1
|
Fedkenheuer M, Shang Y, Jung S, Fedkenheuer K, Park S, Mazza D, Sebastian R, Nagashima H, Zong D, Tan H, Jaiswal SK, Fu H, Cruz A, Vartak SV, Wisniewski J, Sartorelli V, O'Shea JJ, Elnitski L, Nussenzweig A, Aladjem MI, Meng FL, Casellas R. A dual role of Cohesin in DNA DSB repair. Nat Commun 2025; 16:843. [PMID: 39833168 PMCID: PMC11747280 DOI: 10.1038/s41467-025-56086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Cells undergo tens of thousands of DNA-damaging events each day. Defects in repairing double-stranded breaks (DSBs) can lead to genomic instability, contributing to cancer, genetic disorders, immunological diseases, and developmental defects. Cohesin, a multi-subunit protein complex, plays a crucial role in both chromosome organization and DNA repair by creating architectural loops through chromatin extrusion. However, the mechanisms by which cohesin regulates these distinct processes are not fully understood. In this study, we identify two separate roles for cohesin in DNA repair within mammalian cells. First, cohesin serves as an intrinsic architectural factor that normally prevents interactions between damaged chromatin. Second, cohesin has an architecture-independent role triggered by ATM phosphorylation of SMC1, which enhances the efficiency of repair. Our findings suggest that these two functions work together to reduce the occurrence of translocations and deletions associated with non-homologous end joining, thereby maintaining genomic stability.
Collapse
Affiliation(s)
- Michael Fedkenheuer
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Yafang Shang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Seolkyoung Jung
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Fedkenheuer
- Translational and Functional Analysis Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Solji Park
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Davide Mazza
- Experimental Imaging Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milano, Italy
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Hiroyuki Nagashima
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - Hua Tan
- Translational and Functional Analysis Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sushil Kumar Jaiswal
- Translational and Functional Analysis Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Anthony Cruz
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Supriya V Vartak
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jan Wisniewski
- EIB Microscopy and Digital Imaging Facility, National Cancer Institute NIH, Bethesda, MD, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura Elnitski
- Translational and Functional Analysis Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Fei-Long Meng
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rafael Casellas
- Department of Hematopoietic Biology & Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Soni A, Beisser D, Mladenov E, Höller M, Wohlers I, Nikolov V, Magin S, Mussfeldt T, Klein-Hitpass L, Cornforth MN, Loucas BD, Rahmann S, Iliakis G. NGS Detects Extensive Genomic Alterations in Survivors of Irradiated Normal Human Fibroblast Cells. Radiat Res 2025; 203:37-52. [PMID: 39726225 DOI: 10.1667/rade-24-00094.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024]
Abstract
It is thought that cells surviving ionizing radiation exposure repair DNA double-strand breaks (DSBs) and restore their genomes. However, the recent biochemical and genetic characterization of DSB repair pathways reveals that only homologous recombination (HR) can function in an error-free manner and that the non-homologous end joining (NHEJ) pathways canonical NHEJ (c-NHEJ), alternative end joining (alt-EJ), and single-strand annealing (SSA) are error-prone, and potentially leave behind genomic scars and altered genomes. The strong cell cycle restriction of HR to S/G2 phases and the unparalleled efficiency of c-NHEJ throughout the cell cycle, raise the intriguing question as to how far a surviving cell "reaches" after repairing the genome back to its pre-irradiation state. Indeed, there is evidence that the genomes of cells surviving radiation treatment harbor extensive genomic alterations. To directly investigate this possibility, we adopted next-generation sequencing (NGS) technologies and tested a normal human fibroblast cell line, 82-6 hTert, after exposure up to 6 Gy. Cells were irradiated and surviving colonies expanded and the cells frozen. Sequencing analysis using the Illumina sequencing platform and comparison with the unirradiated genome detected frequent genomic alterations in the six investigated radiation survivor clones, including translocations and large deletions. Translocations detected by this analysis and predicted to generate visible cytogenetic alterations were frequently (three out of five) confirmed using mFISH cytogenetic analysis. PCR analysis of selected deletions also confirmed seven of the ten examined. We conclude that cells surviving radiation exposure tolerate and pass to their progeny a wide spectrum of genomic alterations. This recognition needs to be integrated into the interpretation of biological results at all endpoints, as well as in the formulation of mathematical models of radiation action. NGS analysis of irradiated genomes promises to enhance molecular cytogenetics by increasing the spectrum of detectable genomic alterations and advance our understanding of key molecular radiobiological effects and the logic underpinning DSB repair. However, further developments in the technology will be required to harness its full potential.
Collapse
Affiliation(s)
- Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Daniela Beisser
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Matthias Höller
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Inken Wohlers
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vladimir Nikolov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Simon Magin
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Tamara Mussfeldt
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Michael N Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| | - Bradford D Loucas
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| | - Sven Rahmann
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
3
|
Canoy RJ, Shmakova A, Karpukhina A, Lomov N, Tiukacheva E, Kozhevnikova Y, André F, Germini D, Vassetzky Y. Specificity of cancer-related chromosomal translocations is linked to proximity after the DNA double-strand break and subsequent selection. NAR Cancer 2023; 5:zcad049. [PMID: 37750169 PMCID: PMC10518054 DOI: 10.1093/narcan/zcad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Most cancer-related chromosomal translocations appear to be cell type specific. It is currently unknown why different chromosomal translocations occur in different cells. This can be due to either the occurrence of particular translocations in specific cell types or adaptive survival advantage conferred by translocations only in specific cells. We experimentally addressed this question by double-strand break (DSB) induction at MYC, IGH, AML and ETO loci in the same cell to generate chromosomal translocations in different cell lineages. Our results show that any translocation can potentially arise in any cell type. We have analyzed different factors that could affect the frequency of the translocations, and only the spatial proximity between gene loci after the DSB induction correlated with the resulting translocation frequency, supporting the 'breakage-first' model. Furthermore, upon long-term culture of cells with the generated chromosomal translocations, only oncogenic MYC-IGH and AML-ETO translocations persisted over a 60-day period. Overall, the results suggest that chromosomal translocation can be generated after DSB induction in any type of cell, but whether the cell with the translocation would persist in a cell population depends on the cell type-specific selective survival advantage that the chromosomal translocation confers to the cell.
Collapse
Affiliation(s)
- Reynand Jay Canoy
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, 1000 Manila, The Philippines
| | - Anna Shmakova
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization ‘National Cardiology Research Center’ of the Ministry of Health of the Russian Federation, 127994 Moscow, Russia
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Anna Karpukhina
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Nikolai Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugenia Tiukacheva
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Yana Kozhevnikova
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Franck André
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Diego Germini
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Yegor Vassetzky
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
4
|
Soni A, Lin X, Mladenov E, Mladenova V, Stuschke M, Iliakis G. BMN673 Is a PARP Inhibitor with Unique Radiosensitizing Properties: Mechanisms and Potential in Radiation Therapy. Cancers (Basel) 2022; 14:cancers14225619. [PMID: 36428712 PMCID: PMC9688666 DOI: 10.3390/cancers14225619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
BMN673 is a relatively new PARP inhibitor (PARPi) that exhibits superior efficacy in vitro compared to olaparib and other clinically relevant PARPi. BMN673, similar to most clinical PARPi, inhibits the catalytic activities of PARP-1 and PARP-2 and shows impressive anticancer potential as monotherapy in several pre-clinical and clinical studies. Tumor resistance to PARPi poses a significant challenge in the clinic. Thus, combining PARPi with other treatment modalities, such as radiotherapy (RT), is being actively pursued to overcome such resistance. However, the modest to intermediate radiosensitization exerted by olaparib, rucaparib, and veliparib, limits the rationale and the scope of such combinations. The recently reported strong radiosensitizing potential of BMN673 forecasts a paradigm shift on this front. Evidence accumulates that BMN673 may radiosensitize via unique mechanisms causing profound shifts in the balance among DNA double-strand break (DSB) repair pathways. According to one of the emerging models, BMN673 strongly inhibits classical non-homologous end-joining (c-NHEJ) and increases reciprocally and profoundly DSB end-resection, enhancing error-prone DSB processing that robustly potentiates cell killing. In this review, we outline and summarize the work that helped to formulate this model of BMN673 action on DSB repair, analyze the causes of radiosensitization and discuss its potential as a radiosensitizer in the clinic. Finally, we highlight strategies for combining BMN673 with other inhibitors of DNA damage response for further improvements.
Collapse
Affiliation(s)
- Aashish Soni
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Xixi Lin
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Veronika Mladenova
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147 Essen, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Correspondence: ; Tel.: +49-201-723-4152
| |
Collapse
|
5
|
Mladenova V, Mladenov E, Chaudhary S, Stuschke M, Iliakis G. The high toxicity of DSB-clusters modelling high-LET-DNA damage derives from inhibition of c-NHEJ and promotion of alt-EJ and SSA despite increases in HR. Front Cell Dev Biol 2022; 10:1016951. [PMID: 36263011 PMCID: PMC9574094 DOI: 10.3389/fcell.2022.1016951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Heavy-ion radiotherapy utilizing high linear energy transfer (high-LET) ionizing radiation (IR) is a promising cancer treatment modality owing to advantageous physical properties of energy deposition and associated toxicity over X-rays. Therapies utilizing high-LET radiation will benefit from a better understanding of the molecular mechanisms underpinning their increased biological efficacy. Towards this goal, we investigate here the biological consequences of well-defined clusters of DNA double-strand breaks (DSBs), a form of DNA damage, which on theoretical counts, has often been considered central to the enhanced toxicity of high-LET IR. We test clonal cell lines harboring in their genomes constructs with appropriately engineered I-SceI recognition sites that convert upon I-SceI expression to individual DSBs, or DSB-clusters comprising known numbers of DSBs with defined DNA-ends. We find that, similarly to high-LET IR, DSB-clusters of increasing complexity, i.e. increasing numbers of DSBs, with compatible or incompatible ends, compromise classical non-homologous end-joining, favor DNA end-resection and promote resection-dependent DSB-processing. Analysis of RAD51 foci shows increased engagement of error-free homologous recombination on DSB-clusters. Multicolor fluorescence in situ hybridization analysis shows that complex DSB-clusters markedly increase the incidence of structural chromosomal abnormalities (SCAs). Since RAD51-knockdown further increases SCAs-incidence, we conclude that homologous recombination suppresses SCAs-formation. Strikingly, CtIP-depletion inhibits SCAs-formation, suggesting that it relies on alternative end-joining or single-strand annealing. Indeed, ablation of RAD52 causes a marked reduction in SCAs, as does also inhibition of PARP1. We conclude that increased DSB-cluster formation that accompanies LET-increases, enhances IR-effectiveness by promoting DNA end-resection, which suppresses c-NHEJ and enhances utilization of alt-EJ or SSA. Although increased resection also favors HR, on balance, error-prone processing dominates, causing the generally observed increased toxicity of high-LET radiation. These findings offer new mechanistic insights into high-LET IR-toxicity and have translational potential in the clinical setting that may be harnessed by combining high-LET IR with inhibitors of PARP1 or RAD52.
Collapse
Affiliation(s)
- Veronika Mladenova
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Emil Mladenov
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shipra Chaudhary
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Advanced Biosciences, Inserm U 1209 / CNRS UMR 5309 Joint Research Center, Grenoble Alpes University, Grenoble, France
| | - Martin Stuschke
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - George Iliakis
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: George Iliakis,
| |
Collapse
|
6
|
Cheng Z, Wang Y, Guo L, Li J, Zhang W, Zhang C, Liu Y, Huang Y, Xu K. Ku70 affects the frequency of chromosome translocation in human lymphocytes after radiation and T-cell acute lymphoblastic leukemia. Radiat Oncol 2022; 17:144. [PMID: 35986335 PMCID: PMC9389784 DOI: 10.1186/s13014-022-02113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background As one of the most common chromosomal causes, chromosome translocation leads to T-cell acute lymphoblastic leukemia (T-ALL). Ku70 is one of the key factors of error-prone DNA repair and it may end in translocation. So far, the direct correlation between Ku70 and translocation has not been assessed. This study aimed to investigate the association between Ku70 and translocation in human lymphocytes after radiation and T-ALL. Methods Peripheral blood lymphocytes (PBLs) from volunteers and human lymphocyte cell line AHH-1 were irradiated with X-rays to form the chromosome translocations. Phytohemagglutinin (PHA) was used to stimulate lymphocytes. The frequency of translocation was detected by fluorescence in situ hybridization (FISH). Meanwhile, the expression of Ku70 was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. Furthermore, Ku70 interference, overexpression and chemical inhibition were used in AHH-1 cell lines to confirm the correlation. Finally, the expression of Ku70 in T-ALL samples with or without translocation was detected. Results The expression of Ku70 and frequencies of translocation were both significantly increased in PBLs after being irradiated by X-rays, and a positive correlation between the expression (both mRNA and protein level) of Ku70 and the frequency of translocation was detected (r = 0.4877, P = 0.004; r = 0.3038, P = 0.0358 respectively). Moreover, Ku70 interference decreased the frequency of translocations, while the frequency of translocations was not significantly affected after Ku70 overexpression. The expression of Ku70 and frequencies of translocation were both significantly increased in cells after irradiation, combined with chemical inhibition (P < 0.01). The protein level and mRNA level of Ku70 in T-ALL with translocation were obviously higher than T-ALL with normal karyotype (P = 0.009, P = 0.049 respectively). Conclusions Ku70 is closely associated with the frequency of chromosome translocation in human lymphocytes after radiation and T-ALL. Ku70 might be a radiation damage biomarker and a potential tumor therapy target. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02113-3.
Collapse
|
7
|
Xiao H, Li F, Mladenov E, Soni A, Mladenova V, Pan B, Dueva R, Stuschke M, Timmermann B, Iliakis G. Increased Resection at DSBs in G2-Phase Is a Unique Phenotype Associated with DNA-PKcs Defects That Is Not Shared by Other Factors of c-NHEJ. Cells 2022; 11:cells11132099. [PMID: 35805183 PMCID: PMC9265841 DOI: 10.3390/cells11132099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
The load of DNA double-strand breaks (DSBs) induced in the genome of higher eukaryotes by different doses of ionizing radiation (IR) is a key determinant of DSB repair pathway choice, with homologous recombination (HR) and ATR substantially gaining ground at doses below 0.5 Gy. Increased resection and HR engagement with decreasing DSB-load generate a conundrum in a classical non-homologous end-joining (c-NHEJ)-dominated cell and suggest a mechanism adaptively facilitating resection. We report that ablation of DNA-PKcs causes hyper-resection, implicating DNA-PK in the underpinning mechanism. However, hyper-resection in DNA-PKcs-deficient cells can also be an indirect consequence of their c-NHEJ defect. Here, we report that all tested DNA-PKcs mutants show hyper-resection, while mutants with defects in all other factors of c-NHEJ fail to do so. This result rules out the model of c-NHEJ versus HR competition and the passive shift from c-NHEJ to HR as the causes of the increased resection and suggests the integration of DNA-PKcs into resection regulation. We develop a model, compatible with the results of others, which integrates DNA-PKcs into resection regulation and HR for a subset of DSBs. For these DSBs, we propose that the kinase remains at the break site, rather than the commonly assumed autophosphorylation-mediated removal from DNA ends.
Collapse
Affiliation(s)
- Huaping Xiao
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (H.X.); (F.L.); (E.M.); (A.S.); (V.M.); (B.P.); (R.D.)
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Fanghua Li
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (H.X.); (F.L.); (E.M.); (A.S.); (V.M.); (B.P.); (R.D.)
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), 45147 Essen, Germany;
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (H.X.); (F.L.); (E.M.); (A.S.); (V.M.); (B.P.); (R.D.)
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Aashish Soni
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (H.X.); (F.L.); (E.M.); (A.S.); (V.M.); (B.P.); (R.D.)
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Veronika Mladenova
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (H.X.); (F.L.); (E.M.); (A.S.); (V.M.); (B.P.); (R.D.)
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Bing Pan
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (H.X.); (F.L.); (E.M.); (A.S.); (V.M.); (B.P.); (R.D.)
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Rositsa Dueva
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (H.X.); (F.L.); (E.M.); (A.S.); (V.M.); (B.P.); (R.D.)
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147 Essen, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), 45147 Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (H.X.); (F.L.); (E.M.); (A.S.); (V.M.); (B.P.); (R.D.)
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
- Correspondence: ; Tel.: +49-201-723-4152
| |
Collapse
|
8
|
Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks. Mutat Res 2021; 867:503372. [PMID: 34266628 DOI: 10.1016/j.mrgentox.2021.503372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022]
Abstract
We recently reported that when low doses of ionizing radiation induce low numbers of DNA double-strand breaks (DSBs) in G2-phase cells, about 50 % of them are repaired by homologous recombination (HR) and the remaining by classical non-homologous end-joining (c-NHEJ). However, with increasing DSB-load, the contribution of HR drops to undetectable (at ∼10 Gy) as c-NHEJ dominates. It remains unknown whether the approximately equal shunting of DSBs between HR and c-NHEJ at low radiation doses and the predominant shunting to c-NHEJ at high doses, applies to every DSB, or whether the individual characteristics of each DSB generate processing preferences. When G2-phase cells are irradiated, only about 10 % of the induced DSBs break the chromatids. This breakage allows analysis of the processing of this specific subset of DSBs using cytogenetic methods. Notably, at low radiation doses, these DSBs are almost exclusively processed by HR, suggesting that chromatin characteristics awaiting characterization underpin chromatid breakage and determine the preferential engagement of HR. Strikingly, we also discovered that with increasing radiation dose, a pathway switch to c-NHEJ occurs in the processing of this subset of DSBs. Here, we confirm and substantially extend our initial observations using additional methodologies. Wild-type cells, as well as HR and c-NHEJ mutants, are exposed to a broad spectrum of radiation doses and their response analyzed specifically in G2 phase. Our results further consolidate the observation that at doses <2 Gy, HR is the main option in the processing of the subset of DSBs generating chromatid breaks and that a pathway switch at doses between 4-6 Gy allows the progressive engagement of c-NHEJ. PARP1 inhibition, irrespective of radiation dose, leaves chromatid break repair unaffected suggesting that the contribution of alternative end-joining is undetectable under these experimental conditions.
Collapse
|
9
|
Eki R, She J, Parlak M, Benamar M, Du KP, Kumar P, Abbas T. A robust CRISPR-Cas9-based fluorescent reporter assay for the detection and quantification of DNA double-strand break repair. Nucleic Acids Res 2020; 48:e126. [PMID: 33068408 PMCID: PMC7708081 DOI: 10.1093/nar/gkaa897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic lesions that can lead to chromosome rearrangements, genomic instability and cell death. Consequently, cells have evolved multiple mechanisms to efficiently repair DSBs to preserve genomic integrity. We have developed a DSB repair assay system, designated CDDR (CRISPR-Cas9-based Dual-fluorescent DSB Repair), that enables the detection and quantification of DSB repair outcomes in mammalian cells with high precision. CDDR is based on the introduction and subsequent resolution of one or two DSB(s) in an intrachromosomal fluorescent reporter following the expression of Cas9 and sgRNAs targeting the reporter. CDDR can discriminate between high-fidelity (HF) and error-prone non-homologous end-joining (NHEJ), as well as between proximal and distal NHEJ repair. Furthermore, CDDR can detect homology-directed repair (HDR) with high sensitivity. Using CDDR, we found HF-NHEJ to be strictly dependent on DNA Ligase IV, XRCC4 and XLF, members of the canonical branch of NHEJ pathway (c-NHEJ). Loss of these genes also stimulated HDR, and promoted error-prone distal end-joining. Deletion of the DNA repair kinase ATM, on the other hand, stimulated HF-NHEJ and suppressed HDR. These findings demonstrate the utility of CDDR in characterizing the effect of repair factors and in elucidating the balance between competing DSB repair pathways.
Collapse
Affiliation(s)
- Rebeka Eki
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.,Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | - Jane She
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahmut Parlak
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mouadh Benamar
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.,Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | - Kang-Ping Du
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.,Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA.,Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
10
|
Szymonowicz K, Krysztofiak A, van der Linden J, Kern A, Deycmar S, Oeck S, Squire A, Koska B, Hlouschek J, Vüllings M, Neander C, Siveke JT, Matschke J, Pruschy M, Timmermann B, Jendrossek V. Proton Irradiation Increases the Necessity for Homologous Recombination Repair Along with the Indispensability of Non-Homologous End Joining. Cells 2020; 9:E889. [PMID: 32260562 PMCID: PMC7226794 DOI: 10.3390/cells9040889] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Technical improvements in clinical radiotherapy for maximizing cytotoxicity to the tumor while limiting negative impact on co-irradiated healthy tissues include the increasing use of particle therapy (e.g., proton therapy) worldwide. Yet potential differences in the biology of DNA damage induction and repair between irradiation with X-ray photons and protons remain elusive. We compared the differences in DNA double strand break (DSB) repair and survival of cells compromised in non-homologous end joining (NHEJ), homologous recombination repair (HRR) or both, after irradiation with an equal dose of X-ray photons, entrance plateau (EP) protons, and mid spread-out Bragg peak (SOBP) protons. We used super-resolution microscopy to investigate potential differences in spatial distribution of DNA damage foci upon irradiation. While DNA damage foci were equally distributed throughout the nucleus after X-ray photon irradiation, we observed more clustered DNA damage foci upon proton irradiation. Furthermore, deficiency in essential NHEJ proteins delayed DNA repair kinetics and sensitized cells to both, X-ray photon and proton irradiation, whereas deficiency in HRR proteins sensitized cells only to proton irradiation. We assume that NHEJ is indispensable for processing DNA DSB independent of the irradiation source, whereas the importance of HRR rises with increasing energy of applied irradiation.
Collapse
Affiliation(s)
- Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Jansje van der Linden
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Ajvar Kern
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Simon Deycmar
- Department of Radiation Oncology, Laboratory for Applied Radiobiology, University Hospital Zurich, Zurich, Switzerland; (S.D.); (M.P.)
| | - Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anthony Squire
- Institute of Experimental Immunology and Imaging, Imaging Center Essen, University Hospital Essen, 45122 Essen, Germany;
| | - Benjamin Koska
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Julian Hlouschek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Melanie Vüllings
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Christian Neander
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany; (C.N.); (J.T.S.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Jens T. Siveke
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany; (C.N.); (J.T.S.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Martin Pruschy
- Department of Radiation Oncology, Laboratory for Applied Radiobiology, University Hospital Zurich, Zurich, Switzerland; (S.D.); (M.P.)
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
- Department of Particle Therapy, West German Proton Therapy Center Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| |
Collapse
|
11
|
Soni A, Murmann-Konda T, Siemann-Loekes M, Pantelias GE, Iliakis G. Chromosome breaks generated by low doses of ionizing radiation in G 2-phase are processed exclusively by gene conversion. DNA Repair (Amst) 2020; 89:102828. [PMID: 32143127 DOI: 10.1016/j.dnarep.2020.102828] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Four repair pathways process DNA double-strand breaks (DSBs). Among these pathways the homologous recombination repair (HRR) subpathway of gene conversion (GC) affords error-free processing, but functions only in S- and G2-phases of the cell cycle. Classical non-homologous end-joining (c-NHEJ) operates throughout the cell cycle, but causes small deletions and translocations. Similar deficiencies in exaggerated form, combined with reduced efficiency, are associated with alternative end-joining (alt-EJ). Finally, single-strand annealing (SSA) causes large deletions and possibly translocations. Thus, processing of a DSB by any pathway, except GC, poses significant risks to the genome, making the mechanisms navigating pathway-engagement critical to genome stability. Logically, the cell ought to attempt engagement of the pathway ensuring preservation of the genome, while accommodating necessities generated by the types of DSBs induced. Thereby, inception of DNA end-resection will be key determinant for GC, SSA and alt-EJ engagement. We reported that during G2-phase, where all pathways are active, GC engages in the processing of almost 50 % of DSBs, at low DSB-loads in the genome, and that this contribution rapidly drops to nearly zero with increasing DSB-loads. At the transition between these two extremes, SSA and alt-EJ compensate, but at extremely high DSB-loads resection-dependent pathways are suppressed and c-NHEJ remains mainly active. We inquired whether in this processing framework all DSBs have similar fates. Here, we analyze in G2-phase the processing of a subset of DSBs defined by their ability to break chromosomes. Our results reveal an absolute requirement for GC in the processing of chromatid breaks at doses in the range of 1 Gy. Defects in c-NHEJ delay significantly the inception of processing by GC, but leave processing kinetics unchanged. These results delineate the essential role of GC in chromatid break repair before mitosis and classify DSBs that underpin this breakage as the exclusive substrate of GC.
Collapse
Affiliation(s)
- Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Tamara Murmann-Konda
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Maria Siemann-Loekes
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Gabriel E Pantelias
- Institute of Nuclear Technology and Radiation Protection, National Centre for Scientific Research "Demokritos,''Aghia Paraskevi Attikis, Athens, Greece
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
| |
Collapse
|
12
|
Nickoloff JA, Sharma N, Taylor L. Clustered DNA Double-Strand Breaks: Biological Effects and Relevance to Cancer Radiotherapy. Genes (Basel) 2020; 11:E99. [PMID: 31952359 PMCID: PMC7017136 DOI: 10.3390/genes11010099] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 01/03/2023] Open
Abstract
Cells manage to survive, thrive, and divide with high accuracy despite the constant threat of DNA damage. Cells have evolved with several systems that efficiently repair spontaneous, isolated DNA lesions with a high degree of accuracy. Ionizing radiation and a few radiomimetic chemicals can produce clustered DNA damage comprising complex arrangements of single-strand damage and DNA double-strand breaks (DSBs). There is substantial evidence that clustered DNA damage is more mutagenic and cytotoxic than isolated damage. Radiation-induced clustered DNA damage has proven difficult to study because the spectrum of induced lesions is very complex, and lesions are randomly distributed throughout the genome. Nonetheless, it is fairly well-established that radiation-induced clustered DNA damage, including non-DSB and DSB clustered lesions, are poorly repaired or fail to repair, accounting for the greater mutagenic and cytotoxic effects of clustered lesions compared to isolated lesions. High linear energy transfer (LET) charged particle radiation is more cytotoxic per unit dose than low LET radiation because high LET radiation produces more clustered DNA damage. Studies with I-SceI nuclease demonstrate that nuclease-induced DSB clusters are also cytotoxic, indicating that this cytotoxicity is independent of radiogenic lesions, including single-strand lesions and chemically "dirty" DSB ends. The poor repair of clustered DSBs at least in part reflects inhibition of canonical NHEJ by short DNA fragments. This shifts repair toward HR and perhaps alternative NHEJ, and can result in chromothripsis-mediated genome instability or cell death. These principals are important for cancer treatment by low and high LET radiation.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; (N.S.); (L.T.)
| | | | | |
Collapse
|
13
|
Iliakis G, Mladenov E, Mladenova V. Necessities in the Processing of DNA Double Strand Breaks and Their Effects on Genomic Instability and Cancer. Cancers (Basel) 2019; 11:cancers11111671. [PMID: 31661831 PMCID: PMC6896103 DOI: 10.3390/cancers11111671] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/03/2022] Open
Abstract
Double strand breaks (DSBs) are induced in the DNA following exposure of cells to ionizing radiation (IR) and are highly consequential for genome integrity, requiring highly specialized modes of processing. Erroneous processing of DSBs is a cause of cell death or its transformation to a cancer cell. Four mechanistically distinct pathways have evolved in cells of higher eukaryotes to process DSBs, providing thus multiple options for the damaged cells. The homologous recombination repair (HRR) dependent subway of gene conversion (GC) removes IR-induced DSBs from the genome in an error-free manner. Classical non-homologous end joining (c-NHEJ) removes DSBs with very high speed but is unable to restore the sequence at the generated junction and can catalyze the formation of translocations. Alternative end-joining (alt-EJ) operates on similar principles as c-NHEJ but is slower and more error-prone regarding both sequence preservation and translocation formation. Finally, single strand annealing (SSA) is associated with large deletions and may also form translocations. Thus, the four pathways available for the processing of DSBs are not alternative options producing equivalent outcomes. We discuss the rationale for the evolution of pathways with such divergent properties and fidelities and outline the logic and necessities that govern their engagement. We reason that cells are not free to choose one specific pathway for the processing of a DSB but rather that they engage a pathway by applying the logic of highest fidelity selection, adapted to necessities imposed by the character of the DSB being processed. We introduce DSB clusters as a particularly consequential form of chromatin breakage and review findings suggesting that this form of damage underpins the increased efficacy of high linear energy transfer (LET) radiation modalities. The concepts developed have implications for the protection of humans from radon-induced cancer, as well as the treatment of cancer with radiations of high LET.
Collapse
Affiliation(s)
- George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| | - Veronika Mladenova
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| |
Collapse
|
14
|
Schwarz B, Friedl AA, Girst S, Dollinger G, Reindl J. Nanoscopic analysis of 53BP1, BRCA1 and Rad51 reveals new insights in temporal progression of DNA-repair and pathway choice. Mutat Res 2019; 816-818:111675. [PMID: 31302572 DOI: 10.1016/j.mrfmmm.2019.111675] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
The accumulation and spatial distribution of 53BP1, BRCA1 and Rad51, key proteins in DNA double-strand break (DSB) repair, was investigated with high temporal resolution over a time span of 24 h, using STED nanoscopy. DNA lesions were induced by irradiation with high-LET (linear energy transfer) α-particles. We show that 53BP1 IRIF formation occurs quickly in almost all cells and after about 6 h the fraction of 53BP1 IRIF positive cells slowly declines. Against the expectations BRCA1 and Rad51 IRIF formation is only shortly delayed but with the maximum of cells showing foci after 6 and 8 h after irradiation. At this stage, almost all IRIF in a given Rad51-positive cell show Rad51 accumulation, suggesting that repair via homologous recombination is attempted at almost all residual DSB sites. The frequency of BRCA1 IRIF positive cells increases much earlier and remains high after Rad51 positive cells start to decline, supporting models claiming that functional roles of BRCA1 change over time. Correlation analysis showed a high degree of correlation of Rad51 with BRCA1, while the exclusion of 53BP1 from the actual resection-zone is demonstrated by anti-correlation of Rad51 and 53BP1. Interestingly, these correlation and anti-correlation patterns exhibit complementary temporal variation.
Collapse
Affiliation(s)
- Benjamin Schwarz
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany.
| | - Anna A Friedl
- Department of Radiation Oncology, Ludwig-Maximilians-Universitaet Muenchen, 80336 Munich, Germany
| | - Stefanie Girst
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Günther Dollinger
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Judith Reindl
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| |
Collapse
|
15
|
Toma M, Skorski T, Sliwinski T. DNA Double Strand Break Repair - Related Synthetic Lethality. Curr Med Chem 2019; 26:1446-1482. [PMID: 29421999 DOI: 10.2174/0929867325666180201114306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a heterogeneous disease with a high degree of diversity between and within tumors. Our limited knowledge of their biology results in ineffective treatment. However, personalized approach may represent a milestone in the field of anticancer therapy. It can increase specificity of treatment against tumor initiating cancer stem cells (CSCs) and cancer progenitor cells (CPCs) with minimal effect on normal cells and tissues. Cancerous cells carry multiple genetic and epigenetic aberrations which may disrupt pathways essential for cell survival. Discovery of synthetic lethality has led a new hope of creating effective and personalized antitumor treatment. Synthetic lethality occurs when simultaneous inactivation of two genes or their products causes cell death whereas individual inactivation of either gene is not lethal. The effectiveness of numerous anti-tumor therapies depends on induction of DNA damage therefore tumor cells expressing abnormalities in genes whose products are crucial for DNA repair pathways are promising targets for synthetic lethality. Here, we discuss mechanistic aspects of synthetic lethality in the context of deficiencies in DNA double strand break repair pathways. In addition, we review clinical trials utilizing synthetic lethality interactions and discuss the mechanisms of resistance.
Collapse
Affiliation(s)
- Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, 3400 North Broad Street, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
16
|
Iliakis G, Mladenova V, Sharif M, Chaudhary S, Mavragani IV, Soni A, Saha J, Schipler A, Mladenov E. DEFINED BIOLOGICAL MODELS OF HIGH-LET RADIATION LESIONS. RADIATION PROTECTION DOSIMETRY 2019; 183:60-68. [PMID: 30566664 DOI: 10.1093/rpd/ncy248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 06/09/2023]
Abstract
DNA double-strand break (DSB) complexity is invoked to explain the increased efficacy of high-linear energy transfer (LET) radiation. Complexity is usually defined as presence of additional lesions in the immediate proximity of the DSB. DSB-clusters represent a different level of complexity that can jeopardize processing by destabilizing chromatin in the vicinity of the cluster. DSB-clusters are generated after exposure of cells to ionizing radiation (IR), particularly high-LET radiation, and have been considered as particularly consequential in several mathematical models of IR action. Yet, experimental demonstration of their relevance to the adverse IR effects, as well as information on the mechanisms underpinning their severity as DNA lesions is lacking. We addressed this void by developing cell lines with especially designed, multiply integrated constructs modeling defined combinations of DSB-clusters through appropriately engineered I-SceI meganuclease recognition sites. Using this model system, we demonstrate efficient activation of the DNA damage response, as well as a markedly increased potential of DSB-clusters, as compared to single-DSBs, to kill cells, and cause Parp1- dependent chromosomal translocations. We propose that DSB repair relying on first line DSB-processing pathways (canonical non-homologous end joining and to some degree homologous recombination repair) is compromised within DSB clusters, presumably through the associated chromatin destabilization, leaving alternative end joining as last option and translocation formation as a natural consequence. Our observations offer a mechanistic explanation for the increased efficacy of high-LET radiation.
Collapse
Affiliation(s)
- George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Veronika Mladenova
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Mortoga Sharif
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Shipra Chaudhary
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Ifigeneia V Mavragani
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Janapriya Saha
- University of Texas Southwestern Medical Center, UT, Department of Radiation Oncology, Dallas, Texas
| | - Agnes Schipler
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
17
|
Soni A, Murmann-Konda T, Magin S, Iliakis G. A method for the cell-cycle-specific analysis of radiation-induced chromosome aberrations and breaks. Mutat Res 2019; 815:10-19. [PMID: 30999232 DOI: 10.1016/j.mrfmmm.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The classical G2-assay is widely used to assess cell-radiosensitivity and cancer phenotype: Cells are exposed to low doses of ionizing-radiation (IR) and collected for cytogenetic- analysis ˜1.5 h later. In this way, chromosome-damage is measured in cells irradiated in G2-phase, without retrieving information regarding kinetics of chromosome-break-repair. Modification of the assay to include analysis at multiple time-points after IR, has enabled kinetic-analysis of chromatid-break-repair and assessment of damage in a larger proportion of G2-phase cells. This modification, however, increases the probability that at later time points not only cells irradiated in G2-phase, but also cells irradiated in S-phase will reach metaphase. However, the response of cells irradiated in G2-phase can be mechanistically different from that of cells irradiated in S-phase. Therefore, indiscriminate analysis may confound the interpretation of experiments designed to elucidate mechanisms of chromosome-break-repair and the contributions of the different DSB-repair-pathways in this response. Here we report an EdU based modification of the assay that enables S- and G2-phase specific analysis of chromatid break repair. Our results show that the majority of metaphases captured during the first 2 h after IR originate from cells irradiated in G2-phase (EdU- metaphases) in both rodent and human cells. Metaphases originating from cells irradiated in S-phase (EdU+ metaphases) start appearing at 2 h and 4 h after IR in rodent and human cells, respectively. The kinetics of chromatid-break-repair are similar in cells irradiated in G2- and S-phase of the cell-cycle, both in rodent and human cells. The protocol is applicable to classical-cytogenetic experiments and allows the cell-cycle specific analysis of chromosomal-aberrations. Finally, the protocol can be applied to the kinetic analysis of chromosome-breaks in prematurely-condensed-chromosomes of G2-phase cells. In summary, the developed protocol provides means to enhance the analysis of IR-induced-cytogenetic-damage by providing information on the cell-cycle phase where DNA damage is inflicted.
Collapse
Affiliation(s)
- Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Tamara Murmann-Konda
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Simon Magin
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
| |
Collapse
|
18
|
Soni A, Li F, Wang Y, Grabos M, Krieger LM, Chaudhary S, Hasan MSM, Ahmed M, Coleman CN, Teicher BA, Piekarz RL, Wang D, Iliakis GE. Inhibition of Parp1 by BMN673 Effectively Sensitizes Cells to Radiotherapy by Upsetting the Balance of Repair Pathways Processing DNA Double-Strand Breaks. Mol Cancer Ther 2018; 17:2206-2216. [DOI: 10.1158/1535-7163.mct-17-0836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/04/2018] [Accepted: 06/28/2018] [Indexed: 11/16/2022]
|
19
|
Recovery of Alternative End-Joining Repair Products From Drosophila Embryos. Methods Enzymol 2018. [PMID: 29523244 DOI: 10.1016/bs.mie.2017.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In this chapter, we describe a method for the recovery and analysis of alternative end-joining (alt-EJ) DNA double-strand break repair junctions following I-SceI cutting in Drosophila melanogaster embryos. Alt-EJ can be defined as a set of Ku70/80 and DNA ligase 4-independent end-joining processes that are typically mutagenic, producing deletions, insertions, and chromosomal rearrangements more frequently than higher-fidelity repair pathways such as classical nonhomologous end joining or homologous recombination. Alt-EJ has been observed to be upregulated in HR-deficient tumors and is essential for the survival and proliferation of these cells. Alt-EJ shares many initial processing steps with homologous recombination, specifically end resection; therefore, studying alt-EJ repair junctions can provide useful insight into aborted HR repair. Here, we describe the injection of plasmid constructs with specific cut sites into Drosophila embryos and the subsequent recovery of alt-EJ repair products. We also describe different analytical approaches using this system and how amplicon sequencing can be used to provide mechanistic information about alt-EJ.
Collapse
|
20
|
Abstract
The mechanistic understanding of how DNA double-strand breaks (DSB) are repaired is rapidly advancing in part due to the advent of inducible site-specific break model systems as well as the employment of next-generation sequencing (NGS) technologies to sequence repair junctions at high depth. Unfortunately, the sheer volume of data produced by these methods makes it difficult to analyze the structure of repair junctions manually or with other general-purpose software. Here, we describe methods to produce amplicon libraries of DSB repair junctions for sequencing, to map the sequencing reads, and then to use a robust, custom python script, Hi-FiBR, to analyze the sequence structure of mapped reads. The Hi-FiBR analysis processes large data sets quickly and provides information such as number and type of repair events, size of deletion, size of insertion and inserted sequence, microhomology usage, and whether mismatches are due to sequencing error or biological effect. The analysis also corrects for common alignment errors generated by sequencing read mapping tools, allowing high-throughput analysis of DSB break repair fidelity to be accurately conducted regardless of which suite of NGS analysis software is available.
Collapse
|
21
|
Khodaverdian VY, Hanscom T, Yu AM, Yu TL, Mak V, Brown AJ, Roberts SA, McVey M. Secondary structure forming sequences drive SD-MMEJ repair of DNA double-strand breaks. Nucleic Acids Res 2018; 45:12848-12861. [PMID: 29121353 PMCID: PMC5728401 DOI: 10.1093/nar/gkx1056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/18/2017] [Indexed: 12/29/2022] Open
Abstract
Alternative end-joining (alt-EJ) repair of DNA double-strand breaks is associated with deletions, chromosome translocations, and genome instability. Alt-EJ frequently uses annealing of microhomologous sequences to tether broken ends. When accessible pre-existing microhomologies do not exist, we have postulated that new microhomologies can be created via limited DNA synthesis at secondary-structure forming sequences. This model, called synthesis-dependent microhomology-mediated end joining (SD-MMEJ), predicts that differences between DNA sequences near double-strand breaks should alter repair outcomes in predictable ways. To test this hypothesis, we injected plasmids with sequence variations flanking an I-SceI endonuclease recognition site into I-SceI expressing Drosophila embryos and used Illumina amplicon sequencing to compare repair junctions. As predicted by the model, we found that small changes in sequences near the I-SceI site had major impacts on the spectrum of repair junctions. Bioinformatic analyses suggest that these repair differences arise from transiently forming loops and hairpins within 30 nucleotides of the break. We also obtained evidence for ‘trans SD-MMEJ,’ involving at least two consecutive rounds of microhomology annealing and synthesis across the break site. These results highlight the importance of sequence context for alt-EJ repair and have important implications for genome editing and genome evolution.
Collapse
Affiliation(s)
- Varandt Y Khodaverdian
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Terrence Hanscom
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Amy Marie Yu
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Taylor L Yu
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Victoria Mak
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Alexander J Brown
- School of Molecular Biosciences, Washington State University, P100 Dairy Road, Pullman, WA 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, P100 Dairy Road, Pullman, WA 99164, USA
| | - Mitch McVey
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| |
Collapse
|
22
|
Processing-Challenges Generated by Clusters of DNA Double-Strand Breaks Underpin Increased Effectiveness of High-LET Radiation and Chromothripsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:149-168. [DOI: 10.1007/978-981-13-0593-1_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Reczek CR, Shakya R, Miteva Y, Szabolcs M, Ludwig T, Baer R. The DNA resection protein CtIP promotes mammary tumorigenesis. Oncotarget 2017; 7:32172-83. [PMID: 27058754 PMCID: PMC5078005 DOI: 10.18632/oncotarget.8605] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/14/2016] [Indexed: 01/15/2023] Open
Abstract
Many DNA repair factors act to suppress tumor formation by preserving genomic stability. Similarly, the CtIP protein, which interacts with the BRCA1 tumor suppressor, is also thought to have tumor suppression activity. Through its role in DNA end resection, CtIP facilitates DNA double-strand break (DSB) repair by homologous recombination (DSBR-HR) and microhomology-mediated end joining (MMEJ). In addition, however, CtIP has also been implicated in the formation of aberrant chromosomal rearrangements in an MMEJ-dependent manner, an activity that could potentially promote tumor development by increasing genome instability. To clarify whether CtIP acts in vivo to suppress or promote tumorigenesis, we have examined its oncogenic potential in mouse models of human breast cancer. Surprisingly, mice heterozygous for a null Ctip allele did not display an increased susceptibility to tumor formation. Moreover, mammary-specific biallelic CtIP ablation did not elicit breast tumors in a manner reminiscent of BRCA1 loss. Instead, CtIP inactivation dramatically reduced the kinetics of mammary tumorigenesis in mice bearing mammary-specific lesions of the p53 gene. Thus, unlike other repair factors, CtIP is not a tumor suppressor, but has oncogenic properties that can promote tumorigenesis, consistent with its ability to facilitate MMEJ-dependent chromosomal instability. Consequently, inhibition of CtIP-mediated MMEJ may prove effective against tumor types, such as human breast cancer, that display MMEJ-dependent chromosomal rearrangements.
Collapse
Affiliation(s)
- Colleen R Reczek
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Reena Shakya
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.,Current address: Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University Wexner Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Yana Miteva
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthias Szabolcs
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Thomas Ludwig
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.,Current address: Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University Wexner Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Richard Baer
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
24
|
Dutta A, Eckelmann B, Adhikari S, Ahmed KM, Sengupta S, Pandey A, Hegde PM, Tsai MS, Tainer JA, Weinfeld M, Hegde ML, Mitra S. Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex. Nucleic Acids Res 2017; 45:2585-2599. [PMID: 27994036 PMCID: PMC5389627 DOI: 10.1093/nar/gkw1262] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Microhomology-mediated end joining (MMEJ), an error-prone pathway for DNA double-strand break (DSB) repair, is implicated in genomic rearrangement and oncogenic transformation; however, its contribution to repair of radiation-induced DSBs has not been characterized. We used recircularization of a linearized plasmid with 3΄-P-blocked termini, mimicking those at X-ray-induced strand breaks, to recapitulate DSB repair via MMEJ or nonhomologous end-joining (NHEJ). Sequence analysis of the circularized plasmids allowed measurement of relative activity of MMEJ versus NHEJ. While we predictably observed NHEJ to be the predominant pathway for DSB repair in our assay, MMEJ was significantly enhanced in preirradiated cells, independent of their radiation-induced arrest in the G2/M phase. MMEJ activation was dependent on XRCC1 phosphorylation by casein kinase 2 (CK2), enhancing XRCC1's interaction with the end resection enzymes MRE11 and CtIP. Both endonuclease and exonuclease activities of MRE11 were required for MMEJ, as has been observed for homology-directed DSB repair (HDR). Furthermore, the XRCC1 co-immunoprecipitate complex (IP) displayed MMEJ activity in vitro, which was significantly elevated after irradiation. Our studies thus suggest that radiation-mediated enhancement of MMEJ in cells surviving radiation therapy may contribute to their radioresistance and could be therapeutically targeted.
Collapse
Affiliation(s)
- Arijit Dutta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Bradley Eckelmann
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | | | - Kazi Mokim Ahmed
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Shiladitya Sengupta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| | - Arvind Pandey
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Miaw-Sheue Tsai
- Department of Cell and Molecular Biology, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA
| | - John A Tainer
- Department of Cell and Molecular Biology, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Weill Cornell Medical College, New York, NY 10065, USA.,Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA.,Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
25
|
Reindl J, Girst S, Walsh DWM, Greubel C, Schwarz B, Siebenwirth C, Drexler GA, Friedl AA, Dollinger G. Chromatin organization revealed by nanostructure of irradiation induced γH2AX, 53BP1 and Rad51 foci. Sci Rep 2017; 7:40616. [PMID: 28094292 PMCID: PMC5240115 DOI: 10.1038/srep40616] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/07/2016] [Indexed: 11/28/2022] Open
Abstract
The spatial distribution of DSB repair factors γH2AX, 53BP1 and Rad51 in ionizing radiation induced foci (IRIF) in HeLa cells using super resolution STED nanoscopy after low and high linear energy transfer (LET) irradiation was investigated. 53BP1 and γH2AX form IRIF with same mean size of (540 ± 40) nm after high LET irradiation while the size after low LET irradiation is significantly smaller. The IRIF of both repair factors show nanostructures with partial anti-correlation. These structures are related to domains formed within the chromatin territories marked by γH2AX while 53BP1 is mainly situated in the perichromatin region. The nanostructures have a mean size of (129 ± 6) nm and are found to be irrespective of the applied LET and the labelled damage marker. In contrast, Rad51 shows no nanostructure and a mean size of (143 ± 13) nm independent of LET. Although Rad51 is surrounded by 53BP1 it strongly anti-correlates meaning an exclusion of 53BP1 next to DSB when decision for homologous DSB repair happened.
Collapse
Affiliation(s)
- Judith Reindl
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Stefanie Girst
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Dietrich W M Walsh
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany.,Department of Radiation Oncology, Technische Universitaet Muenchen, 81675 Munich, Germany
| | - Christoph Greubel
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Benjamin Schwarz
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Christian Siebenwirth
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany.,Department of Radiation Oncology, Technische Universitaet Muenchen, 81675 Munich, Germany
| | - Guido A Drexler
- Department of Radiation Oncology, Ludwig-Maximilians-Universitaet Muenchen, 80336 Munich, Germany
| | - Anna A Friedl
- Department of Radiation Oncology, Ludwig-Maximilians-Universitaet Muenchen, 80336 Munich, Germany
| | - Günther Dollinger
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| |
Collapse
|
26
|
Regulation of non-homologous end joining via post-translational modifications of components of the ligation step. Curr Genet 2016; 63:591-605. [PMID: 27915381 DOI: 10.1007/s00294-016-0670-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks are the most serious type of DNA damage and non-homologous end joining (NHEJ) is an important pathway for their repair. In Saccharomyces cerevisiae, three complexes mediate the canonical NHEJ pathway, Ku (Ku70/Ku80), MRX (Mre11/Rad50/Xrs2) and DNA ligase IV (Dnl4/Lif1). Mammalian NHEJ is more complex, primarily as a consequence of the fact that more factors are involved in the process, and also because higher chromatin organization and more complex regulatory networks exist in mammals. In addition, a stronger interconnection between the NHEJ and DNA damage response (DDR) pathways seems to occur in mammals compared to yeast. DDR employs multiple post-translational modifications (PTMs) of the target proteins and mutual crosstalk among them to ensure highly efficient down-stream effects. Checkpoint-mediated phosphorylation is the best understood PTM that regulates DDR, although recently SUMOylation has also been shown to be involved. Both phosphorylation and SUMOylation affect components of NHEJ. In this review, we discuss a role of these two PTMs in regulation of NHEJ via targeting the components of the ligation step.
Collapse
|
27
|
Mladenova V, Mladenov E, Iliakis G. Novel Biological Approaches for Testing the Contributions of Single DSBs and DSB Clusters to the Biological Effects of High LET Radiation. Front Oncol 2016; 6:163. [PMID: 27446809 PMCID: PMC4923065 DOI: 10.3389/fonc.2016.00163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/15/2016] [Indexed: 01/28/2023] Open
Abstract
The adverse biological effects of ionizing radiation (IR) are commonly attributed to the generation of DNA double-strand breaks (DSBs). IR-induced DSBs are generated by clusters of ionizations, bear damaged terminal nucleotides, and frequently comprise base damages and single-strand breaks in the vicinity generating a unique DNA damage-clustering effect that increases DSB "complexity." The number of ionizations in clusters of different radiation modalities increases with increasing linear energy transfer (LET), and is thought to determine the long-known LET-dependence of the relative biological effectiveness (RBE). Multiple ionizations may also lead to the formation of DSB clusters, comprising two or more DSBs that destabilize chromatin further and compromise overall processing. DSB complexity and DSB-cluster formation are increasingly considered in the development of mathematical models of radiation action, which are then "tested" by fitting available experimental data. Despite a plethora of such mathematical models the ultimate goal, i.e., the "a priori" prediction of the radiation effect, has not yet been achieved. The difficulty partly arises from unsurmountable difficulties in testing the fundamental assumptions of such mathematical models in defined biological model systems capable of providing conclusive answers. Recently, revolutionary advances in methods allowing the generation of enzymatic DSBs at random or in well-defined locations in the genome, generate unique testing opportunities for several key assumptions frequently fed into mathematical modeling - including the role of DSB clusters in the overall effect. Here, we review the problematic of DSB-cluster formation in radiation action and present novel biological technologies that promise to revolutionize the way we address the biological consequences of such lesions. We describe new ways of exploiting the I-SceI endonuclease to generate DSB-clusters at random locations in the genome and describe the possible utility of Zn-finger nucleases and of TALENs in generating DSBs at defined genomic locations. Finally, we describe ways to harness the revolution of CRISPR/Cas9 technology to advance our understanding of the biological effects of DSBs. Collectively, these approaches promise to improve the focus of mathematical modeling of radiation action by providing testing opportunities for key assumptions on the underlying biology. They are also likely to further strengthen interactions between experimental radiation biologists and mathematical modelers.
Collapse
Affiliation(s)
- Veronika Mladenova
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School , Essen , Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School , Essen , Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School , Essen , Germany
| |
Collapse
|
28
|
Schipler A, Mladenova V, Soni A, Nikolov V, Saha J, Mladenov E, Iliakis G. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment. Nucleic Acids Res 2016; 44:7673-90. [PMID: 27257076 PMCID: PMC5027484 DOI: 10.1093/nar/gkw487] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/19/2016] [Indexed: 01/04/2023] Open
Abstract
Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect.
Collapse
Affiliation(s)
- Agnes Schipler
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Veronika Mladenova
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Vladimir Nikolov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Janapriya Saha
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| |
Collapse
|
29
|
DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation. Semin Cancer Biol 2016; 37-38:51-64. [DOI: 10.1016/j.semcancer.2016.03.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
|
30
|
Iliakis G, Murmann T, Soni A. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:166-75. [DOI: 10.1016/j.mrgentox.2015.07.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 01/15/2023]
|
31
|
Arakawa H, Iliakis G. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III. Genes (Basel) 2015; 6:385-98. [PMID: 26110316 PMCID: PMC4488670 DOI: 10.3390/genes6020385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 01/18/2023] Open
Abstract
Higher eukaryotes have three types of DNA ligases: DNA ligase 1 (Lig1), DNA ligase 3 (Lig3) and DNA ligase 4 (Lig4). While Lig1 and Lig4 are present in all eukaryotes from yeast to human, Lig3 appears sporadically in evolution and is uniformly present only in vertebrates. In the classical, textbook view, Lig1 catalyzes Okazaki-fragment ligation at the DNA replication fork and the ligation steps of long-patch base-excision repair (BER), homologous recombination repair (HRR) and nucleotide excision repair (NER). Lig4 is responsible for DNA ligation at DNA double strand breaks (DSBs) by the classical, DNA-PKcs-dependent pathway of non-homologous end joining (C-NHEJ). Lig3 is implicated in a short-patch base excision repair (BER) pathway, in single strand break repair in the nucleus, and in all ligation requirements of the DNA metabolism in mitochondria. In this scenario, Lig1 and Lig4 feature as the major DNA ligases serving the most essential ligation needs of the cell, while Lig3 serves in the cell nucleus only minor repair roles. Notably, recent systematic studies in the chicken B cell line, DT40, involving constitutive and conditional knockouts of all three DNA ligases individually, as well as of combinations thereof, demonstrate that the current view must be revised. Results demonstrate that Lig1 deficient cells proliferate efficiently. Even Lig1/Lig4 double knockout cells show long-term viability and proliferate actively, demonstrating that, at least in DT40, Lig3 can perform all ligation reactions of the cellular DNA metabolism as sole DNA ligase. Indeed, in the absence of Lig1, Lig3 can efficiently support semi-conservative DNA replication via an alternative Okazaki-fragment ligation pathway. In addition, Lig3 can back up NHEJ in the absence of Lig4, and can support NER and HRR in the absence of Lig1. Supporting observations are available in less elaborate genetic models in mouse cells. Collectively, these observations raise Lig3 from a niche-ligase to a universal DNA ligase, which can potentially substitute or backup the repair and replication functions of all other DNA ligases in the cell nucleus. Thus, the old model of functionally dedicated DNA ligases is now replaced by one in which only Lig4 remains dedicated to C-NHEJ, with Lig1 and Lig3 showing an astounding functional flexibility and interchangeability for practically all nuclear ligation functions. The underlying mechanisms of Lig3 versus Lig1 utilization in DNA repair and replication are expected to be partly different and remain to be elucidated.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- IFOM-FIRC Institute of Molecular Oncology Foundation, IFOM-IEO Campus, Via Adamello 16, Milano 20139, Italy.
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen 45122, Germany.
| |
Collapse
|