1
|
Sola-Sevilla N, Mesa-Lombardo A, Aleixo M, Expósito S, Diaz-Perdigón T, Azqueta A, Zamani F, Suzuki T, Maioli S, Eroli F, Matton A, Ramírez MJ, Solas M, Tordera RM, Martín ED, Puerta E. SIRT2 Inhibition Rescues Neurodegenerative Pathology but Increases Systemic Inflammation in a Transgenic Mouse Model of Alzheimer's Disease. J Neuroimmune Pharmacol 2023; 18:529-550. [PMID: 37698780 PMCID: PMC10577113 DOI: 10.1007/s11481-023-10084-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
Sirtuin 2 (SIRT2) has been proposed to have a central role on aging, inflammation, cancer and neurodegenerative diseases; however, its specific function remains controversial. Recent studies propose SIRT2 pharmacological inhibition as a therapeutic strategy for several neurodegenerative diseases including Alzheimer's disease (AD). Surprisingly, none of these published studies regarding the potential interest of SIRT2 inhibition has assessed the peripheral adverse side consequences of this treatment. In this study, we demonstrate that the specific SIRT2 inhibitor, the compound 33i, does not exhibit genotoxic or mutagenic properties. Moreover, pharmacological treatment with 33i, improved cognitive dysfunction and long-term potentiation, reducing amyloid pathology and neuroinflammation in the APP/PS1 AD mouse model. However, this treatment increased peripheral levels of the inflammatory cytokines IL-1β, TNF, IL-6 and MCP-1. Accordingly, peripheral SIRT2 inhibition with the blood brain barrier impermeable compound AGK-2, worsened the cognitive capacities and increased systemic inflammation. The analysis of human samples revealed that SIRT2 is increased in the brain but not in the serum of AD patients. These results suggest that, although SIRT2 pharmacological inhibition may have beneficial consequences in neurodegenerative diseases, its pharmacological inhibition at the periphery would not be recommended and the systemic adverse side effects should be considered. This information is essential to maximize the therapeutic potential of SIRT2 inhibition not only for AD but also for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi Sola-Sevilla
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Alberto Mesa-Lombardo
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
- Department of Anatomy, Histology and Neurosciences, Medical School, Autonoma University of Madrid, 28029, Madrid, Spain
| | - Mikel Aleixo
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Sara Expósito
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Teresa Diaz-Perdigón
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | | | | | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Eroli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Anna Matton
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Maria J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Rosa M Tordera
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain.
| |
Collapse
|
2
|
Cytotoxic evaluation of YSL-109 in a triple negative breast cancer cell line and toxicological evaluations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1211-1222. [PMID: 36694011 DOI: 10.1007/s00210-023-02396-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/26/2022] [Indexed: 01/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer-related death in women worldwide. Triple negative breast cancer (TNBC) is the most aggressive form of BC being with the worst prognosis and the worst survival rates. There is no specific pharmacological target for the treatment of TNBC; conventional therapy includes the use of non-specific chemotherapy that generally has a poor prognosis. Therefore, the search of effective therapies against to TNBC continues at both preclinical and clinical level. In this sense, the exploration of different pharmacological targets is a continue task that pave the way to epigenetic modulation using novel small molecules. Lately, the inhibition of histone deacetylases (HDACs) has been explored to treat different BC, including TNBC. HDACs remove the acetyl groups from the ɛ-amino lysine resides on histone and non-histone proteins. In particular, the inhibition of HDAC6 has been suggested to be useful for the treatment of TNBC due to it is overexpressed in TNBC. Therefore, in this work, an HDAC6 selective inhibitor, the (S)-4-butyl-N-(1-(hydroxyamino)-3-(naphthalen-1-yl)-1-oxopropan-2-yl) benzamide (YSL-109), was assayed on TNBC cell line (MDA-MB231) showing an antiproliferative activity (IC50 = 50.34 ± 1.11 µM), whereas on fibroblast, it was lesser toxic. After corroborating the in vitro antiproliferative activity of YSL-109 in TNBC, the toxicological profile was explored using combined approach with in silico tools and experimental assays. YSL-109 shows moderate mutagenic activity on TA-98 strain at 30 and 100 µM in the Ames test, whereas YSL-109 did not show in vivo genotoxicity and its oral acute toxicity (LD50) in CD-1 female mice was higher than 2000 mg/kg, which is in agreement with our in silico predictions. According to these results, YSL-109 represents an interesting compound to be explored for the treatment of TNBC under preclinical in vivo models.
Collapse
|
3
|
Li QY, Chen J, Luo YH, Zhang W, Xiao EH. Sodium Butyrate Pre-Treatment Enhance Differentiation of Bone Marrow Mesenchymal Stem Cells (BM-MSCs) into Hepatocytes and Improve Liver Injury. Curr Mol Med 2021; 22:663-674. [PMID: 34649486 DOI: 10.2174/1566524021666211014161716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The treatment of liver failure by stem cell transplantation has attracted growing interest. Herein, we aim to explore the role of sodium butyrate (NaB) in the hepatic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) under liver-specific factors induction in vitro and vivo. MATERIALS & METHODS We isolated BM-MSCs from the mononuclear cell fraction of rabbit bone marrow samples, and identified the cells by Immunophenotypic analysis. We investigated the effects of different concentrations and induction conditions. The histone deacetylase inhibitor NaB induced hepatic differentiation of BM-MSCs under liver-specific factors induction in vitro. Morphological features, liver-specific gene and protein expression, and functional analyses in vitro and vivo were performed to evaluate the hepatic differentiation of BM-MSCs. RESULTS Our results showed that pre-treated NaB inhibited the expression of liver-specific protein in a dose-dependent manner. The induction efficiency of NaB with 24h pre-treatment was higher than that of NaB continuous intervention. 0.5 mM 24h NaB pre-treated cells can improve liver tissue damage in vivo. And the liver ALB, AAT and the serum TP were significantly increased, while the serum ALT was significantly reduced. CONCLUSION Continuous NaB treatment can inhibit BM-MSCs proliferation in a dose-dependent manner at a certain concentration range. 0.5 mM 24h pre-treatment of NaB enhanced differentiation of BM-MSCs into hepatocytes and improves liver injury in vitro and vivo.
Collapse
Affiliation(s)
- Qiu-Yun Li
- Department of Radiology, Second Xiangya hospital of Central South University, Changsha, Hunan, 410011. China
| | - Juan Chen
- Department of Radiology, Second Xiangya hospital of Central South University, Changsha, Hunan, 410011. China
| | - Yong-Heng Luo
- Department of Radiology, Second Xiangya hospital of Central South University, Changsha, Hunan, 410011. China
| | - Wei Zhang
- Department of Radiology, Second people's hospital of Hunan Province, Changsha, Hunan, 410007. China
| | - En-Hua Xiao
- Department of Radiology, Second Xiangya hospital of Central South University, Changsha, Hunan, 410011. China
| |
Collapse
|
4
|
Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers (Basel) 2021; 13:634. [PMID: 33562653 PMCID: PMC7915831 DOI: 10.3390/cancers13040634] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond "classic" oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
5
|
Iveland TS, Hagen L, Sharma A, Sousa MML, Sarno A, Wollen KL, Liabakk NB, Slupphaug G. HDACi mediate UNG2 depletion, dysregulated genomic uracil and altered expression of oncoproteins and tumor suppressors in B- and T-cell lines. J Transl Med 2020; 18:159. [PMID: 32264925 PMCID: PMC7137348 DOI: 10.1186/s12967-020-02318-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HDAC inhibitors (HDACi) belong to a new group of chemotherapeutics that are increasingly used in the treatment of lymphocyte-derived malignancies, but their mechanisms of action remain poorly understood. Here we aimed to identify novel protein targets of HDACi in B- and T-lymphoma cell lines and to verify selected candidates across several mammalian cell lines. METHODS Jurkat T- and SUDHL5 B-lymphocytes were treated with the HDACi SAHA (vorinostat) prior to SILAC-based quantitative proteome analysis. Selected differentially expressed proteins were verified by targeted mass spectrometry, RT-PCR and western analysis in multiple mammalian cell lines. Genomic uracil was quantified by LC-MS/MS, cell cycle distribution analyzed by flow cytometry and class switch recombination monitored by FACS in murine CH12F3 cells. RESULTS SAHA treatment resulted in differential expression of 125 and 89 proteins in Jurkat and SUDHL5, respectively, of which 19 were commonly affected. Among these were several oncoproteins and tumor suppressors previously not reported to be affected by HDACi. Several key enzymes determining the cellular dUTP/dTTP ratio were downregulated and in both cell lines we found robust depletion of UNG2, the major glycosylase in genomic uracil sanitation. UNG2 depletion was accompanied by hyperacetylation and mediated by increased proteasomal degradation independent of cell cycle stage. UNG2 degradation appeared to be ubiquitous and was observed across several mammalian cell lines of different origin and with several HDACis. Loss of UNG2 was accompanied by 30-40% increase in genomic uracil in freely cycling HEK cells and reduced immunoglobulin class-switch recombination in murine CH12F3 cells. CONCLUSION We describe several oncoproteins and tumor suppressors previously not reported to be affected by HDACi in previous transcriptome analyses, underscoring the importance of proteome analysis to identify cellular effectors of HDACi treatment. The apparently ubiquitous depletion of UNG2 and PCLAF establishes DNA base excision repair and translesion synthesis as novel pathways affected by HDACi treatment. Dysregulated genomic uracil homeostasis may aid interpretation of HDACi effects in cancer cells and further advance studies on this class of inhibitors in the treatment of APOBEC-expressing tumors, autoimmune disease and HIV-1.
Collapse
Affiliation(s)
- Tobias S Iveland
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway.,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway.,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Kristian Lied Wollen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway. .,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway. .,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway.
| |
Collapse
|
6
|
Chen X, Gong G, Chen X, Song R, Duan M, Qiao R, Jiao Y, Qi J, Chen Y, Zhu Y. Design, Synthesis and Biological Evaluation of Novel Benzoylimidazole Derivatives as Raf and Histone Deacetylases Dual Inhibitors. Chem Pharm Bull (Tokyo) 2019; 67:1116-1122. [PMID: 31582631 DOI: 10.1248/cpb.c19-00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent studies, combinations of histone deacetylases (HDACs) inhibitor with kinase inhibitor showed additive and synergistic effects. BRafV600E as an attractive target in many diseases treatments has been studied extensively. Herein, we present a novel design approach though incorporating the pharmacophores of BRafV600E inhibitor and HDACs inhibitor in one molecule. Several synthesized compounds exhibited distinct BRafV600E and HDAC1 inhibitory activities. The representative dual Raf/HDAC inhibitor, 7a, showed better antiproliferative activities against A549 and SK-Mel-2 in cellular assay than SAHA and sorafenib, with IC50 values of 9.11 µM and 5.40 µM, respectively. This work may lay the foundation for the further development of dual Raf/HDAC inhibitors as potential anticancer agents.
Collapse
Affiliation(s)
- Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Guoliang Gong
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Xinyang Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Ruihu Song
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Mei Duan
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Ruizhi Qiao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Yu Jiao
- School of Science, China Pharmaceutical University
| | - Jianzhao Qi
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Yadong Chen
- School of Science, China Pharmaceutical University
| | - Yong Zhu
- School of Science, China Pharmaceutical University
| |
Collapse
|
7
|
Depetter Y, Geurs S, Vanden Bussche F, De Vreese R, Franceus J, Desmet T, De Wever O, D'hooghe M. Assessment of the trifluoromethyl ketone functionality as an alternative zinc-binding group for selective HDAC6 inhibition. MEDCHEMCOMM 2018; 9:1011-1016. [PMID: 30108990 PMCID: PMC6072519 DOI: 10.1039/c8md00107c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/04/2018] [Indexed: 01/23/2023]
Abstract
Recent studies point towards the possible disadvantages of using hydroxamic acid-based zinc-binding groups in HDAC inhibitors due to e.g. mutagenicity issues. In this work, we elaborated on our previously developed Tubathian series, a class of highly selective thiaheterocyclic HDAC6 inhibitors, by replacing the benzohydroxamic acid function by an alternative zinc chelator, i.e., an aromatic trifluoromethyl ketone. Unfortunately, these compounds showed a reduced potency to inhibit HDAC6 as compared to their hydroxamic acid counterparts. In agreement, the most active trifluoromethyl ketone was unable to influence the growth of SK-OV-3 ovarian cancer cells nor to alter the acetylation status of tubulin and histone H3. These data suggest that replacement of the zinc-binding hydroxamic acid function with a trifluoromethyl ketone zinc-binding moiety within reported benzohydroxamic HDAC6 inhibitors should not be considered as a standard strategy in HDAC inhibitor development.
Collapse
Affiliation(s)
- Yves Depetter
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
- Laboratory of Experimental Cancer Research , Department of Radiation Oncology and Experimental Cancer Research , Ghent University , Corneel Heymanslaan 10 , B-9000 Ghent , Belgium
- Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Silke Geurs
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
| | - Flore Vanden Bussche
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
| | - Rob De Vreese
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB) , Department of Biotechnology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB) , Department of Biotechnology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research , Department of Radiation Oncology and Experimental Cancer Research , Ghent University , Corneel Heymanslaan 10 , B-9000 Ghent , Belgium
- Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Matthias D'hooghe
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
| |
Collapse
|
8
|
Guan D, Fan K, Spence I, Matthews S. QSAR ligand dataset for modelling mutagenicity, genotoxicity, and rodent carcinogenicity. Data Brief 2018. [PMID: 29516034 PMCID: PMC5835004 DOI: 10.1016/j.dib.2018.01.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Five datasets were constructed from ligand and bioassay result data from the literature. These datasets include bioassay results from the Ames mutagenicity assay, Greenscreen GADD-45a-GFP assay, Syrian Hamster Embryo (SHE) assay, and 2 year rat carcinogenicity assay results. These datasets provide information about chemical mutagenicity, genotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Davy Guan
- Pharmacoinformatics Laboratory, Sydney Medical School, The University of Sydney, Australia
| | - Kevin Fan
- Pharmacoinformatics Laboratory, Sydney Medical School, The University of Sydney, Australia
| | - Ian Spence
- Pharmacoinformatics Laboratory, Sydney Medical School, The University of Sydney, Australia
| | - Slade Matthews
- Pharmacoinformatics Laboratory, Sydney Medical School, The University of Sydney, Australia
| |
Collapse
|
9
|
Guan D, Fan K, Spence I, Matthews S. Combining machine learning models of in vitro and in vivo bioassays improves rat carcinogenicity prediction. Regul Toxicol Pharmacol 2018; 94:8-15. [PMID: 29337192 DOI: 10.1016/j.yrtph.2018.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/18/2022]
Abstract
In vitro genotoxicity bioassays are cost-efficient methods of assessing potential carcinogens. However, many genotoxicity bioassays are inappropriate for detecting chemicals eliciting non-genotoxic mechanisms, such as tumour promotion, this necessitates the use of in vivo rodent carcinogenicity (IVRC) assays. In silico IVRC modelling could potentially address the low throughput and high cost of this assay. We aimed to develop and combine computational QSAR models of novel bioassays for the prediction of IVRC results and compare with existing software. QSAR models were generated from existing Ames (n = 6512), Syrian Hamster Embryonic (SHE, n = 410), ISSCAN rodent carcinogenicity (ISC, n = 834) and GreenScreen GADD45a-GFP (n = 1415) chemical datasets. These models mapped the molecular descriptors of each compound to their respective assay result using machine learning algorithms (adaboost, k-Nearest Neighbours, C.45 Decision Tree, Multilayer Perceptron, Random Forest). The best performing models were combined with k-Nearest Neighbours to create a cascade model for IVRC prediction. High QSAR model performance was observed from ten time 10-fold cross-validation with above 80% accuracy and 0.85 AUC for each assay dataset. The cascade model predicted rat carcinogenicity with 69.3% accuracy and 0.700 AUC. This study demonstrates the novelty of a combined approach for IVRC prediction, with higher performance than existing software.
Collapse
Affiliation(s)
- Davy Guan
- Sydney Medical School, The University of Sydney, Australia
| | - Kevin Fan
- Sydney Medical School, The University of Sydney, Australia
| | - Ian Spence
- Sydney Medical School, The University of Sydney, Australia
| | - Slade Matthews
- Sydney Medical School, The University of Sydney, Australia.
| |
Collapse
|
10
|
Shen S, Kozikowski AP. Why Hydroxamates May Not Be the Best Histone Deacetylase Inhibitors--What Some May Have Forgotten or Would Rather Forget? ChemMedChem 2015; 11:15-21. [PMID: 26603496 DOI: 10.1002/cmdc.201500486] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 12/21/2022]
Abstract
Hydroxamate-based histone deacetylase inhibitors (HDACIs) have been approved as therapeutic agents by the US Food and Drug Administration for use in oncology applications. While the potential utility of such HDACIs in other areas of medicinal chemistry is tremendous, there are significant concerns that "pan-HDAC inhibitors" may be too broadly acting and/or toxic for clinical use beyond oncology. In addition to the isozyme selectivity challenge, the potential mutagenicity of hydroxamate-containing HDAC inhibitors represents a major hindrance in their application to other therapeutic areas. Herein we report on the mutagenicity of known hydroxamates, discuss the mechanisms responsible for their genotoxicity, and review some of the current alternatives to hydroxamates. We conclude that the hydroxamate group, while providing high-potency HDACIs, is not necessarily the best zinc-binding group for HDACI drug discovery.
Collapse
Affiliation(s)
- Sida Shen
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alan P Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|