances cisplatin sensitivity of human muscle-invasive bladder cancer cells by induction of apoptosis and down-regulation of metastatic genes. Urol Oncol 2020; 38:738.e9-738.e21. [PMID: 32527702 DOI: 10.1016/j.urolonc.2020.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/28/2020] [Accepted: 05/09/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Cisplatin is one of the common chemotherapy drugs for bladder cancer, and resistance to this drug is one of the major obstacles to effective chemotherapy. MicroRNAs (miRNAs) are a category of small noncoding RNAs that can regulate the expression of numerous genes. Recent studies showed that miRNAs can act as a powerful regulator of chemo-sensitivity in cancer cells. Hence, this study aimed to investigate the effects of miRNA-486-5p on cisplatin-sensitivity of different bladder cancer cells. MATERIAL AND METHODS The 5637 and EJ138 cancer cells were treated with miRNA-486-5p and cisplatin, individually or in combination. RESULTS Afterward, the cytotoxicity effects of these treatments were determined by MTT assay and the increased cisplatin-sensitivity observed in both cell lines, especially, 5637 cells. Moreover, subG1 phase cell cycle arrest, changes in the expression of caspase-9, caspase-3, P53, SIRT1, OLFM4, SMAD2, and Bcl-2 genes and nuclear fragmentation also revealed the induction of apoptosis in all treatments, which increased in combination groups. Also, the combination of miRNA-486-5p with cisplatin significantly down-regulated the expression of migration associated genes including ROCK, CD44, and MMP-9 as compared with cisplatin alone. CONCLUSION Altogether, these results indicated that the miRNA-486-5p could induce apoptosis and inhibit cell migration ability of the cells. It seems that pre-electroporation of cells with miRNA-486-5p has useful results in the enhancement of cisplatin sensitivity of 5637 and EJ138 cancer cells and this combination may be a promising treatment strategy for bladder cancer therapy.
Collapse
Affiliation(s)
- Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abdollah Moridikia
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Xu X, Zhou X, Zhang J, Li H, Cao Y, Tan X, Zhu X, Yang J. MicroRNA‐191 modulates cisplatin‐induced DNA damage response by targeting RCC2. FASEB J 2020; 34:13573-13585. [PMID: 32803782 DOI: 10.1096/fj.202000945r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Xianrong Xu
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Xiaofeng Zhou
- Department of Radiation Oncology The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Jianyun Zhang
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Hongjuan Li
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Yifei Cao
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Xiaohua Tan
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Xinqiang Zhu
- Laboratory Research Center The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu China
| | - Jun Yang
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
- Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research The Affiliated Women's Hospital Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
9
|
Wang S, Li MY, Liu Y, Vlantis AC, Chan JY, Xue L, Hu BG, Yang S, Chen MX, Zhou S, Guo W, Zeng X, Qiu S, van Hasselt CA, Tong MC, Chen GG. The role of microRNA in cisplatin resistance or sensitivity. Expert Opin Ther Targets 2020; 24:885-897. [PMID: 32559147 DOI: 10.1080/14728222.2020.1785431] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cisplatin is a chemotherapy drug that has been used to treat a number of cancers for decades, and is still one of the most commonly used anti-cancer agents. However, some patients do not respond to cisplatin while other patients who were originally sensitive to cisplatin eventually develop chemoresistance, leading to treatment failure or/and tumor recurrence. AREAS COVERED Different mechanisms contribute to cisplatin resistance or sensitivity, involving multiple pathways or/and processes such as DNA repair, DNA damage response, drug transport, and apoptosis. Among the various mechanisms, it appears that microRNAs play an important role in determining the resistance or sensitivity. In this article, we analyzed and summarized recent findings in this area, with the aim that these data can aid further research and understanding, leading to the eventual reduction of cisplatin resistance. EXPERT COMMENTARY microRNAs can positively or negatively regulate cisplatin resistance by acting on molecules or/and pathways related to apoptosis, autophagy, hypoxia, cancer stem cells, NF-κB, and Notch1. It appears that the modulation of relevant microRNAs can effectively re-sensitize cancer cells to cisplatin regimen in certain types of cancers including breast, colorectal, gastric, liver, lung, ovarian, prostate, testicular, and thyroid cancers.
Collapse
Affiliation(s)
- Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong, Pharmaceutical University , Guangzhou, China.,Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China
| | - Ming-Yue Li
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital , Hong Kong, China
| | - Yi Liu
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital , Hong Kong, China
| | - Alexander C Vlantis
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - Jason Yk Chan
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - Lingbin Xue
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China
| | - Bao-Guang Hu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Binzhou Medical University , Binzhou, Shenzhen, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan District People's Hospital of Shenzhen , Shenzhen, Guangdong, China
| | - Mo-Xian Chen
- Division of Gastroenterology, Shenzhen Children's Hospital , Shenzhen, China
| | - Shaoming Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital , Shenzhen, China
| | - Wei Guo
- Shenzhen Ritzcon Biological Technology Co., LTD , Shenzhen, Guangdong, China
| | - Xianhai Zeng
- DShenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital , Shandong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - Shuqi Qiu
- DShenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital , Shandong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - C Andrew van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - Michael Cf Tong
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - George G Chen
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| |
Collapse
|
10
|
Pellarin I, Dall'Acqua A, Gambelli A, Pellizzari I, D'Andrea S, Sonego M, Lorenzon I, Schiappacassi M, Belletti B, Baldassarre G. Splicing factor proline- and glutamine-rich (SFPQ) protein regulates platinum response in ovarian cancer-modulating SRSF2 activity. Oncogene 2020; 39:4390-4403. [PMID: 32332923 PMCID: PMC7253352 DOI: 10.1038/s41388-020-1292-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 11/09/2022]
Abstract
In epithelial ovarian cancer (EOC), response to platinum (PT)-based chemotherapy dictates subsequent treatments and predicts patients' prognosis. Alternative splicing is often deregulated in human cancers and can be altered by chemotherapy. Whether and how changes in alternative splicing regulation could impact on the response of EOC to PT-based chemotherapy is still not clarified. We identified the splicing factor proline and glutamine rich (SFPQ) as a critical mediator of response to PT in an unbiased functional genomic screening in EOC cells and, using a large cohort of primary and recurrent EOC samples, we observed that it is frequently overexpressed in recurrent PT-treated samples and that its overexpression correlates with PT resistance. At mechanistic level, we show that, under PT treatment, SFPQ, in complex with p54nrb, binds and regulates the activity of the splicing factor SRSF2. SFPQ/p54nrb complex decreases SRSF2 binding to caspase-9 RNA, favoring the expression of its alternative spliced antiapoptotic form. As a consequence, SFPQ/p54nrb protects cells from PT-induced death, eventually contributing to chemoresistance. Overall, our work unveils a previously unreported SFPQ/p54nrb/SRSF2 pathway that in EOC cells plays a central role in regulating alternative splicing and PT-induced apoptosis and that could result in the design of new possible ways of intervention to overcome PT resistance.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Alice Gambelli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Ilenia Pellizzari
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Sara D'Andrea
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Maura Sonego
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Ilaria Lorenzon
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Monica Schiappacassi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081, Aviano, PN, Italy.
| |
Collapse
|
11
|
Kreutz D, Gerner C, Meier-Menches SM. Enabling Methods to Elucidate the Effects of Metal-based Anticancer Agents. METAL-BASED ANTICANCER AGENTS 2019:246-270. [DOI: 10.1039/9781788016452-00246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Next-generation metal-based pharmaceuticals are considered promising therapeutic agents, which may follow novel modes of action and engage with different targets compared to classical platinum(ii) anticancer agents. However, appropriate methods and assays are required to provide evidence of such unprecedented drug effects. Mass spectrometry (MS) has proved useful in probing the reactivity and selectivity of metal-based anticancer agents on a molecular level and recently also in the cellular context, especially with regard to the proteome. This chapter will discuss the design and use of competitive experiments to investigate activation pathways and binding preferences of metal-based anticancer agents by identifying reaction products via different MS setups. Moreover, cell-based approaches are described to obtain insights into novel potential targets and modes of action. Thus, mass spectrometry emerges as an enabling technology that connects molecules to mechanisms, highlighting the broad applicability of this analytical technique to the discovery and understanding of metal-based anticancer agents.
Collapse
Affiliation(s)
- D. Kreutz
- University of Vienna, Department of Analytical Chemistry Waehringer Str. 38 1090 Vienna Austria
| | - C. Gerner
- University of Vienna, Department of Analytical Chemistry Waehringer Str. 38 1090 Vienna Austria
| | - S. M. Meier-Menches
- University of Vienna, Department of Analytical Chemistry Waehringer Str. 38 1090 Vienna Austria
| |
Collapse
|
12
|
Manoel-Caetano FS, Rossi AFT, Calvet de Morais G, Severino FE, Silva AE. Upregulation of the APE1 and H2AX genes and miRNAs involved in DNA damage response and repair in gastric cancer. Genes Dis 2019; 6:176-184. [PMID: 31194025 PMCID: PMC6545450 DOI: 10.1016/j.gendis.2019.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer remains one of the leading causes of cancer-related death worldwide, and most of the cases are associated with Helicobacter pylori infection. This bacterium promotes the production of reactive oxygen species (ROS), which cause DNA damage in gastric epithelial cells. In this study, we evaluated the expression of important genes involved in the recognition of DNA damage (ATM, ATR, and H2AX) and ROS-induced damage repair (APE1) and the expression of some miRNAs (miR-15a, miR-21, miR-24, miR-421 and miR-605) that target genes involved in the DNA damage response (DDR) in 31 fresh tissues of gastric cancer. Cytoscape v3.1.1 was used to construct the postulated miRNA:mRNA interaction network. Analysis performed by real-time quantitative PCR exhibited significantly increased levels of the APE1 (RQ = 2.55, p < 0.0001) and H2AX (RQ = 2.88, p = 0.0002) genes beyond the miR-421 and miR-605 in the gastric cancer samples. In addition, significantly elevated levels of miR-21, miR-24 and miR-421 were observed in diffuse-type gastric cancer. Correlation analysis reinforced some of the gene:gene (ATM/ATR/H2AX) and miRNA:mRNA relationships obtained also with the interaction network. Thus, our findings show that tumor cells from gastric cancer presents deregulation of genes and miRNAs that participate in the recognition and repair of DNA damage, which could confer an advantage to cell survival and proliferation in the tumor microenvironment.
Collapse
Affiliation(s)
- Fernanda S Manoel-Caetano
- Department of Biology, UNESP, São Paulo State University, Campus of São José do Rio Preto, Rua Cristóvão Colombo, 2265, 15.054-000, São José do Rio Preto, São Paulo, Brazil
| | - Ana Flávia T Rossi
- Department of Biology, UNESP, São Paulo State University, Campus of São José do Rio Preto, Rua Cristóvão Colombo, 2265, 15.054-000, São José do Rio Preto, São Paulo, Brazil
| | - Gabriela Calvet de Morais
- Department of Biology, UNESP, São Paulo State University, Campus of São José do Rio Preto, Rua Cristóvão Colombo, 2265, 15.054-000, São José do Rio Preto, São Paulo, Brazil
| | - Fábio Eduardo Severino
- Department of Surgery and Orthopedics, Faculty of Medicine, UNESP, São Paulo State University, Campus of Botucatu, Av. Prof. Mário Rubens Guimarães Montenegro, s/n, 18.618-687, Botucatu, São Paulo, Brazil
| | - Ana Elizabete Silva
- Department of Biology, UNESP, São Paulo State University, Campus of São José do Rio Preto, Rua Cristóvão Colombo, 2265, 15.054-000, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Horizontal transfer of miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter the sensitivity of cervical cancer cells to cisplatin. Cell Signal 2017; 38:146-158. [DOI: 10.1016/j.cellsig.2017.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022]
|
14
|
Kalinec GM, Lomberk G, Urrutia RA, Kalinec F. Resolution of Cochlear Inflammation: Novel Target for Preventing or Ameliorating Drug-, Noise- and Age-related Hearing Loss. Front Cell Neurosci 2017; 11:192. [PMID: 28736517 PMCID: PMC5500902 DOI: 10.3389/fncel.2017.00192] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
Abstract
A significant number of studies support the idea that inflammatory responses are intimately associated with drug-, noise- and age-related hearing loss (DRHL, NRHL and ARHL). Consequently, several clinical strategies aimed at reducing auditory dysfunction by preventing inflammation are currently under intense scrutiny. Inflammation, however, is a normal adaptive response aimed at restoring tissue functionality and homeostasis after infection, tissue injury and even stress under sterile conditions, and suppressing it could have unintended negative consequences. Therefore, an appropriate approach to prevent or ameliorate DRHL, NRHL and ARHL should involve improving the resolution of the inflammatory process in the cochlea rather than inhibiting this phenomenon. The resolution of inflammation is not a passive response but rather an active, highly controlled and coordinated process. Inflammation by itself produces specialized pro-resolving mediators with critical functions, including essential fatty acid derivatives (lipoxins, resolvins, protectins and maresins), proteins and peptides such as annexin A1 and galectins, purines (adenosine), gaseous mediators (NO, H2S and CO), as well as neuromodulators like acetylcholine and netrin-1. In this review article, we describe recent advances in the understanding of the resolution phase of inflammation and highlight therapeutic strategies that might be useful in preventing inflammation-induced cochlear damage. In particular, we emphasize beneficial approaches that have been tested in pre-clinical models of inflammatory responses induced by recognized ototoxic drugs such as cisplatin and aminoglycoside antibiotics. Since these studies suggest that improving the resolution process could be useful for the prevention of inflammation-associated diseases in humans, we discuss the potential application of similar strategies to prevent or mitigate DRHL, NRHL and ARHL.
Collapse
Affiliation(s)
- Gilda M Kalinec
- Laboratory of Auditory Cell Biology, Department of Head and Neck Surgery, David Geffen School of Medicine, University of CaliforniaLos Angeles, Los Angeles, CA, United States
| | - Gwen Lomberk
- Epigenetics and Chromatin Dynamics Laboratory, Translational Epigenomic Program, Center for Individualized Medicine (CIM) Mayo ClinicRochester, MN, United States
| | - Raul A Urrutia
- Epigenetics and Chromatin Dynamics Laboratory, Translational Epigenomic Program, Center for Individualized Medicine (CIM) Mayo ClinicRochester, MN, United States
| | - Federico Kalinec
- Laboratory of Auditory Cell Biology, Department of Head and Neck Surgery, David Geffen School of Medicine, University of CaliforniaLos Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Zhu H, Luo H, Zhang W, Shen Z, Hu X, Zhu X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des Devel Ther 2016; 10:1885-1895. [PMID: 27354763 PMCID: PMC4907638 DOI: 10.2147/dddt.s106412] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients with advanced or recurrent cervical cancer have poor prognosis, and their 1-year survival is only 10%-20%. Chemotherapy is considered as the standard treatment for patients with advanced or recurrent cervical cancer, and cisplatin appears to treat the disease effectively. However, resistance to cisplatin may develop, thus substantially compromising the efficacy of cisplatin to treat advanced or recurrent cervical cancer. In this article, we systematically review the recent literature and summarize the recent advances in our understanding of the molecular mechanisms underlying cisplatin resistance in cervical cancer.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Hui Luo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Zhaojun Shen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
16
|
Abstract
Annexin A1 (ANXA1) is a Ca(2+)-regulated phospholipid-binding protein involved in various cell processes. ANXA1 was initially widely studied in inflammation resolution, but its overexpression was later reported in a large number of cancers. Further in-depth investigations have revealed that this protein could have many roles in cancer progression and act at different levels (from cancer initiation to metastasis). This is partly due to the location of ANXA1 in different cell compartments. ANXA1 can be nuclear, cytoplasmic and/or membrane associated. This last location allows ANXA1 to be proteolytically cleaved and/or to become accessible to its cognate partners, the formyl-peptide receptors. Indeed, in some cancers, ANXA1 is found at the cell surface, where it stimulates formyl-peptide receptors to trigger oncogenic pathways. In the present review, we look at the different locations of ANXA1 and their association with the deregulated pathways often observed in cancers. We have specifically detailed the non-classic pathways of ANXA1 externalization, the significance of its cleavage and the role of the ANXA1-formyl-peptide receptor complex in cancer progression.
Collapse
|
17
|
Zhang C, Peng G. Non-coding RNAs: An emerging player in DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 763:202-11. [DOI: 10.1016/j.mrrev.2014.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/02/2023]
|
18
|
Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 2014; 5:e1257. [PMID: 24874729 PMCID: PMC4047912 DOI: 10.1038/cddis.2013.428] [Citation(s) in RCA: 598] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
The platinum derivative cis-diamminedichloroplatinum(II), best known as cisplatin, is currently employed for the clinical management of patients affected by testicular, ovarian, head and neck, colorectal, bladder and lung cancers. For a long time, the antineoplastic effects of cisplatin have been fully ascribed to its ability to generate unrepairable DNA lesions, hence inducing either a permanent proliferative arrest known as cellular senescence or the mitochondrial pathway of apoptosis. Accumulating evidence now suggests that the cytostatic and cytotoxic activity of cisplatin involves both a nuclear and a cytoplasmic component. Despite the unresolved issues regarding its mechanism of action, the administration of cisplatin is generally associated with high rates of clinical responses. However, in the vast majority of cases, malignant cells exposed to cisplatin activate a multipronged adaptive response that renders them less susceptible to the antiproliferative and cytotoxic effects of the drug, and eventually resume proliferation. Thus, a large fraction of cisplatin-treated patients is destined to experience therapeutic failure and tumor recurrence. Throughout the last four decades great efforts have been devoted to the characterization of the molecular mechanisms whereby neoplastic cells progressively lose their sensitivity to cisplatin. The advent of high-content and high-throughput screening technologies has accelerated the discovery of cell-intrinsic and cell-extrinsic pathways that may be targeted to prevent or reverse cisplatin resistance in cancer patients. Still, the multifactorial and redundant nature of this phenomenon poses a significant barrier against the identification of effective chemosensitization strategies. Here, we discuss recent systems biology studies aimed at deconvoluting the complex circuitries that underpin cisplatin resistance, and how their findings might drive the development of rational approaches to tackle this clinically relevant problem.
Collapse
Affiliation(s)
- L Galluzzi
- 1] Gustave Roussy, Villejuif, France [2] Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France [3] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - I Vitale
- 1] Regina Elena National Cancer Institute, Rome, Italy [2] National Institute of Health, Rome, Italy
| | - J Michels
- 1] Gustave Roussy, Villejuif, France [2] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [3] INSERM, U848, Villejuif, France
| | - C Brenner
- 1] INSERM, UMRS 769; LabEx LERMIT, Châtenay Malabry, France [2] Faculté de Pharmacie, Université de Paris Sud/Paris XI, Châtenay Malabry, France
| | - G Szabadkai
- 1] Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK [2] Department of Biomedical Sciences, Università Degli Studi di Padova, Padova, Italy
| | - A Harel-Bellan
- 1] Laboratoire Epigenetique et Cancer, Université de Paris Sud/Paris XI, Gif-Sur-Yvette, France [2] CNRS, FRE3377, Gif-Sur-Yvette, France [3] Commissariat à l'Energie Atomique (CEA), Saclay, France
| | - M Castedo
- 1] Gustave Roussy, Villejuif, France [2] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [3] INSERM, U848, Villejuif, France
| | - G Kroemer
- 1] Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France [2] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [3] INSERM, U848, Villejuif, France [4] Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France [5] Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| |
Collapse
|
19
|
Xiao X, Yu S, Li S, Wu J, Ma R, Cao H, Zhu Y, Feng J. Exosomes: decreased sensitivity of lung cancer A549 cells to cisplatin. PLoS One 2014; 9:e89534. [PMID: 24586853 PMCID: PMC3931805 DOI: 10.1371/journal.pone.0089534] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
Exosomes are small extracellular membrane vesicles of endocytic origin released by many cells that could be found in most body fluids. The main functions of exosomes are cellular communication and cellular waste clean-up. This study was conducted to determine the involvement of exosomes in the regulation of sensitivity of the lung cancer cell line A549 to cisplatin (DDP). When DDP was added to A549 cells, exosomes secretion was strengthened. Addition of the secreted exosomes to other A549 cells increased the resistance of these A549 cells to DDP. Upon exposure of A549 to DDP, the expression levels of several miRNAs and mRNAs reportedly associated with DDP sensitivity changed significantly in exosomes; these changes may mediate the resistance of A549 cells to DDP. Exosomes released by A549 cells during DDP exposure decreased the sensitivity of other A549 cells to DDP, which may be mediated by miRNAs and mRNAs exchange by exosomes via cell-to-cell communication. Although the detailed mechanism of resistance remains unclear, we believed that inhibition of exosomes formation and release might present a novel strategy for lung cancer treatment in the future.
Collapse
Affiliation(s)
- Xia Xiao
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Shaorong Yu
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Shuchun Li
- Nanjing University of Technology, Nanjing, Jiangsu Province, China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Rong Ma
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Haixia Cao
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Yanliang Zhu
- Southeast University, Nanjing, Jiangsu Province, China
| | - Jifeng Feng
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
20
|
Siddeek B, Inoubli L, Lakhdari N, Rachel PB, Fussell KC, Schneider S, Mauduit C, Benahmed M. MicroRNAs as potential biomarkers in diseases and toxicology. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 764-765:46-57. [PMID: 24486656 DOI: 10.1016/j.mrgentox.2014.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023]
Abstract
MiRNAs (microRNAs) are single-stranded non-coding RNAs of approximately 21-23 nucleotides in length whose main function is to inhibit gene expression by interfering with mRNA processes. MicroRNAs suppress gene expression by affecting mRNA (messenger RNAs) stability, targeting the mRNA for degradation, or both. In this review, we have examined how microRNA expression could be altered following exposure to chemicals and how they could represent appropriate tissue and more interestingly circulating biomarkers. Among the key questions before using the microRNA for evaluation of risk toxicity, it remains still to clarify how they could be causally involved in the adverse effects and how stable their changes are.
Collapse
Affiliation(s)
- Bénazir Siddeek
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France; BASF Agro, Ecully F-69130, France
| | - Lilia Inoubli
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France
| | - Nadjem Lakhdari
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France
| | - Paul Bellon Rachel
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France
| | | | - Steffen Schneider
- BASF SE, experimental toxicology and ecology, 67056 Ludwigshafen, Germany
| | - Claire Mauduit
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France; Université Lyon 1, UFR Médecine Lyon Sud, Lyon, F-69921, France; Hospices Civils de Lyon, Hôpital Lyon Sud, laboratoire d'anatomie et de cytologie pathologiques, Pierre-Bénite, F-69495, France
| | - Mohamed Benahmed
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France; Centre Hospitalier Universitaire de Nice, Pôle Digestif, Gynécologie, Obstetrique, Centre de Reproduction, Nice, F-06202, France.
| |
Collapse
|
21
|
Ju L, Zhang G, Zhang X, Jia Z, Gao X, Jiang Y, Yan C, Duerksen-Hughes PJ, Chen FF, Li H, Zhu X, Yang J. Proteomic analysis of cellular response induced by multi-walled carbon nanotubes exposure in A549 cells. PLoS One 2014; 9:e84974. [PMID: 24454774 PMCID: PMC3891800 DOI: 10.1371/journal.pone.0084974] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/27/2013] [Indexed: 01/09/2023] Open
Abstract
The wide application of multi-walled carbon nanotubes (MWCNT) has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS) of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml) and short time period (24 h), MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Li Ju
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Diseases Diagnosis and Therapy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, China
- Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Guanglin Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Diseases Diagnosis and Therapy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, China
| | - Xing Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Zhenyu Jia
- Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Xiangjing Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Diseases Diagnosis and Therapy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, China
| | - Ying Jiang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Diseases Diagnosis and Therapy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, China
| | - Chunlan Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Diseases Diagnosis and Therapy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, China
| | - Penelope J. Duerksen-Hughes
- Department of Basic Science, Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Fanqing Frank Chen
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Hongjuan Li
- Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Xinqiang Zhu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, China
- * E-mail: (JY); (XZ)
| | - Jun Yang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Diseases Diagnosis and Therapy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
- * E-mail: (JY); (XZ)
| |
Collapse
|
22
|
The molecular mechanisms of antimetastatic ruthenium compounds explored through DIGE proteomics. J Inorg Biochem 2013; 118:94-9. [DOI: 10.1016/j.jinorgbio.2012.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 01/04/2023]
|
23
|
Abstract
Resistance to the cytotoxic effects of cisplatin can be mediated through changes in a wide variety of cellular processes and signalling pathways. The discovery of microRNAs as regulators of protein expression through the targeting of mRNA has led to a number of studies on the effect of cisplatin treatment on microRNA expression, and the ability of microRNAs to modulate cisplatin resistance.
Collapse
|