1
|
Lovinskaya A, Shalakhmetova T, Kolumbayeva S. Study of the cyto- and genotoxic activity of water from the Kapshagai reservoir (Kazakhstan) on laboratory mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104522. [PMID: 39074520 DOI: 10.1016/j.etap.2024.104522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Chemical compounds in the environment, which exhibit toxic and genotoxic activity, increase the mutational pressure on biota. This study aimed to investigate the genotoxic, mutagenic, and toxic effects of water from the Ile River and the Kapshagai Reservoir, both sites of active economic activities. Cytogenetic analysis of bone marrow from mice exposed to water samples from the Ile River and the Kapshagai Reservoir revealed a statistically significant increase in aberrant (p<0.05) and polyploid cells (p<0.01), as well as a decrease in the mitotic index (p<0.001), compared to the negative control. The water samples caused statistically significant increases in single- and double-strand DNA breaks in cells across various organs in the experimental mice compared to unexposed animals (p<0.001). These observations suggest the existence of chemical compounds within the water samples from the Kapshagai Reservoir and the Ile River, which exhibit genotoxic, mutagenic, and toxic properties.
Collapse
Affiliation(s)
- Anna Lovinskaya
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; Scientific Research Institute of Biology & Biotechnology Problems, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan.
| | - Tamara Shalakhmetova
- Scientific Research Institute of Biology & Biotechnology Problems, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; Department of Biodiversity and Bioresources, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Saule Kolumbayeva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; Scientific Research Institute of Biology & Biotechnology Problems, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
2
|
Wang X, Li N, Ma M, Han Y, Rao K. Immunotoxicity In Vitro Assays for Environmental Pollutants under Paradigm Shift in Toxicity Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:273. [PMID: 36612599 PMCID: PMC9819277 DOI: 10.3390/ijerph20010273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
With the outbreak of COVID-19, increasingly more attention has been paid to the effects of environmental factors on the immune system of organisms, because environmental pollutants may act in synergy with viruses by affecting the immunity of organisms. The immune system is a developing defense system formed by all metazoans in the course of struggling with various internal and external factors, whose damage may lead to increased susceptibility to pathogens and diseases. Due to a greater vulnerability of the immune system, immunotoxicity has the potential to be the early event of other toxic effects, and should be incorporated into environmental risk assessment. However, compared with other toxicity endpoints, e.g., genotoxicity, endocrine toxicity, or developmental toxicity, there are many challenges for the immunotoxicity test of environmental pollutants; this is due to the lack of detailed mechanisms of action and reliable assay methods. In addition, with the strong appeal for animal-free experiments, there has been a significant shift in the toxicity test paradigm, from traditional animal experiments to high-throughput in vitro assays that rely on cell lines. Therefore, there is an urgent need to build high-though put immunotoxicity test methods to screen massive environmental pollutants. This paper reviews the common methods of immunotoxicity assays, including assays for direct immunotoxicity and skin sensitization. Direct immunotoxicity mainly refers to immunosuppression, for which the assays mostly use mixed immune cells or isolated single cells from animals with obvious problems, such as high cost, complex experimental operation, strong variability and so on. Meanwhile, there have been no stable and standard cell lines targeting immune functions developed for high-throughput tests. Compared with direct immunotoxicity, skin sensitizer screening has developed relatively mature in vitro assay methods based on an adverse outcome pathway (AOP), which points out the way forward for the paradigm shift in toxicity tests. According to the experience of skin sensitizer screening, this paper proposes that we also should seek appropriate nodes and establish more complete AOPs for immunosuppression and other immune-mediated diseases. Then, effective in vitro immunotoxicity assay methods can be developed targeting key events, simultaneously coordinating the studies of the chemical immunotoxicity mechanism, and further promoting the paradigm shift in the immunotoxicity test.
Collapse
Affiliation(s)
- Xinge Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| |
Collapse
|
3
|
Xue P, Zhao Y, Zhao D, Chi M, Yin Y, Xuan Y, Wang X. Mutagenicity, health risk, and disease burden of exposure to organic micropollutants in water from a drinking water treatment plant in the Yangtze River Delta, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112421. [PMID: 34147865 DOI: 10.1016/j.ecoenv.2021.112421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
A wide variety of organic micropollutants in drinking water pose a serious threat to human health. This study was aimed to reveal the characteristics of organic micropollution profiles in water from a drinking water treatment plant (DWTP) in the Yangtze River Delta, China and investigate the mutagenicity, health risk and disease burden through mixed exposure to micropollutants in water. The presence of organic micropollutants in seven categories in organic extracts (OEs) of water from the DWTP was determined, and Ames test was conducted to test the mutagenic effect of OEs. Meanwhile, health risk of exposure to organic micropollutants in finished water through three exposure routes (ingestion, dermal absorption and inhalation) was assessed with the method proposed by U.S. EPA, and disability-adjusted life years (DALYs) were combined to estimate the disease burden of cancer based on the carcinogenic risk (CR) assessment. The results showed that 28 organic micropollutants were detected in the raw and finished water at total concentrations of 967.28 ng/L and 1073.45 ng/L, respectively, of which phthalate esters (PAEs) were the dominant category (95.79% in the raw water and 96.61% in the finished water). Although the results of the Ames test for OEs were negative and the non-carcinogenic hazard index of the organic micropollutants in the finished water was less than 1 in all age groups, the total CR was 2.17 × 10-5, higher than the negligible risk level (1.00 × 10-6). The total DALYs caused by the organic micropollutants in the finished water was 2945.59 person-years, and the average individual DALYs was 2.21 × 10-6 per person-year (ppy), which was 2.21 times the reference risk level (1.00 × 10-6 ppy) defined by the WHO. Exposure to nitrosamines (NAms) was the major contributor to the total CR (92.06%) and average individual DALYs (94.58%). This study demonstrated that despite the negative result of the mutagenicity test with TA98 and TA100 strains, the health risk of exposure to organic micropollutants in drinking water should not be neglected.
Collapse
Affiliation(s)
- Panqi Xue
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yameng Zhao
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Disease Control and Prevention of Minhang District, Shanghai 201101, China
| | - Danyang Zhao
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Meina Chi
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai 200041, China
| | - Yuanyuan Yin
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanan Xuan
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xia Wang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Zhang W, Guo C, Wang XL, Lv ZL, Fan L, Yang YY, Li X, Qi J, Zhao SL, Wang XL. Double-endpoint Genotoxicity Quantification and PAHs Characterization of Drinking Water Source alongside Polluted Yinghe River with High Tumor Mortality. Curr Med Sci 2021; 41:189-198. [PMID: 33877535 DOI: 10.1007/s11596-021-2336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/10/2021] [Indexed: 11/26/2022]
Abstract
The etiology for the high tumor mortality in heavy polluted Yinghe river basin is still unclear and polycyclic aromatic hydrocarbons (PAHs) belong to the priority pollutants in water based on the former surveillance data. In order to explore the potential genotoxicants contributing to the double-endpoint genotoxicity of polluted drinking water source, 12 groundwater and 3 surface water samples were collected from 3 villages and the nearby rivers alongside Yinghe river basin, respectively and their comprehensive genotoxicity was estimated with a bioassay group of SOS/umu test and micronucleus (MN) test (MNT). Some groundwater samples showed positive genotoxicity and all surface water samples were highly genotoxic. Eight groundwater samples showed DNA genotoxic effect with the average 4-NQO equivalent concentration (TEQ(4-NQO)) of 0.067 µg/L and 0.089 µg/L in wet and dry season, respectively. The average MN ratios of groundwater samples were 14.19‰ and 17.52‰ in wet and dry season, respectively. Groundwater samples showed different genotoxic effect among 3 villages. The total PAHs concentrations in all water samples ranged from 8.98 to 25.17 ng/L with an average of 14.97±4.85 ng/L. BaA, CHR, BkF, BaP and DBA were the main carcinogenic PAHs contributing to the genotoxicity of water samples. In conclusion, carcinogenic PAHs are possibly related to the high tumor mortality in the target area. Characterization of carcinogenic PAHs to genotoxicity of drinking water source may shed light on the etiology study for high tumor mortality in Yinghe river basin.
Collapse
Affiliation(s)
- Wei Zhang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Environment and Population Health, Beijing, 100021, China
| | - Chen Guo
- China State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiao-Li Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Zhan-Lu Lv
- China State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lin Fan
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Environment and Population Health, Beijing, 100021, China
| | - Yu-Yan Yang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Environment and Population Health, Beijing, 100021, China
| | - Xu Li
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Environment and Population Health, Beijing, 100021, China
| | - Jing Qi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Environment and Population Health, Beijing, 100021, China
| | - Shu-Li Zhao
- China National Environmental Monitoring Center, Beijing, 100012, China
| | - Xian-Liang Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Environment and Population Health, Beijing, 100021, China.
| |
Collapse
|
5
|
Zhang Y, Lu Z, Zhang Z, Shi B, Hu C, Lyu L, Zuo P, Metz J, Wang H. Heterogeneous Fenton-like reaction followed by GAC filtration improved removal efficiency of NOM and DBPs without adjusting pH. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118234] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Chai Q, Hu A, Qian Y, Ao X, Liu W, Yang H, Xie YF. A comparison of genotoxicity change in reclaimed wastewater from different disinfection processes. CHEMOSPHERE 2018; 191:335-341. [PMID: 29045934 DOI: 10.1016/j.chemosphere.2017.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Effluents before disinfection from four wastewater reclamation plants were treated with chlorine (Cl2), ozone (O3), chlorine dioxide (ClO2), medium-pressure ultraviolet (MPUV) and four different combinations of the above, to evaluate the effect of disinfection processes on the genotoxicity removal by the SOS/umu test. Results showed that the genotoxicity increased after MPUV irradiation (10-100 mJ/cm2), but declined when adopting other disinfection processes. The effectiveness of genotoxicity reduction by five chemical disinfectants was identified as: O3 > pre-ozonation with Cl2 ≈ ClO2 > combination of ClO2 and Cl2 > Cl2. The sequential combination of MPUV, Cl2 and O3 reduced the genotoxicity to a level similar to the source water. The influence of differential disinfection process varied on iodinated wastewater, which is closely related to the competitive reactions between disinfectants, iodine and dissolved organic matters. The removal of genotoxic pollutants and the formation of genotoxic disinfection by-products are the two major factors that lead to the change in genotoxicity during disinfection.
Collapse
Affiliation(s)
- Qiwan Chai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Allen Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yukun Qian
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiuwei Ao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenjun Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hongwei Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| |
Collapse
|
7
|
Jin Q, Wang H, Hu C, Chen Z, Wang X. Effects of NOM on the degradation of chloramphenicol by UV/H2O2 and the characteristics of degradation products. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Huang ZH, Li N, Rao KF, Liu CT, Huang Y, Ma M, Wang ZJ. Development of a data-processing method based on Bayesian k-means clustering to discriminate aneugens and clastogens in a high-content micronucleus assay. Hum Exp Toxicol 2017; 37:285-294. [PMID: 29233020 DOI: 10.1177/0960327117695635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Genotoxicants can be identified as aneugens and clastogens through a micronucleus (MN) assay. The current high-content screening-based MN assays usually discriminate an aneugen from a clastogen based on only one parameter, such as the MN size, intensity, or morphology, which yields low accuracies (70-84%) because each of these parameters may contribute to the results. Therefore, the development of an algorithm that can synthesize high-dimensionality data to attain comparative results is important. To improve the automation and accuracy of detection using the current parameter-based mode of action (MoA), the MN MoA signatures of 20 chemicals were systematically recruited in this study to develop an algorithm. The results of the algorithm showed very good agreement (93.58%) between the prediction and reality, indicating that the proposed algorithm is a validated analytical platform for the rapid and objective acquisition of genotoxic MoA messages.
Collapse
Affiliation(s)
- Z H Huang
- 1 State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - N Li
- 2 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - K F Rao
- 2 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - C T Liu
- 3 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Y Huang
- 4 College of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - M Ma
- 5 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,6 Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Z J Wang
- 1 State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Advanced Approaches to Model Xenobiotic Metabolism in Bacterial Genotoxicology In Vitro. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017. [PMID: 27619490 DOI: 10.1007/10_2016_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
During the past 30 years there has been considerable progress in the development of bacterial test systems for use in genotoxicity testing by the stable introduction of expression vectors (cDNAs) coding for xenobiotic-metabolizing enzymes into bacterial cells. The development not only provides insights into the mechanisms of bioactivation of xenobiotic compounds but also evaluates the roles of enzymes involved in metabolic activation or inactivation in chemical carcinogenesis. This review describes recent advances in bacterial genotoxicity assays and their future prospects, with a focus on the development and application of genetically engineering bacterial cells to incorporate some of the enzymatic activities involved in the bio-activation process of xenobiotics. Various genes have been introduced into bacterial umu tester strains encoding enzymes for genotoxic bioactivation, including bacterial nitroreductase and O-acetyltransferase, human cytochrome P450 monooxygenases, rat glutathione S-transferases, and human N-acetyltransferases and sulfotransferases. Their application has provided new tools for genotoxicity assays and for studying the role of biotransformation in chemical carcinogenesis in humans.
Collapse
|
10
|
Hori H, Hirata D, Fujii W, Oda Y. Development of a high-throughput genotoxicity assay using Umu test strains expressing human cytochrome P450s and NADPH-P450 reductase and bacterial O-acetyltransferase. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:209-216. [PMID: 28436560 DOI: 10.1002/em.22092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Umu test is one of the in vitro genotoxicity test that has been used widely. It was developed as a high-throughput test system using the 96-well microplate. We have previously constructed new umu test strains for the evaluation of genotoxicity of procarcinogenic metabolic products formed by cytochrome P450 (CYP) enzymes. In this study, a highly sensitive high-throughput genotoxicity test was developed using four umu test strains (OY1002/1A1, OY1002/1B1, OY1002/1A2, and OY1002/3A4) that express human CYPs and NADPH-P450 reductase. We found that the modified umu-microplate method was more sensitive than the conventional microplate method using strain OY1002/1A2. In addition, the new microplate method was better able to detect genotoxicity than the test tube method when the strain OY1002/1A2 was used and had similar sensitivity for the remaining three strains. When the microplate method was used, OY1002/1A2 showed stronger umuC gene expression in the presence of 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole, 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-aminofluorene, and 2-aminoanthracene compared to other strains. We also confirmed CYP1A2 expression in OY1002/1A2 in this condition. These results indicate that the microplate version of this test system can detect the genotoxicity of heterocyclic and aromatic amines with high sensitivity and can be used for high-throughput screening of potentially genotoxic compounds. Environ. Mol. Mutagen. 58:209-216, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hisako Hori
- Safety Science Institute, Suntory MONOZUKURI Expert Limited, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Daisuke Hirata
- Protein Purify Co. Ltd, Magarisawa-cho, Isesaki-city, Gunma, Japan
| | - Wataru Fujii
- Safety Science Institute, Suntory MONOZUKURI Expert Limited, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Yoshimitsu Oda
- Institute of Life and Environmental Sciences, Osaka Shin-Ai College, Tsurumi-ku, Japan
| |
Collapse
|
11
|
Sun J, Zhang R, Qin L, Zhu H, Huang Y, Xue Y, An S, Xie X, Li A. Genotoxicity and cytotoxicity reduction of the polluted urban river after ecological restoration: a field-scale study of Jialu River in northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6715-6723. [PMID: 28091988 DOI: 10.1007/s11356-016-8352-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
To further treat the reclaimed municipal wastewater and rehabilitate the aquatic ecosystem of polluted urban rivers, an 18.5-km field-scale ecological restoration project was constructed along Jialu River, a polluted urban river which receives only reclaimed municipal wastewater from Zhengzhou City without natural upland water dilution. This study investigated the potential efficiency of water quality improvement, as well as genotoxicity and cytotoxicity reduction along the ecological restoration project of this polluted urban river. Results showed that the chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) of the reclaimed municipal effluent were reduced by more than 45 and 70%, respectively, meeting the Chinese surface water environmental quality standard level IV, while the total phosphorus and metal concentrations had no significant reduction along the restoration project, and Pb concentrations in all river water samples exceeded permissible limit in drinking water set by WHO (2006) and China (GB5749-2006). The in vitro SOS/umu assay showed 4-nitroquinoline-1-oxide equivalent (4-NQO-EQ) values of reclaimed municipal wastewater of 0.69 ± 0.05 μg/L in April and 0.68 ± 0.06 μg/L in December, respectively, indicating the presence of genotoxic compounds. The results of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and hepatic cell apoptosis in zebrafish after a chorionic long-term (21 days) in vivo exposure also demonstrated that the reclaimed municipal wastewater caused significant DNA oxidative damage and cytotoxicity. After the ecological purification of 18.5-km field-scale restoration project, the genotoxicity assessed by in vitro assay was negligible, while the DNA oxidative damage and cytotoxicity in exposed fish were still significantly elevated. The mechanisms of DNA oxidative damage and cytotoxicity caused by the reclaimed municipal wastewater need further study.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Rui Zhang
- School of Resources and Environment, University of Jinan, Jinan, Shandong, 250022, China
| | - Long Qin
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Haixiao Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Yu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Yingang Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
- Changzhou Environmental Monitoring Center, Changzhou, Jiangsu, People's Republic of China
| | - Shuqing An
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Chai Q, Zhang S, Wang X, Yang H, Xie YF. Effect of bromide on the transformation and genotoxicity of octyl-dimethyl-p-aminobenzoic acid during chlorination. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:626-633. [PMID: 27887814 DOI: 10.1016/j.jhazmat.2016.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Octyl-dimethyl-p-aminobenzoic acid (ODPABA), one of the most commonly used organic UV filters, can undergo considerable transformation in water when entering into the disinfection process. The impacts of bromide on degradation kinetics, formation and speciation of transformation products, regulated disinfection by-products (DBPs) as well as genotoxicity changes during ODPABA chlorination were investigated in this study. Results indicated that the reaction of ODPABA with chlorine followed pseudo-first-order and second-order kinetics. Adding bromide noticeably enhanced the degradation rate of ODPABA, but reduced the impact of chlorine dose. Four halogenated transformation products (Cl-ODPABA, Br-ODPABA, Cl-Br-ODPABA and Br2-ODPABA) were detected by LC-MS/MS. Mono-halogenated products were stable during 24-h chlorination, while di-halogenated products constantly increased. The total yields of trihalomethanes (THMs) and haloacetic acids (HAAs) were both low, but predominated by bromine substitution at high levels of bromide. In addition, SOS/umu tests showed that genotoxicity was generated after ODPABA chlorination, which was increased at least 1.5 times in the presence of bromine. Whereas, no significant genotoxicity variation was observed following bromide concentration change.
Collapse
Affiliation(s)
- Qiwan Chai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shujuan Zhang
- International Publishing Center, China National Knowledge Infrastructure, Beijing 100192, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongwei Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| |
Collapse
|
13
|
Sun J, Wang J, Zhang R, Wei D, Long Q, Huang Y, Xie X, Li A. Comparison of different advanced treatment processes in removing endocrine disruption effects from municipal wastewater secondary effluent. CHEMOSPHERE 2017; 168:1-9. [PMID: 27771541 DOI: 10.1016/j.chemosphere.2016.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 05/25/2023]
Abstract
In this study, secondary effluent from the Wulongkou (WLK) municipal wastewater plant (Zhengzhou, China) was tested for its toxicity effects before and after five advanced treatment processes (ATPs, i.e. coagulation sedimentation, nan da magnetic polyacrylic anion exchange resin (NDMP) resin adsorption, activated carbon adsorption, ozonation and electro-adsorption). Results showed that estrogen disruption effects (EDEs) were particularly significant for the raw secondary effluent among the studied dioxin-like toxicity effect, androgenic/anti-androgenic response effect, EDEs, and genotoxicity effect. And E1, E2, and EE2 were the main endocrine disruption chemicals (EDCs) contributing to EDEs. Except coagulation sedimentation, all the other four ATPs were efficient in removing the steroid estrogens (i.e. E1, E2, and EE2), but were inefficient in the artificial EDC (i.e. DBP, OP and BPA) removal. In the ATPs treated samples, vitellogenin (VTG) in zebrafish were largely removed. However, they were still significant in comparison with the control, probably due to artificial EDCs. Therefore, finding ways to thoroughly remove EDEs and EDCs from the secondary effluent will be a new research direction in the future.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, PR China
| | - Jing Wang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan 450002, PR China
| | - Rui Zhang
- School of Resources and Environment, University of Jinan, Jinan, Shandong 250022, PR China
| | - Dongyang Wei
- South China Institute Of Environmental Sciences, Guangzhou, PR China
| | - Qin Long
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, PR China
| | - Yu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, PR China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, PR China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, PR China.
| |
Collapse
|
14
|
Han Y, Li N, Oda Y, Ma M, Rao K, Wang Z, Jin W, Hong G, Li Z, Luo Y. Evaluation of genotoxic effects of surface waters using a battery of bioassays indicating different mode of action. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:448-456. [PMID: 27517142 DOI: 10.1016/j.ecoenv.2016.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
With the burgeoning contamination of surface waters threatening human health, the genotoxic effects of surface waters have received much attention. Because mutagenic and carcinogenic compounds in water cause tumors by different mechanisms, a battery of bioassays that each indicate a different mode of action (MOA) is required to evaluate the genotoxic effects of contaminants in water samples. In this study, 15 water samples from two source water reservoirs and surrounding rivers in Shijiazhuang city of China were evaluated for genotoxic effects. Target chemical analyses of 14 genotoxic pollutants were performed according to the Environmental quality standards for surface water of China. Then, the in vitro cytokinesis-block micronucleus (CBMN) assay, based on a high-content screening technique, was used to detect the effect of chromosome damage. The SOS/umu test using strain TA1535/pSK1002 was used to detect effects on SOS repair of gene expression. Additionally, two other strains, NM2009 and NM3009, which are highly sensitive to aromatic amines and nitroarenes, respectively, were used in the SOS/umu test to avoid false negative results. In the water samples, only two of the genotoxic chemicals listed in the water standards were detected in a few samples, with concentrations that were below water quality standards. However, positive results for the CBMN assay were observed in two river samples, and positive results for the induction of umuC gene expression in TA1535/pSK1002 were observed in seven river samples. Moreover, positive results were observed for NM2009 with S9 and NM3009 without S9 in some samples that had negative results using the strain TA1535/pSK1002. Based on the results with NM2009 and NM3009, some unknown or undetected aromatic amines and nitroarenes were likely in the source water reservoirs and the surrounding rivers. Furthermore, these compounds were most likely the causative pollutants for the genotoxic effect of these water samples. Therefore, to identify causative pollutants with harmful biological effects, chemical analyses for the pollutants listed in water quality standards is not sufficient, and single-endpoint bioassays may underestimate adverse effects. Thus, a battery of bioassays based on different MOAs is required for the comprehensive detection of harmful biological effects. In conclusion, for genotoxicity screening of surface waters, the SOS/umu test system by using different strains combined with the CBMN assay was a useful approach.
Collapse
Affiliation(s)
- Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Yoshimitsu Oda
- Institute of Life and Environmental Sciences, Osaka Shin-Ai College, 6-2-28 Tsurumi, Tsurumi-Ku, Osaka 538-0053, Japan.
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Wei Jin
- Shijiazhuang Environmental Monitoring Center, Shijiazhuang 050000, PR China
| | - Gang Hong
- Shijiazhuang Environmental Monitoring Center, Shijiazhuang 050000, PR China
| | - Zhiguo Li
- Shijiazhuang Environmental Monitoring Center, Shijiazhuang 050000, PR China
| | - Yi Luo
- Shijiazhuang Environmental Monitoring Center, Shijiazhuang 050000, PR China
| |
Collapse
|
15
|
Zeng S, Huang Y, Sun F, Li D, He M. Probabilistic ecological risk assessment of effluent toxicity of a wastewater reclamation plant based on process modeling. WATER RESEARCH 2016; 100:367-376. [PMID: 27219046 DOI: 10.1016/j.watres.2016.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
The growing use of reclaimed wastewater for environmental purposes such as stream flow augmentation requires comprehensive ecological risk assessment and management. This study applied a system analysis approach, regarding a wastewater reclamation plant (WRP) and its recipient water body as a whole system, and assessed the ecological risk of the recipient water body caused by the WRP effluent. Instead of specific contaminants, two toxicity indicators, i.e. genotoxicity and estrogenicity, were selected to directly measure the biological effects of all bio-available contaminants in the reclaimed wastewater, as well as characterize the ecological risk of the recipient water. A series of physically based models were developed to simulate the toxicity indicators in a WRP through a typical reclamation process, including ultrafiltration, ozonation, and chlorination. After being validated against the field monitoring data from a full-scale WRP in Beijing, the models were applied to simulate the probability distribution of effluent toxicity of the WRP through Latin Hypercube Sampling to account for the variability of influent toxicity and operation conditions. The simulated effluent toxicity was then used to derive the predicted environmental concentration (PEC) in the recipient stream, considering the variations of the toxicity and flow of the upstream inflow as well. The ratio of the PEC of each toxicity indicator to its corresponding predicted no-effect concentration was finally used for the probabilistic ecological risk assessment. Regional sensitivity analysis was also performed with the developed models to identify the critical control variables and strategies for ecological risk management.
Collapse
Affiliation(s)
- Siyu Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yunqing Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fu Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Miao He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Zhang S, Wang X, Yang H, Xie YF. Chlorination of oxybenzone: Kinetics, transformation, disinfection byproducts formation, and genotoxicity changes. CHEMOSPHERE 2016; 154:521-527. [PMID: 27085067 DOI: 10.1016/j.chemosphere.2016.03.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/27/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
UV filters are a kind of emerging contaminant, and their transformation behavior in water treatment processes has aroused great concern. In particular, toxic products might be produced during reaction with disinfectants during the disinfection process. As one of the most widely used UV filters, oxybenzone has received significant attention, because its transformation and toxicity changes during chlorine oxidation are a concern. In our study, the reaction between oxybenzone and chlorine followed pseudo-first-order and second-order kinetics. Three transformation products were detected by LC-MS/MS, and the stability of products followed the order of tri-chloro-methoxyphenoyl > di-chlorinated oxybenzone > mono-chlorinated oxybenzone. Disinfection byproducts (DBPs) including chloroform, trichloroacetic acid, dichloroacetic acid and chloral hydrate were quickly formed, and increased at a slower rate until their concentrations remained constant. The maximum DBP/oxybenzone molar yields for the four compounds were 12.02%, 6.28%, 0.90% and 0.23%, respectively. SOS/umu genotoxicity test indicated that genotoxicity was highly elevated after chlorination, and genotoxicity showed a significantly positive correlation with the response of tri-chloro-methoxyphenoyl. Our results indicated that more genotoxic transformation products were produced in spite of the elimination of oxybenzone, posing potential threats to drinking water safety. This study shed light on the formation of DBPs and toxicity changes during the chlorination process of oxybenzone.
Collapse
Affiliation(s)
- Shujuan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongwei Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| |
Collapse
|
17
|
Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters. Sci Rep 2015; 5:9572. [PMID: 25825837 PMCID: PMC5380332 DOI: 10.1038/srep09572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/11/2015] [Indexed: 01/10/2023] Open
Abstract
A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water.
Collapse
|