1
|
Tang X, Miao Y, Cao L, Liu Y, Zhu X, Zhang J, Wang D, Li X, Zhang L, Huo J, Chen J. Adverse outcome pathway exploration of furan-induced liver fibrosis in rats: Genotoxicity pathway or oxidative stress pathway through CYP2E1 activation? CHEMOSPHERE 2023; 341:139998. [PMID: 37657698 DOI: 10.1016/j.chemosphere.2023.139998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Furan is a widespread endogenous contaminant in heat-processed foods that can accumulate rapidly in the food chain and has been widely detected in foods, such as wheat, bread, coffee, canned meat products, and baby food. Dietary exposure to this chemical may bring health risk. Furan is classified as a possible category 2B human carcinogen by the International Agency for Research on Cancer, with the liver as its primary target organ. Hepatic fibrosis is the most important nontumoral harmful effect of furan and also an important event in the carcinogenesis of furan. Although the specific mechanism of furan-induced liver fibrosis is still unclear, it may involve oxidative stress and genetic toxicity, in which the activation of cytochrome P450 2E1 (CYP2E1) may be the key event. Thus, we conducted a study using an integrating multi-endpoint genotoxicity platform in 120-day in vivo subchronic toxicity test in rats. Results showed that the rats with activated CYP2E1 exhibited DNA double-strand breaks in D4, gene mutations in D60, and increased expression of reactive oxygen species and nuclear factor erythroid 2-related factor 2 in D120. Necrosis, apoptosis, hepatic stellate cell activation, and fibrosis also occurred in the liver, suggesting that furan can independently affect liver fibrosis through oxidative stress and genotoxicity pathways. Point of Departure (PoD) was obtained by benchmark-dose (BMD) method to establish health-based guidance values. The human equivalent dose of PoD derived from BMDL05 was 2.26 μg/kg bw/d. The findings laid a foundation for the safety evaluation and risk assessment of furan and provided data for the further construction and improvement of the adverse outcome pathway network in liver fibrosis.
Collapse
Affiliation(s)
- Xinyao Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yeqiu Miao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Li Cao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yufei Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xia Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Dongxia Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xiaomeng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jiao Huo
- Department of Nutrition and Food Safety, Chongqing Center for Disease Control and Prevention, Chongqing, China.
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Zhang Y, Zhang Y. A comprehensive review of furan in foods: From dietary exposures and in vivo metabolism to mitigation measures. Compr Rev Food Sci Food Saf 2023; 22:809-841. [PMID: 36541202 DOI: 10.1111/1541-4337.13092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Furan is a thermal food processing contaminant that is ubiquitous in various food products such as coffee, canned and jarred foods, and cereals. A comprehensive summary of research progress on furan is presented in this review, including discussion of (i) formation pathways, (ii) occurrence and dietary exposures, (iii) analytical techniques, (iv) toxicities, (v) metabolism and metabolites, (vi) risk assessment, (vii) potential biomarkers, and (viii) mitigation measures. Dietary exposure to furan varies among different countries and age groups. Furan acts through various toxicological pathways mediated by its primary metabolite, cis-2-butene-1,4-dial (BDA). BDA can readily react with glutathione, amino acids, biogenic amines, or nucleotides to form corresponding metabolites, some of which have been proposed as potential biomarkers of exposure to furan. Present risk assessment of furan mainly employed the margin of exposure approach. Given the widespread occurrence of furan in foods and its harmful health effects, mitigating furan levels in foods or exploring potential dietary supplements to protect against furan toxicity is necessary for the benefit of food safety and public health.
Collapse
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Vevang KR, Zhang L, Grill AE, Hatsukami DK, Meier E, Nomura SO, Robien K, Peterson LA. Furan Metabolites Are Elevated in Users of Various Tobacco Products and Cannabis. Chem Res Toxicol 2023; 36:157-161. [PMID: 36716352 PMCID: PMC10035786 DOI: 10.1021/acs.chemrestox.2c00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Humans are exposed to furan, a toxicant and possible human carcinogen, through multiple sources including diet and tobacco smoke. The urinary metabolites of furan are derived from the reaction of its toxic metabolite with protein nucleophiles and are biomarkers of exposure and potential harm. An established isotopic dilution liquid-chromatography mass spectrometry method was used to measure these biomarkers in urine from users of e-cigarettes, cannabis, and/or combustible tobacco with/without reduced nicotine levels. Amounts of furan mercapturic acid metabolites were higher in these individuals relative to nonsmokers, indicating that they may be at risk for potential furan-derived toxicities.
Collapse
Affiliation(s)
- Karin R. Vevang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lin Zhang
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alex E. Grill
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Dorothy K. Hatsukami
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN,55455, USA
| | - Ellen Meier
- Department of Psychology, University of Wisconsin-Stevens Point, Stevens Point, WI, USA
| | - Sarah Oppeneer Nomura
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kim Robien
- Department of Exercise and Nutrition Sciences, George Washington University, Washington, DC 20052, USA
| | - Lisa A. Peterson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
4
|
Russo MT, De Luca G, Palma N, Leopardi P, Degan P, Cinelli S, Pepe G, Mosesso P, Di Carlo E, Sorrentino C, Musiani P, Crebelli R, Bignami M, Dogliotti E. Oxidative Stress, Mutations and Chromosomal Aberrations Induced by In Vitro and In Vivo Exposure to Furan. Int J Mol Sci 2021; 22:9687. [PMID: 34575853 PMCID: PMC8465244 DOI: 10.3390/ijms22189687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 11/17/2022] Open
Abstract
Furan is a volatile compound that is formed in foods during thermal processing. It is classified as a possible human carcinogen by international authorities based on sufficient evidence of carcinogenicity from studies in experimental animals. Although a vast number of studies both in vitro and in vivo have been performed to investigate furan genotoxicity, the results are inconsistent, and its carcinogenic mode of action remains to be clarified. Here, we address the mutagenic and clastogenic activity of furan and its prime reactive metabolite cis-2 butene-1,4-dial (BDA) in mammalian cells in culture and in mouse animal models in a search for DNA lesions responsible of these effects. To this aim, Fanconi anemia-derived human cell lines defective in the repair of DNA inter-strand crosslinks (ICLs) and Ogg1-/- mice defective in the removal of 8-hydroxyguanine from DNA, were used. We show that both furan and BDA present a weak (if any) mutagenic activity but are clear inducers of clastogenic damage. ICLs are strongly indicated as key lesions for chromosomal damage whereas oxidized base lesions are unlikely to play a critical role.
Collapse
Affiliation(s)
- Maria Teresa Russo
- National Centre for Chemical Products, Cosmetics and Consumer Protection, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Gabriele De Luca
- Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Nieves Palma
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| | - Paola Leopardi
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| | - Paolo Degan
- IRCCS AOU San Martino, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy;
| | - Serena Cinelli
- European Research Biology Center, Via Tito Speri 12/14, Pomezia, 00071 Rome, Italy;
| | - Gaetano Pepe
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (G.P.); (P.M.)
| | - Pasquale Mosesso
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (G.P.); (P.M.)
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy; (E.D.C.); (C.S.)
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy; (E.D.C.); (C.S.)
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy
| | - Piero Musiani
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy; (E.D.C.); (C.S.)
| | - Riccardo Crebelli
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| |
Collapse
|
5
|
Owumi SE, Bello SA, Idowu TB, Arunsi UO, Oyelere AK. Protocatechuic acid protects against hepatorenal toxicities in rats exposed to Furan. Drug Chem Toxicol 2021; 45:1840-1850. [PMID: 33645375 DOI: 10.1080/01480545.2021.1890109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Furan formed in processed food is hepatotoxic and likely carcinogenic in humans. We investigated protocatechuic acid (PCA) protective role in rats' hepatorenal function treated with furan. Rats were grouped and treated as follows: Control, PCA (50 mg/kg), furan alone (8 mg/kg), furan + PCA1 (25 + 8 mg/kg), and furan + PCA2 (50 + 8 mg/kg). Upon sacrifice, evaluation of hepatorenal function, oxidative stress status, reactive oxygen and nitrogen species (RONS), lipid peroxidation (LPO), myeloperoxidase (MPO) activity, among nitric oxide (NO) levels were performed. Cytokine levels (IL-10, IL-1ß, TNF-alpha), Caspase 3 and 9 activities, and histopathological examination were also assessed. We found that the final body and relative liver weights changed significantly (p < 0.05) in treated groups. Hepatic transaminases, urea, and creatinine increased (p < 0.05) in furan only treated group, and reduced in PCA co-treated groups. The furan-induced decrease in antioxidant status increased RONS, and LPO levels were alleviated (p < 0.05) by PCA co-treatment. Furthermore, furan-mediated increase in NO, IL-1ß, TNF-alpha levels, MPO, Cas-3, and 9 activities and suppressed IL-10 levels was reversed accordingly in rats' kidney and liver co-treated with PCA. The extent of furan-mediated hepatorenal lesions was lessened in PCA co-treated rats. Our findings suggest that PCA protects against oxido-inflammatory pathways, enhanced caspases 3 and 9 activations induced by furan in rat hepatorenal system.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Samuel A Bello
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Temitope B Idowu
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
6
|
Cordelli E, Bignami M, Pacchierotti F. Comet assay: a versatile but complex tool in genotoxicity testing. Toxicol Res (Camb) 2021; 10:68-78. [PMID: 33613974 PMCID: PMC7885189 DOI: 10.1093/toxres/tfaa093] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The comet assay is a versatile method for measuring DNA strand breaks in individual cells. It can also be applied to cells isolated from treated animals. In this review, we highlight advantages and limitations of this in vivo comet assay in a regulatory context. Modified versions of the standard protocol detect oxidized DNA bases and may be used to reveal sites of DNA base loss, DNA interstrand crosslinks, and the extent of DNA damage induced indirectly by reactive oxygen species elicited by chemical-induced oxidative stress. The assay is, however, at best semi-quantitative, and we discuss possible approaches to improving DNA damage quantitation and highlight the necessity of optimizing protocol standardization to enhance the comparability of results between laboratories. As a genotoxicity test in vivo, the in vivo comet assay has the advantage over the better established micronucleus erythrocyte test that it can be applied to any organ, including those that are specific targets of chemical carcinogens or those that are the first sites of contact of ingested or inhaled mutagens. We illustrate this by examples of its use in risk assessment for the food contaminants ochratoxin and furan. We suggest that improved quantitation is required to reveal the full potential of the comet assay and enhance its role in the battery of in vivo approaches to characterize the mechanisms of toxicity and carcinogenicity of chemicals and to aid the determination of safe human exposure limits.
Collapse
Affiliation(s)
- Eugenia Cordelli
- Territorial and Production Systems Sustainability Department, Health Protection Technology Division, ENEA, CR Casaccia, Via Anguillarese 301, Rome 00123, Italy
| | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Francesca Pacchierotti
- Territorial and Production Systems Sustainability Department, Health Protection Technology Division, ENEA, CR Casaccia, Via Anguillarese 301, Rome 00123, Italy
| |
Collapse
|
7
|
Kassem NOF, Peterson LA, Liles S, Kassem NO, Zaki FK, Lui KJ, Vevang KR, Dodder NG, Hoh E, Hovell MF. Urinary metabolites of furan in waterpipe tobacco smokers compared to non-smokers in home settings in the US. Toxicol Lett 2020; 333:202-210. [PMID: 32814080 PMCID: PMC10883161 DOI: 10.1016/j.toxlet.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Determine uptake of furan, a potential human carcinogen, in waterpipe tobacco (WPT) smokers in home settings. METHODS We analysed data from a US convenience sample of 50 exclusive WPT smokers, mean age 25.3 years, and 25 non-smokers, mean age 25.5 years. For WPT smokers, data were collected at a home visit by research assistants during which participants smoked one WPT head of one brand for a mean of 33.1 min in their homes. Research assistants provided and prepared a WP for participants by weighing and loading 10 g of WPT in the WP head. At the completion of the smoking session, research assistants measured the remaining WPT. Cotinine and six furan metabolites were quantified in first morning urine samples provided on 2 consecutive days for non-smokers, and on the morning of a WPT smoking session and on the following morning for smokers. RESULTS WPT smokers consumed a mean of 2.99 g WPT. In WPT smokers, urinary cotinine levels increased significantly 26.1 times the following morning; however, urinary metabolites of furan did not increase significantly. Compared to non-smokers, 2 furan metabolites, N-acetyl-S-[1-(5-acetylamino-5-carboxylpentyl)-1H-pyrrol-3-yl]-L-cysteine and N-acetyl-S-[1-(5-amino-5-carboxypentyl)-1H-pyrrol-3-yl]-L-cysteine sulfoxide, were significantly higher in WPT smokers in pre and in post WPT smoking levels. CONCLUSIONS To enable a more rigorous assessment of furan exposure from WPT smoking, future research should determine furan concentrations in WPT smoke, quantify furan metabolites from users of various WPT brands; and extend the investigation to social settings where WPT smoking is habitually practiced.
Collapse
Affiliation(s)
- Nada O F Kassem
- Center for Behavioral Epidemiology and Community Health (CBEACH), Hookah Tobacco Studies Division, San Diego State University Research Foundation, San Diego, CA, 92123, United States.
| | - Lisa A Peterson
- Division of Environmental Health Sciences and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Sandy Liles
- Center for Behavioral Epidemiology and Community Health (CBEACH), Hookah Tobacco Studies Division, San Diego State University Research Foundation, San Diego, CA, 92123, United States
| | - Noura O Kassem
- Center for Behavioral Epidemiology and Community Health (CBEACH), Hookah Tobacco Studies Division, San Diego State University Research Foundation, San Diego, CA, 92123, United States
| | - Flora K Zaki
- Center for Behavioral Epidemiology and Community Health (CBEACH), Hookah Tobacco Studies Division, San Diego State University Research Foundation, San Diego, CA, 92123, United States
| | - Kung-Jong Lui
- San Diego State University Research Foundation, 5250 Campanile Dr., San Diego, CA 92182, United States
| | - Karin R Vevang
- Division of Environmental Health Sciences and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Nathan G Dodder
- San Diego State University Research Foundation, 5250 Campanile Dr., San Diego, CA 92182, United States
| | - Eunha Hoh
- School of Public Health, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, United States
| | - Melbourne F Hovell
- Center for Behavioral Epidemiology and Community Health (CBEACH), Hookah Tobacco Studies Division, San Diego State University Research Foundation, San Diego, CA, 92123, United States
| |
Collapse
|
8
|
Protocatechuic acid modulates reproductive dysfunction linked to furan exposure in rats. Toxicology 2020; 442:152556. [DOI: 10.1016/j.tox.2020.152556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
|
9
|
Batool Z, Xu D, Zhang X, Li X, Li Y, Chen Z, Li B, Li L. A review on furan: Formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods. Crit Rev Food Sci Nutr 2020; 61:395-406. [PMID: 32146825 DOI: 10.1080/10408398.2020.1734532] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Furan (C4H4O) is a volatile, heterocyclic and carcinogenic heterocyclic chemical compound occurring in a wide range of thermally processed foods. Several studies have been conducted to analyze the formation conditions, triggering furan formation via model systems. Furan can be encountered via various pathways including thermal degradation, oxidation of polyunsaturated fatty acids, thermal rearrangement of carbohydrates in the presence of amino acids, thermal degradation of certain amino acids. Furan has been proven to cause cancer in experimental animal models and classified as a possible human carcinogen by International agency for research on cancer based on sufficient evidences. Thus, different strategies should be developed to reduce furan contents in commercially available food stuffs while food processing. This review summarizes some current evidences of furan formation from different precursors, analytical methods for its detection, and its toxicity that might lead to carcinogenicity and genotoxicity with human risk assessment. In addition, furan occurrence in different thermally processed foods entailed by several recent studies as well as furan mitigation strategies during food processing have also been illustrated in this review.
Collapse
Affiliation(s)
- Zahra Batool
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dan Xu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xia Zhang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoxi Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yuting Li
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Zhiyi Chen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lin Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
10
|
Tăbăran AF, O’Sullivan MG, Seabloom DE, Vevang KR, Smith WE, Wiedmann TS, Peterson LA. Inhaled Furan Selectively Damages Club Cells in Lungs of A/J Mice. Toxicol Pathol 2019; 47:842-850. [PMID: 31426723 PMCID: PMC6814549 DOI: 10.1177/0192623319869306] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Furan, a possible human carcinogen, is a product of incomplete combustion and is present in cigarette smoke, engine exhaust, and processed food. Oral administration induces liver toxicity and carcinogenesis in F344 rats and B6C3F1 mice. To assess possible adverse effects from inhalation, A/J mice were nose-only exposed for 3 hours to furan (0, 30, 75, 150, 300, or 600 ppmv) and euthanized after 24 hours, 48 hours, or 1 week. Histopathology evaluation revealed bronchiolar club cell necrosis (diffuse, marked) with airway denudation following exposure to 300 and 600 ppmv furan with evidence of club cell regeneration and partial repair after 1 week. Initial signs of hepatotoxicity were observed in the 150 ppmv furan-exposed group. Acute necrosis and mineralization were observed in livers at 24 and 48 hours with hepatocyte regeneration by 1-week postexposure in mice exposed to 300 and 600 ppmv furan; the 300 ppmv exposed group had multifocal mineralization that evoked a mild granulomatous response. Measurement of urinary furan metabolites confirmed that the mice metabolized furan to the toxic intermediate, cis-2-butene-1,4-dial. These observations indicate that inhaled furan is toxic to lungs with club cells as the target as well as liver.
Collapse
Affiliation(s)
- Alexandru-Flaviu Tăbăran
- College of Veterinary Medicine, University of Minnesota,
St. Paul, Minnesota, USA
- Comparative Pathology Shared Resource, Masonic Cancer
Center, University of Minnesota, St. Paul, Minnesota, USA
| | - M. Gerard O’Sullivan
- College of Veterinary Medicine, University of Minnesota,
St. Paul, Minnesota, USA
- Comparative Pathology Shared Resource, Masonic Cancer
Center, University of Minnesota, St. Paul, Minnesota, USA
| | - Donna E. Seabloom
- AeroCore Testing Service, Department of Otolaryngology,
University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota,
Minneapolis, Minnesota, USA
| | - Karin R. Vevang
- Masonic Cancer Center, University of Minnesota,
Minneapolis, Minnesota, USA
| | - William E. Smith
- Masonic Cancer Center, University of Minnesota,
Minneapolis, Minnesota, USA
| | - Timothy S. Wiedmann
- Department of Pharmaceutics, University of Minnesota,
Minneapolis, Minnesota, USA
| | - Lisa A. Peterson
- Masonic Cancer Center, University of Minnesota,
Minneapolis, Minnesota, USA
- Division of Environmental Health Sciences, University of
Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Alizadeh M, Barati M, Saleh-Ghadimi S, Roshanravan N, Zeinalian R, Jabbari M. Industrial furan and its biological effects on the body systems. J Food Biochem 2018. [DOI: 10.1111/jfbc.12597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mohammad Alizadeh
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | - Meisam Barati
- Faculty of Nutrition and Food Sciences, Student Research Committee, Cellular and Molecular Nutrition Department; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Sevda Saleh-Ghadimi
- Student Research Committee, Talented Student Office; Tabriz University of Medical Sciences; Tabriz Iran
| | - Neda Roshanravan
- Cardiovascular Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Reihaneh Zeinalian
- Student Research Committee, Talented Student Office; Tabriz University of Medical Sciences; Tabriz Iran
| | - Masoumeh Jabbari
- Student Research Committee, Talented Student Office; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
12
|
Abstract
A number of transgenic animal models and mutation detection systems have been developed for mutagenicity testing of carcinogens in mammalian cells. Of these, transgenic mice and the Lambda (λ) Select cII Mutation Detection System have been employed for mutagenicity experiments by many research groups worldwide. Here, we describe a detailed protocol for the Lambda Select cII mutation assay, which can be applied to cultured cells of transgenic mice/rats or the corresponding animals treated with a chemical/physical agent of interest. The protocol consists of the following steps: (1) isolation of genomic DNA from the cells or organs/tissues of transgenic animals treated in vitro or in vivo, respectively, with a test compound; (2) recovery of the lambda shuttle vector carrying a mutational reporter gene (i.e., cII transgene) from the genomic DNA; (3) packaging of the rescued vectors into infectious bacteriophages; (4) infecting a host bacteria and culturing under selective conditions to allow propagation of the induced cII mutations; and (5) scoring the cII-mutants and DNA sequence analysis to determine the cII mutant frequency and mutation spectrum, respectively.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California;
| | - Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California
| |
Collapse
|
13
|
Rietjens IMCM, Dussort P, Günther H, Hanlon P, Honda H, Mally A, O'Hagan S, Scholz G, Seidel A, Swenberg J, Teeguarden J, Eisenbrand G. Exposure assessment of process-related contaminants in food by biomarker monitoring. Arch Toxicol 2018; 92:15-40. [PMID: 29302712 PMCID: PMC5773647 DOI: 10.1007/s00204-017-2143-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022]
Abstract
Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.
Collapse
Affiliation(s)
- Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - P Dussort
- International Life Sciences Institute, Europe (ILSI Europe), Av E. Mounier 83, Box 6, 1200, Brussels, Belgium.
| | - Helmut Günther
- Mondelēz International, Postfach 10 78 40, 28078, Bremen, Germany
| | - Paul Hanlon
- Abbott Nutrition, 3300 Stelzer Road, Dept. 104070, Bldg. RP3-2, Columbus, OH, 43219, USA
| | - Hiroshi Honda
- KAO Corporation, R&D Safety Science Research, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321 3497, Japan
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - Sue O'Hagan
- PepsiCo Europe, 4 Leycroft Road, Leicester, LE4 1ET, UK
| | - Gabriele Scholz
- Nestlé Research Center, Vers-chez-les-Blanc, PO Box 44, 1000, Lausanne 26, Switzerland
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens Prof. Dr. Gernot Grimmer-Foundation, Lurup 4, 22927, Grosshansdorf, Germany
| | - James Swenberg
- Environmental Science and Engineering, UNC-Chapel Hill Cancer Genetics, 253c Rosenau Hall, Chapel Hill, NC, USA
| | - Justin Teeguarden
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Gerhard Eisenbrand
- Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, P.O. Box 3049, 67653, Kaiserslautern, Germany
| |
Collapse
|
14
|
de Conti A, Beland FA, Pogribny IP. The role of epigenomic alterations in furan-induced hepatobiliary pathologies. Food Chem Toxicol 2017; 109:677-682. [DOI: 10.1016/j.fct.2017.07.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023]
|
15
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Chipman K, De Meulenaer B, Dinovi M, Mennes W, Schlatter J, Schrenk D, Baert K, Dujardin B, Wallace H. Risks for public health related to the presence of furan and methylfurans in food. EFSA J 2017; 15:e05005. [PMID: 32625300 PMCID: PMC7009982 DOI: 10.2903/j.efsa.2017.5005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risk to human health of the presence of furan and methylfurans (2-methylfuran, 3-methylfuran and 2,5-dimethylfuran) in food. They are formed in foods during thermal processing and can co-occur. Furans are produced from several precursors such as ascorbic acid, amino acids, carbohydrates, unsaturated fatty acids and carotenoids, and are found in a variety of foods including coffee and canned and jarred foods. Regarding furan occurrence, 17,056 analytical results were used in the evaluation. No occurrence data were received on methylfurans. The highest exposures to furan were estimated for infants, mainly from ready-to-eat meals. Grains and grain-based products contribute most for toddlers, other children and adolescents. In adults, elderly and very elderly, coffee is the main contributor to dietary exposure. Furan is absorbed from the gastrointestinal tract and is found in highest amounts in the liver. It has a short half-life and is metabolised by cytochrome P450 2E1 (CYP2E1) to the reactive metabolite, cis-but-2-ene-1,4-dialdehyde (BDA). BDA can bind covalently to amino acids, proteins and DNA. Furan is hepatotoxic in rats and mice with cholangiofibrosis in rats and hepatocellular adenomas/carcinomas in mice being the most prominent effects. There is limited evidence of chromosomal damage in vivo and a lack of understanding of the underlying mechanism. Clear evidence for indirect mechanisms involved in carcinogenesis include oxidative stress, gene expression alterations, epigenetic changes, inflammation and increased cell proliferation. The CONTAM Panel used a margin of exposure (MOE) approach for the risk characterisation using as a reference point a benchmark dose lower confidence limit for a benchmark response of 10% of 0.064 mg/kg body weight (bw) per day for the incidence of cholangiofibrosis in the rat. The calculated MOEs indicate a health concern. This conclusion was supported by the calculated MOEs for the neoplastic effects.
Collapse
|
16
|
de Conti A, Tryndyak V, Doerge DR, Beland FA, Pogribny IP. Irreversible down-regulation of miR-375 in the livers of Fischer 344 rats after chronic furan exposure. Food Chem Toxicol 2016; 98:2-10. [DOI: 10.1016/j.fct.2016.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 02/09/2023]
|
17
|
Tryndyak V, de Conti A, Doerge DR, Olson GR, Beland FA, Pogribny IP. Furan-induced transcriptomic and gene-specific DNA methylation changes in the livers of Fischer 344 rats in a 2-year carcinogenicity study. Arch Toxicol 2016; 91:1233-1243. [PMID: 27387713 DOI: 10.1007/s00204-016-1786-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023]
Abstract
Furan is a significant food contaminant and a potent hepatotoxicant and rodent liver carcinogen. The carcinogenic effect of furan has been attributed to genotoxic and non-genotoxic, including epigenetic, changes in the liver; however, the mechanisms of the furan-induced liver tumorigenicity are still unclear. The goal of the present study was to investigate the role of transcriptomic and epigenetic events in the development of hepatic lesions in Fischer (F344) rats induced by furan treatment in a classic 2-year rodent tumorigenicity bioassay. High-throughput whole-genome transcriptomic analysis demonstrated distinct alterations in gene expression in liver lesions induced in male F344 rats treated with 0.92 or 2.0 mg furan/kg body weight (bw)/day for 104 weeks. Compared to normal liver tissue, 1336 and 1541 genes were found to be differentially expressed in liver lesions in rats treated with 0.92 and 2.0 mg furan/kg bw/day, respectively, among which 1001 transcripts were differentially expressed at both doses. Pairing transcriptomic and next-generation bisulfite sequencing analyses of the common differentially expressed genes identified 42 CpG island-containing genes in which the methylation level was correlated inversely with gene expression. Forty-eight percent of these genes (20 genes, including Areg, Jag1, and Foxe1) that exhibited the most significant methylation and gene expression changes were involved in key pathways associated with different aspects of liver pathology. Our findings illustrate that gene-specific DNA methylation changes have functional consequences and may be an important component of furan hepatotoxicity and hepatocarcinogenicity.
Collapse
Affiliation(s)
- Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA
| | - Greg R Olson
- Toxicologic Pathology Associates, National Center for Toxicological Research (NCTR), Jefferson, AR, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA.
| |
Collapse
|
18
|
El-Akabawy G, El-Sherif NM. Protective role of garlic oil against oxidative damage induced by furan exposure from weaning through adulthood in adult rat testis. Acta Histochem 2016; 118:456-63. [PMID: 27130490 DOI: 10.1016/j.acthis.2016.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
Abstract
Furan is produced in a wide variety of heat-treated foods via thermal degradation. Furan contamination is found to be relatively high in processed baby foods, cereal products, fruits juices, and canned vegetables. Several studies have demonstrated that furan is a potent hepatotoxin and hepatocarcinogen in rodents. However, few studies have investigated the toxic effects of furan in the testis. In addition, the exact mechanism(s) by which furan exerts toxicity in the testis has not been fully elucidated. In this study, we investigated the potential of furan exposure from weaning through adulthood to induce oxidative stress in adult rat testis, as well as the potential of garlic oil (GO) to ameliorate the induced toxicity. Our results reveal that furan administration significantly reduced serum testosterone levels and increased the levels of malondialdehyde (MDA); furthermore, furan administration decreased significantly the enzymatic activity of testicular antioxidants, including glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) and induced histopathological alterations in the testis. GO co-administration ameliorated the reduction in testosterone levels and dramatically attenuated the furan-induced oxidative and histopathological changes. In addition, Go significantly down-regulated the increased caspase-3 and cytochrome P450 2E1 (CYP2E1) expression in the furan-treated testis. To the best of our knowledge, this study is the first to demonstrate the furan-induced oxidative changes in the adult rat testis and the protective role of GO to ameliorate these changes through its antioxidant effects and its ability to inhibit CYP2E1 production.
Collapse
|
19
|
London BK, Claville MOF, Babu S, Fronczek FR, Uppu RM. A co-crystal of nona-hydrated disodium(II) with mixed anions from m-chloro-benzoic acid and furosemide. Acta Crystallogr E Crystallogr Commun 2015; 71:1266-9. [PMID: 26594422 PMCID: PMC4647361 DOI: 10.1107/s2056989015017430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/17/2015] [Indexed: 11/11/2022]
Abstract
In the title compound, [Na2(H2O)9](C7H4ClO2)(C12H10ClN2O5S) {systematic name: catena-poly[[[triaquasodium(I)]-di-μ-aqua-[triaquasodium(I)]-μ-aqua] 3-chlorobenzoate 4-chloro-2-[(furan-2-ylmethyl)amino]-5-sulfamoylbenzoate]}, both the original m-chloro-benzoic acid and furosemide exist with deprotonated carboxyl-ates, and the sodium cations and water mol-ecules exist in chains with stoichiometry [Na2(OH2)9](2+) that propagate in the [-110] direction. Each of the two independent Na(+) ions is coordinated by three monodentate water mol-ecules, two double-water bridges, and one single-water bridge. There is considerable cross-linking between the [Na2(OH2)9](2+) chains and to furosemide sulfonamide and carboxyl-ate by inter-molecular O-H⋯O hydrogen bonds. All hydrogen-bond donors participate in a complex two-dimensional array parallel to the ab plane. The furosemide NH group donates an intra-molecular hydrogen bond to the carboxyl-ate group, and the furosemide NH2 group donates an intra-molecular hydrogen bond to the Cl atom and an inter-molecular one to the m-chloro-benzoate O atom. The plethora of hydrogen-bond donors on the cation/water chain leads to many large rings, up to graph set R 4 (4)(24), involving two chains and two furosemide anions. The chloro-benzoate is involved in only one R 2 (2)(8) ring, with two water mol-ecules cis-coordinated to Na. The furan O atom is not hydrogen bonded.
Collapse
Affiliation(s)
- Bianca King London
- Environmental Toxicology PhD Program and the Health Research Center, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | | | - Sainath Babu
- School of Science, Hampton University, Hampton, VA 23668, USA
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
| | - Rao M. Uppu
- Environmental Toxicology PhD Program and the Health Research Center, Southern University and A&M College, Baton Rouge, LA 70813, USA
| |
Collapse
|
20
|
Grill AE, Schmitt T, Gates LA, Lu D, Bandyopadhyay D, Yuan JM, Murphy SE, Peterson LA. Abundant Rodent Furan-Derived Urinary Metabolites Are Associated with Tobacco Smoke Exposure in Humans. Chem Res Toxicol 2015; 28:1508-16. [PMID: 26114498 PMCID: PMC5473163 DOI: 10.1021/acs.chemrestox.5b00189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Furan, a possible human carcinogen, is found in heat treated foods and tobacco smoke. Previous studies have shown that humans are capable of converting furan to its reactive metabolite, cis-2-butene-1,4-dial (BDA), and therefore may be susceptible to furan toxicity. Human risk assessment of furan exposure has been stymied because of the lack of mechanism-based exposure biomarkers. Therefore, a sensitive LC-MS/MS assay for six furan metabolites was applied to measure their levels in urine from furan-exposed rodents as well as in human urine from smokers and nonsmokers. The metabolites that result from direct reaction of BDA with lysine (BDA-N(α)-acetyllysine) and from cysteine-BDA-lysine cross-links (N-acetylcysteine-BDA-lysine, N-acetylcysteine-BDA-N(α)-acetyllysine, and their sulfoxides) were targeted in this study. Five of the six metabolites were identified in urine from rodents treated with furan by gavage. BDA-N(α)-acetyllysine, N-acetylcysteine-BDA-lysine, and its sulfoxide were detected in most human urine samples from three different groups. The levels of N-acetylcysteine-BDA-lysine sulfoxide were more than 10 times higher than that of the corresponding sulfide in many samples. The amount of this metabolite was higher in smokers relative to that in nonsmokers and was significantly reduced following smoking cessation. Our results indicate a strong relationship between BDA-derived metabolites and smoking. Future studies will determine if levels of these biomarkers are associated with adverse health effects in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lisa A. Peterson
- To whom correspondence should be addressed: Lisa Peterson, University of Minnesota, Cancer and Cardiovascular Research Building, Room 2-126, 2231 6th Street S.E., Minneapolis, MN, 55455. Phone: 612-626-0164; fax: 612-626-5135;
| |
Collapse
|