1
|
Burgum MJ, Ulrich C, Partosa N, Evans SJ, Gomes C, Seiffert SB, Landsiedel R, Honarvar N, Doak SH. Adapting the in vitro micronucleus assay (OECD Test Guideline No. 487) for testing of manufactured nanomaterials: recommendations for best practices. Mutagenesis 2024; 39:205-217. [PMID: 38502821 DOI: 10.1093/mutage/geae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
The current Organisation for Economic Co-Operation and Development test guideline number 487 (OECD TG No. 487) provides instruction on how to conduct the in vitro micronucleus assay. This assay is one of the gold standard approaches for measuring the mutagenicity of test items; however, it is directed at testing low molecular weight molecules and may not be appropriate for particulate materials (e.g. engineered nanoparticles [ENPs]). This study aimed to adapt the in vitro micronucleus assay for ENP testing and underpins the development of an OECD guidance document. A harmonized, nano-specific protocol was generated and evaluated by two independent laboratories. Cell lines utilized were human lymphoblastoid (TK6) cells, human liver hepatocytes (HepG2) cells, Chinese hamster lung fibroblast (V79) cells, whole blood, and buffy coat cells from healthy human volunteers. These cells were exposed to reference ENPs from the Joint Research Council (JRC): SiO2 (RLS-0102), Au5nm and Au30nm (RLS-03, RLS-010), CeO2 (NM212), and BaSO4 (NM220). Tungsten carbide-cobalt (WC/Co) was used as a trial particulate positive control. The chemical controls were positive in all cell cultures, but WC/Co was only positive in TK6 and buffy coat cells. In TK6 cells, mutagenicity was observed for SiO2- and both Au types. In HepG2 cells, Au5nm and SiO2 showed sub-two-fold increases in micronuclei. In V79 cells, whole blood, and buffy coat cells, no genotoxicity was detected with the test materials. The data confirmed that ENPs could be tested with the harmonized protocol, additionally, concordant data were observed across the two laboratories with V79 cells. WC/Co may be a suitable particulate positive control in the in vitro micronucleus assay when using TK6 and buffy coat cells. Detailed recommendations are therefore provided to adapt OECD TG No. 487 for testing ENP.
Collapse
Affiliation(s)
- Michael J Burgum
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| | - Clarissa Ulrich
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Natascha Partosa
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Stephen J Evans
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| | - Caroline Gomes
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
- Free University of Berlin, Pharmacy - Pharmacology and Toxicology, 14195 Berlin, Germany
| | - Naveed Honarvar
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Shareen H Doak
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| |
Collapse
|
2
|
Elespuru RK, Doak SH, Collins AR, Dusinska M, Pfuhler S, Manjanatha M, Cardoso R, Chen CL. Common Considerations for Genotoxicity Assessment of Nanomaterials. FRONTIERS IN TOXICOLOGY 2022; 4:859122. [PMID: 35686044 PMCID: PMC9171035 DOI: 10.3389/ftox.2022.859122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022] Open
Abstract
Genotoxicity testing is performed to determine potential hazard of a chemical or agent for direct or indirect DNA interaction. Testing may be a surrogate for assessment of heritable genetic risk or carcinogenic risk. Testing of nanomaterials (NM) for hazard identification is generally understood to require a departure from normal testing procedures found in international standards and guidelines. A critique of the genotoxicity literature in Elespuru et al., 2018, reinforced evidence of problems with genotoxicity assessment of nanomaterials (NM) noted by many previously. A follow-up to the critique of problems (what is wrong) is a series of methods papers in this journal designed to provide practical information on what is appropriate (right) in the performance of genotoxicity assays altered for NM assessment. In this “Common Considerations” paper, general considerations are addressed, including NM characterization, sample preparation, dosing choice, exposure assessment (uptake) and data analysis that are applicable to any NM genotoxicity assessment. Recommended methods for specific assays are presented in a series of additional papers in this special issue of the journal devoted to toxicology methods for assessment of nanomaterials: the In vitro Micronucleus Assay, TK Mutagenicity assays, and the In vivo Comet Assay. In this context, NM are considered generally as insoluble particles or test articles in the nanometer size range that present difficulties in assessment using techniques described in standards such as OECD guidelines.
Collapse
Affiliation(s)
- Rosalie K. Elespuru
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
- *Correspondence: Rosalie K. Elespuru,
| | - Shareen H. Doak
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Andrew R. Collins
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Norway
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Stefan Pfuhler
- Global Product Stewardship, Human Safety, Procter & Gamble Mason Business Centre, Mason, OH, United States
| | - Mugimane Manjanatha
- Division of Genetic and Molecular Toxicology, Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| | | | - Connie L. Chen
- Health and Environmental Sciences Institute, Washington, DC, MD, United States
| |
Collapse
|
3
|
Hadrup N, Sørli JB, Sharma AK. Pulmonary toxicity, genotoxicity, and carcinogenicity evaluation of molybdenum, lithium, and tungsten: A review. Toxicology 2022; 467:153098. [PMID: 35026344 DOI: 10.1016/j.tox.2022.153098] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/30/2022]
Abstract
Molybdenum, lithium, and tungsten are constituents of many products, and exposure to these elements potentially occurs at work. Therefore it is important to determine at what levels they are toxic, and thus we set out to review their pulmonary toxicity, genotoxicity, and carcinogenicity. After pulmonary exposure, molybdenum and tungsten are increased in multiple tissues; data on the distribution of lithium are limited. Excretion of all three elements is both via faeces and urine. Molybdenum trioxide exerted pulmonary toxicity in a 2-year inhalation study in rats and mice with a lowest-observed-adverse-effect concentration (LOAEC) of 6.6 mg Mo/m3. Lithium chloride had a LOAEC of 1.9 mg Li/m3 after subacute inhalation in rabbits. Tungsten oxide nanoparticles resulted in a no-observed-adverse-effect concentration (NOAEC) of 5 mg/m3 after inhalation in hamsters. In another study, tungsten blue oxide had a LOAEC of 63 mg W/m3 in rats. Concerning genotoxicity, for molybdenum, the in vivo genotoxicity after inhalation remains unknown; however, there was some evidence of carcinogenicity of molybdenum trioxide. The data on the genotoxicity of lithium are equivocal, and one carcinogenicity study was negative. Tungsten seems to have a genotoxic potential, but the data on carcinogenicity are equivocal. In conclusion, for all three elements, dose descriptors for inhalation toxicity were identified, and the potential for genotoxicity and carcinogenicity was assessed.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | - Jorid B Sørli
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | - Anoop K Sharma
- Division for Risk Assessment and Nutrition, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Kemitorvet, 201, 031, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Wu Y, Darland DC, Zhao JX. Nanozymes-Hitting the Biosensing "Target". SENSORS (BASEL, SWITZERLAND) 2021; 21:5201. [PMID: 34372441 PMCID: PMC8348677 DOI: 10.3390/s21155201] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Nanozymes are a class of artificial enzymes that have dimensions in the nanometer range and can be composed of simple metal and metal oxide nanoparticles, metal nanoclusters, dots (both quantum and carbon), nanotubes, nanowires, or multiple metal-organic frameworks (MOFs). They exhibit excellent catalytic activities with low cost, high operational robustness, and a stable shelf-life. More importantly, they are amenable to modifications that can change their surface structures and increase the range of their applications. There are three main classes of nanozymes including the peroxidase-like, the oxidase-like, and the antioxidant nanozymes. Each of these classes catalyzes a specific group of reactions. With the development of nanoscience and nanotechnology, the variety of applications for nanozymes in diverse fields has expanded dramatically, with the most popular applications in biosensing. Nanozyme-based novel biosensors have been designed to detect ions, small molecules, nucleic acids, proteins, and cancer cells. The current review focuses on the catalytic mechanism of nanozymes, their application in biosensing, and the identification of future directions for the field.
Collapse
Affiliation(s)
- Yingfen Wu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Diane C. Darland
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA;
| |
Collapse
|
5
|
George I, Uboldi C, Bernard E, Sobrido MS, Dine S, Hagège A, Vrel D, Herlin N, Rose J, Orsière T, Grisolia C, Rousseau B, Malard V. Toxicological Assessment of ITER-Like Tungsten Nanoparticles Using an In Vitro 3D Human Airway Epithelium Model. NANOMATERIALS 2019; 9:nano9101374. [PMID: 31557883 PMCID: PMC6836029 DOI: 10.3390/nano9101374] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023]
Abstract
The International Thermonuclear Experimental Reactor (ITER) is an international project aimed at the production of carbon-free energy through the use of thermonuclear fusion. During ITER operation, in case of a loss-of-vacuum-accident, tungsten nanoparticles (W-NPs) could potentially be released into the environment and induce occupational exposure via inhalation. W-NPs toxicity was evaluated on MucilAir™, a 3D in vitro cell model of the human airway epithelium. MucilAir™ was exposed for 24 h to metallic ITER-like milled W-NPs, tungstate (WO42−) and tungsten carbide cobalt particles alloy (WC-Co). Cytotoxicity and its reversibility were assessed using a kinetic mode up to 28 days after exposure. Epithelial tightness, metabolic activity and interleukin-8 release were also evaluated. Electron microscopy was performed to determine any morphological modification, while mass spectrometry allowed the quantification of W-NPs internalization and of W transfer through the MucilAir™. Our results underlined a decrease in barrier integrity, no effect on metabolic activity or cell viability and a transient increase in IL-8 secretion after exposure to ITER-like milled W-NPs. These effects were associated with W-transfer through the epithelium, but not with intracellular accumulation. We have shown that, under our experimental conditions, ITER-like milled W-NPs have a minor impact on the MucilAir™ in vitro model.
Collapse
Affiliation(s)
- Isabelle George
- CEA, SCBM, Université Paris Saclay, 91191 Gif-sur-Yvette, France.
| | - Chiara Uboldi
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, 13005 Marseille, France.
| | | | - Marcos Sanles Sobrido
- CNRS, Aix Marseille Univ, IRD, INRA, Coll France, CEREGE, 13545, Aix en Provence, France.
| | - Sarah Dine
- Université Paris 13, Sorbonne Paris Cité; Laboratoire des Sciences des Procédés et des Matériaux, UPR 3407-CNRS, 99 avenue J.-B. Clément 93430 Villetaneuse, France.
| | - Agnès Hagège
- Université de Lyon, CNRS, Université Claude Bernard Lyon I, Institute of Analytical Sciences (ISA), UMR 5280, 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Dominique Vrel
- Université Paris 13, Sorbonne Paris Cité; Laboratoire des Sciences des Procédés et des Matériaux, UPR 3407-CNRS, 99 avenue J.-B. Clément 93430 Villetaneuse, France.
| | - Nathalie Herlin
- NIMBE, IRAMIS, Université Paris Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Jerome Rose
- CNRS, Aix Marseille Univ, IRD, INRA, Coll France, CEREGE, 13545, Aix en Provence, France.
| | - Thierry Orsière
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, 13005 Marseille, France.
| | | | - Bernard Rousseau
- CEA, SCBM, Université Paris Saclay, 91191 Gif-sur-Yvette, France.
| | - Véronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EIPM, F-13108 Saint Paul-Lez-Durance, France.
| |
Collapse
|
6
|
Machelart A, Salzano G, Li X, Demars A, Debrie AS, Menendez-Miranda M, Pancani E, Jouny S, Hoffmann E, Deboosere N, Belhaouane I, Rouanet C, Simar S, Talahari S, Giannini V, Villemagne B, Flipo M, Brosch R, Nesslany F, Deprez B, Muraille E, Locht C, Baulard AR, Willand N, Majlessi L, Gref R, Brodin P. Intrinsic Antibacterial Activity of Nanoparticles Made of β-Cyclodextrins Potentiates Their Effect as Drug Nanocarriers against Tuberculosis. ACS NANO 2019; 13:3992-4007. [PMID: 30822386 PMCID: PMC6718168 DOI: 10.1021/acsnano.8b07902] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/01/2019] [Indexed: 05/23/2023]
Abstract
Multi-drug-resistant tuberculosis (TB) is a major public health problem, concerning about half a million cases each year. Patients hardly adhere to the current strict treatment consisting of more than 10 000 tablets over a 2-year period. There is a clear need for efficient and better formulated medications. We have previously shown that nanoparticles made of cross-linked poly-β-cyclodextrins (pβCD) are efficient vehicles for pulmonary delivery of powerful combinations of anti-TB drugs. Here, we report that in addition to being efficient drug carriers, pβCD nanoparticles are endowed with intrinsic antibacterial properties. Empty pβCD nanoparticles are able to impair Mycobacterium tuberculosis (Mtb) establishment after pulmonary administration in mice. pβCD hamper colonization of macrophages by Mtb by interfering with lipid rafts, without inducing toxicity. Moreover, pβCD provoke macrophage apoptosis, leading to depletion of infected cells, thus creating a lung microenvironment detrimental to Mtb persistence. Taken together, our results suggest that pβCD nanoparticles loaded or not with antibiotics have an antibacterial action on their own and could be used as a carrier in drug regimen formulations effective against TB.
Collapse
Affiliation(s)
- Arnaud Machelart
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Giuseppina Salzano
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Xue Li
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Aurore Demars
- Research
Unit in Microorganisms Biology (URBM), Laboratory of Immunology and
Microbiology, Université de Namur, Narilis, B-5000 Namur, Belgium
| | - Anne-Sophie Debrie
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Mario Menendez-Miranda
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Elisabetta Pancani
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Samuel Jouny
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Eik Hoffmann
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nathalie Deboosere
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Imène Belhaouane
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Carine Rouanet
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sophie Simar
- Université
de Lille, Institut Pasteur de Lille, EA 4483, F-59000 Lille, France
| | - Smaïl Talahari
- Université
de Lille, Institut Pasteur de Lille, EA 4483, F-59000 Lille, France
| | - Valerie Giannini
- Institut
Pasteur, Unit for Integrated
Mycobacterial Pathogenomics, Paris, CNRS
UMR 3525, 25 Rue du Dr. Roux, F-75015 Paris, France
| | - Baptiste Villemagne
- Université
de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Marion Flipo
- Université
de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Roland Brosch
- Institut
Pasteur, Unit for Integrated
Mycobacterial Pathogenomics, Paris, CNRS
UMR 3525, 25 Rue du Dr. Roux, F-75015 Paris, France
| | - Fabrice Nesslany
- Université
de Lille, Institut Pasteur de Lille, EA 4483, F-59000 Lille, France
| | - Benoit Deprez
- Université
de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Eric Muraille
- Research
Unit in Microorganisms Biology (URBM), Laboratory of Immunology and
Microbiology, Université de Namur, Narilis, B-5000 Namur, Belgium
- Laboratory
of Parasitology, Faculty of Medicine, Université
Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Camille Locht
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Alain R. Baulard
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nicolas Willand
- Université
de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Laleh Majlessi
- Institut
Pasteur, Unit for Integrated
Mycobacterial Pathogenomics, Paris, CNRS
UMR 3525, 25 Rue du Dr. Roux, F-75015 Paris, France
| | - Ruxandra Gref
- Université
Paris Sud, Université Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France
| | - Priscille Brodin
- Université
de Lille, CNRS, INSERM, CHU Lille, Institut
Pasteur de Lille, U1019 - UMR 8204 - CIIL
- Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
7
|
Lison D, van den Brule S, Van Maele-Fabry G. Cobalt and its compounds: update on genotoxic and carcinogenic activities. Crit Rev Toxicol 2018; 48:522-539. [PMID: 30203727 DOI: 10.1080/10408444.2018.1491023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article summarizes recent experimental and epidemiological data on the genotoxic and carcinogenic activities of cobalt compounds. Emphasis is on the respiratory system, but endogenous exposure from Co-containing alloys used in endoprostheses, and limited data on nanomaterials and oral exposures are also considered. Two groups of cobalt compounds are differentiated on the basis of their mechanisms of toxicity: (1) those essentially involving the solubilization of Co(II) ions, and (2) metallic materials for which both surface corrosion and release of Co(II) ions act in concert. For both groups, identified genotoxic and carcinogenic mechanisms are non-stochastic and thus expected to exhibit a threshold. Cobalt compounds should, therefore, be considered as genotoxic carcinogens with a practical threshold. Accumulating evidence indicates that chronic inhalation of cobalt compounds can induce respiratory tumors locally. No evidence of systemic carcinogenicity upon inhalation, oral or endogenous exposure is available. The scarce data available for Co-based nanosized materials does not allow deriving a specific mode of action or assessment for these species.
Collapse
Affiliation(s)
- D Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| | - S van den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| | - G Van Maele-Fabry
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| |
Collapse
|
8
|
Catalán J, Stockmann-Juvala H, Norppa H. A theoretical approach for a weighted assessment of the mutagenic potential of nanomaterials. Nanotoxicology 2017; 11:964-977. [DOI: 10.1080/17435390.2017.1382601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Julia Catalán
- Work Environment, Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
| | - Helene Stockmann-Juvala
- Work Environment, Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Hannu Norppa
- Work Environment, Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland
| |
Collapse
|
9
|
Wan R, Mo Y, Zhang Z, Jiang M, Tang S, Zhang Q. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol 2017; 14:38. [PMID: 28923112 PMCID: PMC5604172 DOI: 10.1186/s12989-017-0219-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We and other groups have demonstrated that exposure to cobalt nanoparticles (Nano-Co) caused oxidative stress and inflammation, which have been shown to be strongly associated with genotoxic and carcinogenic effects. However, few studies have reported Nano-Co-induced genotoxic effects in vivo. Here, we propose that Nano-Co may have high genotoxic effects due to their small size and high surface area, which have high capacity for causing oxidative stress and inflammation. METHODS gpt delta transgenic mice were used as our in vivo study model. They were intratracheally instilled with 50 μg per mouse of Nano-Co. At day 1, 3, 7 and 28 after exposure, bronchoalveolar lavage (BAL) was performed and the number of neutrophils, CXCL1/KC level, LDH activity and concentration of total protein in the BAL fluid (BALF) were determined. Mouse lung tissues were collected for H&E staining, and Ki-67, PCNA and γ-H2AX immunohistochemical staining. 8-OHdG level in the genomic DNA of mouse lungs was determined by an OxiSelect™ Oxidative DNA Damage ELISA Kit, and mutant frequency and mutation spectrum in the gpt gene were also determined in mouse lungs at four months after Nano-Co exposure by 6-TG selection, colony PCR, and DNA sequencing. RESULTS Exposure of mice to Nano-Co (50 μg per mouse) resulted in extensive acute lung inflammation and lung injury which were reflected by increased number of neutrophils, CXCL1/KC level, LDH activity and concentration of total protein in the BALF, and infiltration of large amount of neutrophils and macrophages in the alveolar space and interstitial tissues. Increased immunostaining of cell proliferation markers, Ki-67 and PCNA, and the DNA damage marker, γ-H2AX, was also observed in bronchiolar epithelial cells and hyperplastic type II pneumocytes in mouse lungs at day 7 after Nano-Co exposure. At four months after exposure, extensive interstitial fibrosis and proliferation of interstitial cells with inflammatory cells infiltrating the alveolar septa were observed. Moreover, Nano-Co caused increased level of 8-OHdG in genomic DNA of mouse lung tissues. Nano-Co also induced a much higher mutant frequency as compared to controls, and the most common mutation was G:C to T:A transversion, which may be explained by Nano-Co-induced increased formation of 8-OHdG. CONCLUSION Our study demonstrated that exposure to Nano-Co caused oxidative stress, lung inflammation and injury, and cell proliferation, which further resulted in DNA damage and DNA mutation. These findings have important implications for understanding the potential health effects of nanoparticle exposure.
Collapse
Affiliation(s)
- Rong Wan
- Department of Pathology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Zhenyu Zhang
- Seven-year Program of Clinical Medicine, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Mizu Jiang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
- Department of Gastroenterology, Children’s Hospital, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shichuan Tang
- Beijing Municipal Institute of Labor Protection, Beijing, People’s Republic of China
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
- Beijing Municipal Institute of Labor Protection, Beijing, People’s Republic of China
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122 People’s Republic of China
| |
Collapse
|
10
|
Collins A, El Yamani N, Dusinska M. Sensitive detection of DNA oxidation damage induced by nanomaterials. Free Radic Biol Med 2017; 107:69-76. [PMID: 28161308 DOI: 10.1016/j.freeradbiomed.2017.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/02/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022]
Abstract
From a toxicological point of view, nanomaterials are of interest; because - on account of their great surface area relative to mass - they tend to be more reactive than the bulk chemicals from which they are derived. They might in some cases have the potential to damage DNA directly, or could act via the induction of oxidative stress. The comet assay (single cell gel electrophoresis) is widely used to measure DNA strand breaks and also oxidised bases, by including in the procedure digestion with lesion-specific enzymes such as formamidopyrimidine DNA glycosylase (which converts oxidised purines to breaks) or endonuclease III (recognising oxidised pyrimidines). We summarise reports in which these enzymes have been used to study a variety of nanomaterials in diverse cell types. We also stress that it is important to carry out tests of cell viability alongside the genotoxicity assay, since cytotoxicity can lead to adventitious DNA damage. Different concentrations of nanomaterials should be investigated, concentrating on a non-cytotoxic range; and incubating for short and longer periods can give valuable information about the mode of damage induction. The use of lesion-specific enzymes can substantially enhance the sensitivity of the comet assay in detecting genotoxic effects.
Collapse
Affiliation(s)
- Andrew Collins
- University of Oslo, Department of Nutrition, Oslo, Norway; NorGenotech AS, Skreia, Norway.
| | - Naouale El Yamani
- NorGenotech AS, Skreia, Norway; Norwegian Institute for Air Research, Department of Environmental Chemistry, Kjeller, Norway
| | - Maria Dusinska
- Norwegian Institute for Air Research, Department of Environmental Chemistry, Kjeller, Norway
| |
Collapse
|