1
|
Nichols L, Lawrence R, Haboubi H, Al-Sarireh B, Doak S, Jenkins G. Measuring blood cell DNA damage using the PIG-A mutation and CBMN assay in pancreatic cancer patients: a pilot study. Mutagenesis 2023; 38:93-99. [PMID: 37006185 PMCID: PMC10181792 DOI: 10.1093/mutage/gead006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/29/2023] [Indexed: 04/04/2023] Open
Abstract
Pancreatic cancer still has one of the worst prognoses of all solid malignancies, despite developments in cancer knowledge and care. Research into pancreatic cancer has not fully translated into clinical improvements and as a result, fewer than 1% of patients survive 10 years post-diagnosis. This bleak outlook for patients could be improved by earlier diagnosis. The human erythrocyte phosphatidylinositol glycan class A (PIG-A) assay monitors the mutation status of the X-linked PIG-A gene by measuring glycosyl phosphatidylinositol (GPI)-anchored proteins on the extracellular surface. We have previously identified an elevated PIG-A mutant frequency in oesophageal adenocarcinoma patients and here investigate whether this could be seen in a pancreatic cancer cohort, given the urgent need for novel pancreatic cancer biomarkers. In our pilot study, an elevated PIG-A mutant frequency (5.775 × 10-6 (95% CI 4.777-10) mutants per million) was seen in pancreatic cancer patients (n = 30) when compared to the non-cancer control group (n = 14) who had an erythrocyte mutant frequency of 4.211 × 10-6 (95% CI 1.39-5.16) mutants per million (p = 0.0052). A cut-off value of 4.7 mutants per million provided an AUROC of 0.7595 with a sensitivity of 70% and specificity of 78.57%. A secondary measure of DNA damage in an alternative blood cell population also showed an increase in peripheral lymphocytes using the cytokinesis-block micronucleus assay (p = 0.0164) (AUROC = 0.77, sensitivity = 72.22%, specificity = 72.73%). The micronucleus frequency and PIG-A status show some potential as blood-based biomarkers of pancreatic cancer, but further investigations of these DNA damage tests are required to assess their utility in pancreatic cancer diagnosis.
Collapse
Affiliation(s)
- Lucy Nichols
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Rachel Lawrence
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Hasan Haboubi
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Bilal Al-Sarireh
- Department of Pancreato-biliary surgery, Morriston Hospital, Swansea, United Kingdom
| | - Shareen Doak
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Gareth Jenkins
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| |
Collapse
|
2
|
Guth S, Baum M, Cartus AT, Diel P, Engel KH, Engeli B, Epe B, Grune T, Haller D, Heinz V, Hellwig M, Hengstler JG, Henle T, Humpf HU, Jäger H, Joost HG, Kulling SE, Lachenmeier DW, Lampen A, Leist M, Mally A, Marko D, Nöthlings U, Röhrdanz E, Roth A, Spranger J, Stadler R, Steinberg P, Vieths S, Wätjen W, Eisenbrand G. Evaluation of the genotoxic potential of acrylamide: Arguments for the derivation of a tolerable daily intake (TDI value). Food Chem Toxicol 2023; 173:113632. [PMID: 36708862 DOI: 10.1016/j.fct.2023.113632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
This opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) presents arguments for an updated risk assessment of diet-related exposure to acrylamide (AA), based on a critical review of scientific evidence relevant to low dose exposure. The SKLM arrives at the conclusion that as long as an appropriate exposure limit for AA is not exceeded, genotoxic effects resulting in carcinogenicity are unlikely to occur. Based on the totality of the evidence, the SKLM considers it scientifically justified to derive a tolerable daily intake (TDI) as a health-based guidance value.
Collapse
Affiliation(s)
- Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Matthias Baum
- Solenis Germany Industries GmbH, Fütingsweg 20, 47805 Krefeld, Germany.
| | | | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | - Karl-Heinz Engel
- Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Barbara Engeli
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Schwarzenburgstrasse 155, 3003, Bern, Switzerland.
| | - Bernd Epe
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Dirk Haller
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354, Freising, Germany; Technical University of Munich, Gregor-Mendel-Str. 2, 85354, Freising, Germany.
| | - Volker Heinz
- German Institute of Food Technologies (DIL), Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany.
| | - Michael Hellwig
- Technische Universität Dresden, Bergstraße 66, 01062, Dresden, Germany.
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Thomas Henle
- Department of Food Chemistry, TU Dresden, Bergstrasse 66, 01062, Dresden, Germany.
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149, Münster, Germany.
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weißenburger Str. 3, 76187, Karlsruhe, Germany.
| | - Alfonso Lampen
- University of Veterinary Medicine Hannover, Institute for Food Quality and Food Safety, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation, University of Konstanz, Box 657, 78457, Konstanz, Germany.
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany.
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms University Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany.
| | - Elke Röhrdanz
- Unit Reproductive and Genetic Toxicology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger Allee 3, 53175, Bonn, Germany.
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Joachim Spranger
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12200, Berlin, Germany.
| | - Richard Stadler
- Institute of Food Safety and Analytical Sciences, Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne, 26, Switzerland.
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany.
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
| | - Wim Wätjen
- Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany.
| | | |
Collapse
|
3
|
European Food Safety Authority (EFSA), Benford D, Bignami M, Chipman JK, Ramos Bordajandi L. Assessment of the genotoxicity of acrylamide. EFSA J 2022; 20:e07293. [PMID: 35540797 PMCID: PMC9069548 DOI: 10.2903/j.efsa.2022.7293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
EFSA was requested to deliver a statement on a recent publication revisiting the evidence for genotoxicity of acrylamide (AA). The statement was prepared by a Working Group and was endorsed by the CONTAM Panel before its final approval. In interpreting the Terms of Reference, the statement considered the modes of action underlying the carcinogenicity of AA including genotoxic and non-genotoxic effects. Relevant publications since the 2015 CONTAM Panel Opinion on AA in food were reviewed. Several new studies reported positive results on the clastogenic and mutagenic properties of AA and its active metabolite glycidamide (GA). DNA adducts of GA were induced by AA exposure in experimental animals and have also been observed in humans. In addition to the genotoxicity of AA, there is evidence for both secondary DNA oxidation via generation of reactive oxygen species and for non-genotoxic effects which may contribute to carcinogenesis by AA. These studies extend the information assessed by the CONTAM Panel in its 2015 Opinion, and support its conclusions. That Opinion applied the margin of exposure (MOE) approach, as recommended in the EFSA Guidance for substances that are both genotoxic and carcinogenic, for risk characterisation of the neoplastic effects of AA. Based on the new data evaluated, the MOE approach is still considered appropriate, and an update of the 2015 Opinion is not required at the present time.
Collapse
|
4
|
Zhao T, Guo Y, Ji H, Mao G, Feng W, Chen Y, Wu X, Yang L. Short-term exposure to acrylamide exacerbated metabolic disorders and increased metabolic toxicity susceptibility on adult male mice with diabetes. Toxicol Lett 2021; 356:41-53. [PMID: 34896238 DOI: 10.1016/j.toxlet.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 02/09/2023]
Abstract
Diabetes mellitus is a common endocrine metabolic disorder, and previous studies have shown that diabetics are more sensitive to the toxic environmental contaminants. Acrylamide (ACR) is both an industrially multipurpose compound and a common endogenous food contaminant to which people are frequently exposed and at high risk. However, the toxicity of ACR on diabetes hasn't attracted much attention. In this study, both healthy mice and diabetic mice received ACR administration orally to investigate the ACR-induced metabolic toxicity, mechanism and susceptibility to ACR toxicity in adult diabetic male mice. The results showed that ACR significantly increased FBG level and decreased bodyweight, serum lipid and liver lipid biomarkers (TC, TG, LDL-C, HDL-C) levels as well as expression of lipid and glucose metabolism-related genes in diabetic mice, indicating that ACR can exacerbate metabolic disorders of glucose and lipid in diabetic male mice. Moreover, ACR exposure significantly increased levels of MDA and COX-2), decreased GSH level and antioxidant enzyme activity (SOD, GSH-PX and CAT) by downregulating expression of Nrf2 and Keap1 in diabetic mice. Factorial analysis showed ACR had a more significant disturbance in diabetic mice compared with healthy mice. Our results indicated that ACR exposure can cause oxidative stress and inflammatory damage, which can exacerbate abnormal glucose and lipid metabolism. This work helps to elucidate the effects and underlying mechanisms of ACR-induced metabolic toxicity in adults with diabetes.
Collapse
Affiliation(s)
- Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Yuchao Guo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Hongchen Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Weiwei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Koszucka A, Nowak A, Nowak I, Motyl I. Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Crit Rev Food Sci Nutr 2019; 60:1677-1692. [DOI: 10.1080/10408398.2019.1588222] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Agnieszka Koszucka
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Lodz, Poland
| | - Ilona Motyl
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
6
|
Karimani A, Hosseinzadeh H, Mehri S, Jafarian AH, Kamali SA, Hooshang Mohammadpour A, Karimi G. Histopathological and biochemical alterations in non-diabetic and diabetic rats following acrylamide treatment. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1566263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Asieh Karimani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Horibata K, Ukai A, Ogata A, Nakae D, Ando H, Kubo Y, Nagasawa A, Yuzawa K, Honma M. Absence of in vivo mutagenicity of multi-walled carbon nanotubes in single intratracheal instillation study using F344 gpt delta rats. Genes Environ 2017; 39:4. [PMID: 28074111 PMCID: PMC5217301 DOI: 10.1186/s41021-016-0065-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/08/2016] [Indexed: 11/20/2022] Open
Abstract
Introduction It is known that fibrous particles of micrometer length, such as carbon nanotubes, which have same dimensions as asbestos, are carcinogenic. Carcinogenicity of nanomaterials is strongly related to inflammatory reactions; however, the genotoxicity mechanism(s) is unclear. Indeed, inconsistent results on genotoxicity of multi-walled carbon nanotubes (MWCNTs) have been shown in several reports. Therefore, we analyzed the in vivo genotoxicity induced by an intratracheal instillation of straight MWCNTs in rats using a different test system—the Pig-a gene mutation assay—that can reflect the genotoxicity occurring in the bone marrow. Since lungs were directly exposed to MWCNTs upon intratracheal instillation, we also performed the gpt assay using the lungs. Findings We detected no significant differences in Pig-a mutant frequencies (MFs) between the MWCNT-treated and control rats. Additionally, we detected no significant differences in gpt MFs in the lung between the MWCNT-treated and control rats. Conclusions Our findings indicated that a single intratracheal instillation of MWCNTs was non-mutagenic to both the bone marrow and lung of rats.
Collapse
Affiliation(s)
- Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo, 158-8501 Japan
| | - Akiko Ukai
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo, 158-8501 Japan
| | - Akio Ogata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku, Tokyo, 169-0073 Japan
| | - Dai Nakae
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku, Tokyo, 169-0073 Japan ; Present address: Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo, 156-8502 Japan
| | - Hiroshi Ando
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku, Tokyo, 169-0073 Japan
| | - Yoshikazu Kubo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku, Tokyo, 169-0073 Japan
| | - Akemichi Nagasawa
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku, Tokyo, 169-0073 Japan
| | - Katsuhiro Yuzawa
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku, Tokyo, 169-0073 Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo, 158-8501 Japan
| |
Collapse
|
8
|
Kimoto T, Horibata K, Miura D, Chikura S, Okada Y, Ukai A, Itoh S, Nakayama S, Sanada H, Koyama N, Muto S, Uno Y, Yamamoto M, Suzuki Y, Fukuda T, Goto K, Wada K, Kyoya T, Shigano M, Takasawa H, Hamada S, Adachi H, Uematsu Y, Tsutsumi E, Hori H, Kikuzuki R, Ogiwara Y, Yoshida I, Maeda A, Narumi K, Fujiishi Y, Morita T, Yamada M, Honma M. The PIGRET assay, a method for measuring Pig-a gene mutation in reticulocytes, is reliable as a short-term in vivo genotoxicity test: Summary of the MMS/JEMS-collaborative study across 16 laboratories using 24 chemicals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:3-15. [DOI: 10.1016/j.mrgentox.2016.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|