1
|
Wāng Y, Han Y, Xu DX. Developmental impacts and toxicological hallmarks of silver nanoparticles across diverse biological models. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 19:100325. [PMID: 38046179 PMCID: PMC10692670 DOI: 10.1016/j.ese.2023.100325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
Silver nanoparticles (AgNPs), revered for their antimicrobial prowess, have become ubiquitous in a range of products, from biomedical equipment to food packaging. However, amidst their rising popularity, concerns loom over their possible detrimental effects on fetal development and subsequent adult life. This review delves into the developmental toxicity of AgNPs across diverse models, from aquatic species like zebrafish and catfish to mammalian rodents and in vitro embryonic stem cells. Our focus encompasses the fate of AgNPs in different contexts, elucidating associated hazardous results such as embryotoxicity and adverse pregnancy outcomes. Furthermore, we scrutinize the enduring adverse impacts on offspring, spanning impaired neurobehavior function, reproductive disorders, cardiopulmonary lesions, and hepatotoxicity. Key hallmarks of developmental harm are identified, encompassing redox imbalances, inflammatory cascades, DNA damage, and mitochondrial stress. Notably, we explore potential explanations, linking immunoregulatory dysfunction and disrupted epigenetic modifications to AgNPs-induced developmental failures. Despite substantial progress, our understanding of the developmental risks posed by AgNPs remains incomplete, underscoring the urgency of further research in this critical area.
Collapse
Affiliation(s)
- Yán Wāng
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yapeng Han
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
2
|
Hamed M, Soliman HAM, Said REM, Martyniuk CJ, Osman AGM, Sayed AEDH. Oxidative stress, antioxidant defense responses, and histopathology: Biomarkers for monitoring exposure to pyrogallol in Clarias gariepinus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119845. [PMID: 38109825 DOI: 10.1016/j.jenvman.2023.119845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
Pyrogallol promotes free radicals leading to oxidative stress and toxicity. There are however a lack of studies on oxidative stress and the antioxidant system of fish following exposure to pyrogallol. This study measured oxidative stress markers, antioxidant responses, and histological changes in catfish exposed to pyrogallol. Fish were divided into one of four experimental groups: control only, or 1, 5 or 10 mg/L pyrogallol. After 15 days, glutathione-S-transferase in the serum was decreased in fish exposed to either 5 or 10 mg/L pyrogallol relative to controls while superoxide dismutase and total antioxidant capacity were decreased significantly in fish exposed to 1, 5, or 10 mg/L pyrogallol. Conversely, catalase was increased in serum of fish exposed to 1, 5, or 10 mg/L pyrogallol compared to controls. The liver of fish treated with 1, 5, or 10 mg/L pyrogallol had significantly higher levels of oxidative stress markers (malondialdehyde, lipid peroxidation, hydroperoxide content, oxidised protein content, and DNA fragmentation %) that varied with concentration. Catfish exposed to either 1, 5, or 10 mg/L pyrogallol presented with notable histological alterations in the intestine, kidney, and muscles with prominent fibrosis, as intense deposition of collagen fibre was observed by Masson's trichrome staining. Overall, endpoints related to oxidative stress and antioxidant defence enzymes in fish may be early biomarkers of pyrogallol exposure and contamination in aquatic ecosystems. Additional studies should characterize oxidative stress indicators for their utility as biomarkers of effect.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut, 71524, Egypt.
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut, 71524, Egypt
| | - Christopher J Martyniuk
- Canter for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut, 71524, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
3
|
Wu M, Zheng N, Zhan X, He J, Xiao M, Zuo Z, He C. Icariin induces developmental toxicity via thyroid hormone disruption in zebrafish larvae. Food Chem Toxicol 2023; 182:114155. [PMID: 37898232 DOI: 10.1016/j.fct.2023.114155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Icariin (ICA) is a natural flavonoid isolated from the traditional Chinese medicinal herb, Epimedium brevicornu Maxim. Although previous studies have reported that ICA exhibits various pharmacological activities, little is known about its toxicology. Herein, zebrafish embryos were exposed to ICA at 0, 2.5, 10, and 40 μM. In developmental analysis, reduced hatching rates, decreased body length, and abnormal swim bladder were found after treatment with 10 and 40 μM ICA. In addition, the ability of locomotor behavior was impaired by ICA. Two important thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), were tested. The exposure resulted in a remarkable alteration of T4 level and a significant decrease of the T3/T4 ratio in the 40 μM, indicating thyroid endocrine disruption. Furthermore, gene transcription analysis showed that genes involved in thyroid development (nkx2.1) and THs synthesis (tg) were up-regulated after ICA exposure. Significant down-regulation of iodothyronine deiodinase (dio1) was also observed in the 10 and 40 μM groups compared to the control. Taken together, our study first demonstrated that ICA caused developmental toxicity possibly through disrupting thyroid development and hormone synthesis. These results show that it is necessary to perform risk assessments of ICA in clinical practice.
Collapse
Affiliation(s)
- Meifang Wu
- Fujian Institute of Subtropical Botany / Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Xiamen, Fujian, 361006, China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoxiao Zhan
- Fujian Institute of Subtropical Botany / Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Xiamen, Fujian, 361006, China
| | - Jianzhang He
- Fujian Institute of Subtropical Botany / Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Xiamen, Fujian, 361006, China
| | - Min Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
4
|
Noga M, Milan J, Frydrych A, Jurowski K. Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)—Critical Review: State of the Art. Int J Mol Sci 2023; 24:ijms24065133. [PMID: 36982206 PMCID: PMC10049346 DOI: 10.3390/ijms24065133] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, research on silver nanoparticles (AgNPs) has attracted considerable interest among scientists because of, among other things, their alternative application to well-known medical agents with antibacterial properties. The size of the silver nanoparticles ranges from 1 to 100 nm. In this paper, we review the progress of research on AgNPs with respect to the synthesis, applications, and toxicological safety of AgNPs, and the issue of in vivo and in vitro research on silver nanoparticles. AgNPs’ synthesis methods include physical, chemical, and biological routes, as well as “green synthesis”. The content of this article covers issues related to the disadvantages of physical and chemical methods, which are expensive and can also have toxicity. This review pays special attention to AgNP biosafety concerns, such as potential toxicity to cells, tissues, and organs.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Justyna Milan
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
- Correspondence: or
| |
Collapse
|
5
|
Bakr Z, Abdel-Wahab M, Thabet AA, Hamed M, El-Aal MA, Saad E, Faheem M, Sayed AEDH. Toxicity of silver, copper oxide, and polyethylene nanoparticles on the earthworm Allolobophora caliginosa using multiple biomarkers. APPLIED SOIL ECOLOGY 2023; 181:104681. [DOI: 10.1016/j.apsoil.2022.104681] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
6
|
Sayed AEDH, Taher H, Soliman HAM, Salah El-Din AED. Immunological and hemato-biochemical effects on catfish ( Clarias gariepinus) exposed to dexamethasone. Front Physiol 2022; 13:1018795. [PMID: 36187758 PMCID: PMC9525139 DOI: 10.3389/fphys.2022.1018795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Dexamethasone (glucocorticoid) was recently shown to be a life-saving drug for the treatment of SARS-CoV-2 disease. Water and sediments can be contaminated by sewage treatment plants when this product is widely used. Accordingly, we evaluated the effects of dexamethasone as pharmaceutical residue on Clarias gariepinus, following exposure and post-exposure recovery on blood biochemical, antioxidant, and cytokine markers. Three experimental groups were examined. Control, fish exposed to 0.3 mg/L of dexamethasone, and fish exposed to 3 mg/L of dexamethasone for 7 days, followed by a 15-days recovery period. Hematological indices, such as red blood cell number, hemoglobin (Hb), platelets, mean corpuscular hemoglobin concentration, and large lymphocytes, were significantly declined following the exposure to dexamethasone compared to control. In contrast, hematocrit (Ht), mean corpuscular volume, monocytes, small lymphocytes, and mean corpuscular hemoglobin increased significantly depending on the dose-concentration. Liver and kidney functions, other biochemical parameters (albumin and globulin), cortisol, and cytokine (IL-1β and IL-6) concentrations increased significantly after exposure to dexamethasone compared to control. Antioxidants and acetylcholinesterase enzymes were significantly decreased in catfish treated with dexamethasone cumulatively with doses. After a recovery period, blood biochemical, antioxidant, and cytokine markers were still elevated compared with the control group. In conclusion, dexamethasone at concentrations present in water bodies causes deleterious effects on blood biomarkers, biochemical, and antioxidant as well as immune upregulation in catfish until after depuration period.
Collapse
Affiliation(s)
| | - Hesham Taher
- Department of Water Biology, Faculty of Fish and Fisheries Technology, Aswan University, Aswan, Egypt
| | | | | |
Collapse
|
7
|
Lu C, Lv Y, Kou G, Liu Y, Liu Y, Chen Y, Wu X, Yang F, Luo J, Yang X. Silver nanoparticles induce developmental toxicity via oxidative stress and mitochondrial dysfunction in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113993. [PMID: 35994909 DOI: 10.1016/j.ecoenv.2022.113993] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023]
Abstract
Sliver nanoparticles (AgNPs) are widely used in industry, agriculture, and medicine, potentially resulting in adverse effects on human health and aquatic environments. Here, we investigated the developmental toxicity of zebrafish embryos with acute exposure to AgNPs. Our results demonstrated developmental defects in 4 hpf zebrafish embryos after exposure to different concentrations of AgNPs for 72 h. In addition, RNA-seq profiling of zebrafish embryos after AgNPs treatment. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the differentially expressed genes (DEGs) were enriched in DNA replication initiation, oxidoreductase activity, DNA replication, cellular senescence, and oxidative phosphorylation signaling pathways in the AgNPs-treated group. Notably, we also found that AgNPs exposure could result in the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), the inhibition of superoxide dismutase (SOD), catalase (CAT), and mitochondrial complex I-V activities, and the downregulated expression of SOD, CAT, and mitochondrial complex I-IV chain-related genes. Moreover, the expression of mitochondrion-mediated apoptosis signaling pathway-related genes, such as bax, bcl2, caspase-3, and caspase-9, was significantly regulated after AgNPs exposure in zebrafish. Therefore, these findings demonstrated that AgNPs exposure could cause oxidative stress, induce mitochondrial dysfunction, and ultimately lead to developmental toxicity.
Collapse
Affiliation(s)
- Chunjiao Lu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yuhang Lv
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Guanhua Kou
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yao Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yi Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xuewei Wu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Juanjuan Luo
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Bakr Z, Said SM, Mohammad WA, Aboulnasr GN, Elshimy NA. Silver-Nanoparticle- and Silver-Nitrate-Induced Antioxidant Disbalance, Molecular Damage, and Histochemical Change on the Land Slug (Lehmannia nyctelia) Using Multibiomarkers. Front Physiol 2022; 13:945776. [PMID: 35979412 PMCID: PMC9376806 DOI: 10.3389/fphys.2022.945776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
It is known that silver nanoparticles (Ag NPs) and AgNO3 have harmful effects on the surrounding organisms, which may cause damage to these organisms. Therefore, the aim of this study is to detect damage caused by Ag NPs and silver nitrate to land slugs (Lehmannia nyctelia). In this study, the slugs were exposed to various concentrations of Ag NPs and AgNO3 for 15 days. The biochemical, antioxidant, lipid peroxidation (LPO), DNA fragmentation, and histopathological endpoints were assessed after 15 days of exposure to different concentrations of Ag NPs (0.04, 0.08, 0.4, and 0.8 g/L) and silver nitrate (0.04, 0.08, 0.4, and 0.8 g/L). The results show a significant decrease in total protein, total carbohydrate, superoxide dismutase, and GST and a significant increase in total lipid, LPO, and DNA fragmentation after exposure to Ag NPs and AgNO3 for 15 days compared with the control group. Histopathiological alterations were observed in the digestive glands which were indicated by histochemical staining. We concluded that exposure to AgNO3 and Ag NPs caused oxidative stress, genetic damage and alterations in the profile of muscle proteins and histological structure in L. nyctelia.
Collapse
Affiliation(s)
- Zeinab Bakr
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
- *Correspondence: Zeinab Bakr,
| | | | - Wafaa A. Mohammad
- Zoology Department, Faculty of Science, New Valley University, New Valley, Egypt
| | - Gehad N. Aboulnasr
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Naser A. Elshimy
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Corsi I, Desimone MF, Cazenave J. Building the Bridge From Aquatic Nanotoxicology to Safety by Design Silver Nanoparticles. Front Bioeng Biotechnol 2022; 10:836742. [PMID: 35350188 PMCID: PMC8957934 DOI: 10.3389/fbioe.2022.836742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 01/13/2023] Open
Abstract
Nanotechnologies have rapidly grown, and they are considered the new industrial revolution. However, the augmented production and wide applications of engineered nanomaterials (ENMs) and nanoparticles (NPs) inevitably lead to environmental exposure with consequences on human and environmental health. Engineered nanomaterial and nanoparticle (ENM/P) effects on humans and the environment are complex and largely depend on the interplay between their peculiar properties such as size, shape, coating, surface charge, and degree of agglomeration or aggregation and those of the receiving media/body. These rebounds on ENM/P safety and newly developed concepts such as the safety by design are gaining importance in the field of sustainable nanotechnologies. This article aims to review the critical characteristics of the ENM/Ps that need to be addressed in the safe by design process to develop ENM/Ps with the ablility to reduce/minimize any potential toxicological risks for living beings associated with their exposure. Specifically, we focused on silver nanoparticles (AgNPs) due to an increasing number of nanoproducts containing AgNPs, as well as an increasing knowledge about these nanomaterials (NMs) and their effects. We review the ecotoxicological effects documented on freshwater and marine species that demonstrate the importance of the relationship between the ENM/P design and their biological outcomes in terms of environmental safety.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jimena Cazenave
- Laboratorio de Ictiología, Instituto Nacional de Limnología (INALI), CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
- *Correspondence: Jimena Cazenave,
| |
Collapse
|
10
|
Kolesnikov S, Minnikova T, Kazeev K, Akimenko Y, Evstegneeva N. Assessment of the Ecotoxicity of Pollution by Potentially Toxic Elements by Biological Indicators of Haplic Chernozem of Southern Russia (Rostov region). WATER, AIR, AND SOIL POLLUTION 2022; 233:18. [PMID: 35013627 PMCID: PMC8730484 DOI: 10.1007/s11270-021-05496-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The content of various chemical elements such as metals, metalloids, and nonmetals in the environment is associated with natural and anthropogenic sources. It is necessary to normalize the content of metals, metalloids, and nonmetals as potentially toxic elements (PTE) in the Haplic Chernozem. The soils of the Southern Russia are of high quality and fertility. However, this type of soil, like Haplic Chernozem, is subject to contamination with a wide range of PTE. The aim of the work was to rank metals, metalloids, and nonmetals by ecotoxicity in Haplic Chernozem. To assess the ecotoxicity of chernozem, data for 15 years (2005-2020) were used. Biological indicators used to assess the ecotoxicity of Haplic Chernozem: catalase activity, cellulolytic activity, number of bacteria, Azotobacter spp. abundance, to change of length of radish's roots. Based on these biological indicators, an integral indicator of the state of Haplic Chernozem was calculated. The ecotoxicity of 23 metals (Cd, Hg, Pb, Cr, Cu, Zn, Ni, Co, Mo, Mn, Ba, Sr, Sn, V, W, Ag, Bi, Ga, Nb, Sc, Tl, Y, Yb), 5 metalloids (B, As, Ge, Sb, Te) and 2 nonmetals (F, Se) as priority pollutants. It is proposed to distinguish three hazard classes of metals, metalloids, and nonmetals to Haplic Chernozem: I class - Te, Ag, Se, Cr, Bi, Ge, Sn, Tl, Hg, Yb, W, Cd; II class - As, Co, Sc, Sb, Cu, Ni, B, Nb, Pb, Ga; III class - Sr, Y, Mo, Zn, V, Ba, Mn, F. It is advisable to use the results of the study for predictive assessment of the impact of metals, metalloids, and nonmetals on the ecological state of the soil during pollution.
Collapse
Affiliation(s)
- Sergey Kolesnikov
- Academy of Biology and Biotechnology Named D.I. Ivanovsky, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Minnikova
- Academy of Biology and Biotechnology Named D.I. Ivanovsky, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Kamil Kazeev
- Academy of Biology and Biotechnology Named D.I. Ivanovsky, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Yulia Akimenko
- Academy of Biology and Biotechnology Named D.I. Ivanovsky, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Natalia Evstegneeva
- Academy of Biology and Biotechnology Named D.I. Ivanovsky, Southern Federal University, 344090 Rostov-on-Don, Russia
| |
Collapse
|
11
|
Sedyakina NE, Feldman NB, Gudkova OI, Rozofarov AL, Kuryakov VN, Lutsenko SV. Impact of silver nanoparticles synthesized by green method and microemulsion loaded with the nanoparticles on the development of cress. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Sedyakina NE, Feldman NB, Gudkova OI, Rozofarov AL, Kuryakov VN, Lutsenko SV. Impact of silver nanoparticles synthesized by green method and microemulsion loaded with the nanoparticles on the development of cress. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Faheem M, Adeel M, Khaliq S, Lone KP, El-Din-H-Sayed A. Bisphenol-A induced antioxidants imbalance and cytokines alteration leading to immune suppression during larval development of Labeo rohita. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26800-26809. [PMID: 32382907 DOI: 10.1007/s11356-020-08959-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Recently, the oxidative stress and immunotoxicity biomarkers have been extensively used in embryotoxicity using fish embryos as promising models especially after exposure to chemical-like environmental estrogens. Bisphenol-A (BPA) is an estrogenic endocrine disruptor and is ubiquitous in the aquatic environment. Larvae of Labeo rohita were exposed to low concentrations of BPA (10, 100, 1000 μg/l) for 21 days. Innate immune system, antioxidants parameters, and developmental alterations were used as biomarkers. Exposure to BPA caused developmental abnormalities including un-inflated swim bladder, delayed yolk sac absorption, spinal curvature, and edema of pericardium. Lipid peroxidation increased and activity of catalase (p < 0.05), superoxide dismutase (p < 0.05), and glutathione peroxidase (p < 0.01) decreased after exposure to BPA. Level of reduced glutathione also decreased (p < 0.05) in BPA-exposed group. Lower expression of tumor necrosis factor-α (p < 0.05) and interferon-γ (p < 0.001) was observed in BPA-exposed groups while expression of interleukin-10 increased (p < 0.05) in larvae exposed to 10 μg/l BPA. Moreover, exposure of BPA caused a concentration-dependent increase in expression of heat shock protein 70 (p < 0.05). The present study showed that the exposure to BPA in early life stages of Labeo rohita caused oxidative stress and suppress NF-κB signaling pathway leading to immunosuppression. The results presented here demonstrate the cross talk between heat shock protein 70 and cytokines expression.
Collapse
Affiliation(s)
| | | | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Khalid P Lone
- Department of Zoology, GC University, Lahore, Pakistan
| | | |
Collapse
|
14
|
Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, Seabra AB. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121974. [PMID: 32062374 DOI: 10.1016/j.jhazmat.2019.121974] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/28/2019] [Accepted: 12/23/2019] [Indexed: 05/02/2023]
Abstract
Silver nanoparticles (AgNPs) have attracted remarkable attention due to their powerful antimicrobial action as well as their particular physicochemical properties. This has led to their application in a wide variety of products with promising results. However, their interaction with the environment and toxicity in live terrestrial or aquatic organisms is still a matter of intense debate. More detailed knowledge is still required about the toxicity of AgNPs, their possible uptake mechanisms and their adverse effects in live organisms. Several studies have reported the interactions and potential negative effects of AgNPs in different organisms. In this review, we report and discuss the current state of the art and perspectives for the impact of AgNPs on different organisms present in the environment. Recent progress in interpreting uptake, translocation and accumulation mechanisms in different organisms and/or living animals are discussed, as well as the toxicity of AgNPs and possible tolerance mechanisms in live organisms to cope with their deleterious effects. Finally, we discuss the challenges of accurate physicochemical characterization of AgNPs and their ecotoxicity in environmentally realistic conditions such as soil and water media.
Collapse
Affiliation(s)
- G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, 54-D, Temuco, Chile.
| | - O Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, 54-D, Temuco, Chile; Chemical Engineering Department, Universidad de La Frontera, PO Box 54-D, Temuco, Chile
| | - N Durán
- NanoBioss Lab., Chemistry Institute, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - M C Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, 54-D, Temuco, Chile; Chemical Engineering Department, Universidad de La Frontera, PO Box 54-D, Temuco, Chile
| | - M Martínez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - J Parada
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, 54-D, Temuco, Chile
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal d ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
15
|
Mekkawy IA, Mahmoud UM, Moneeb RH, Sayed AEDH. Significance Assessment of Amphora coffeaeformis in Arsenic-Induced Hemato- Biochemical Alterations of African Catfish (Clarias gariepinus). FRONTIERS IN MARINE SCIENCE 2020; 7. [DOI: 10.3389/fmars.2020.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Sayed AEDH, Mekkawy IA, Mahmoud UM, Nagiub M. Histopathological and histochemical effects of silver nanoparticles on the gills and muscles of African catfish (Clarias garepinus). SCIENTIFIC AFRICAN 2020; 7:e00230. [DOI: 10.1016/j.sciaf.2019.e00230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
The interaction of nanostructured antimicrobials with biological systems: Cellular uptake, trafficking and potential toxicity. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2019.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Mahmoud UM, Mekkawy IAA, Naguib M, Sayed AEDH. Silver nanoparticle-induced nephrotoxicity in Clarias gariepinus: physio-histological biomarkers. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1895-1905. [PMID: 31399920 DOI: 10.1007/s10695-019-00686-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
The present study investigates the nephrotoxic effects of two acute doses of silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on the African catfish, Clarias gariepinus, using biochemical, histochemical, and histopathological changes as biomarkers. AgNP-induced impacts were recorded in some of these characteristics on the bases of their size (20 and 40 nm) and concentration (10 and 100 μg/L) but no significant interaction between size and concentration. AgNO3 had low significant adverse effects on some parameters in comparison with those impacts of AgNPs. The concentrations of creatinine and uric acid exhibited different significant variations under stress in all exposed groups compared with those in the control group. On the tissue and cell levels, histopathological changes were observed. These changes include hypertrophies of glomeruli, proliferation in the haemopoietic tissue, dissociation in renal tubules, shrinkage of glomerulus, hydropic degeneration, dilatation of renal tubules, aggregation of melanomacrophages, rupture of Bowman's capsule, and the glomerular tuft and dilatation of Bowman's space. In more severe cases, the degenerative process leads to tissue necrosis in the kidney of AgNP-exposed fish as well as carbohydrate depletion; a faint coloration was also observed in the brush borders and basement membrane with a large amount of connective tissue fibers around the blood vessels and the renal tubules. Recovery period for 15 days led to improvement of most of the alterations in biochemical, histopathological, and histochemical parameters induced by AgNPs and AgNO3. In conclusion, one can postulate on the sensitivity of the kidney of C. gariepinus to AgNPs and recovery strategy is a must.
Collapse
Affiliation(s)
- Usama M Mahmoud
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Imam A A Mekkawy
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Mervat Naguib
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
19
|
Jenifer AA, Malaikozhundan B, Vijayakumar S, Anjugam M, Iswarya A, Vaseeharan B. Green Synthesis and Characterization of Silver Nanoparticles (AgNPs) Using Leaf Extract of Solanum nigrum and Assessment of Toxicity in Vertebrate and Invertebrate Aquatic Animals. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01704-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Hedayati SA, Farsani HG, Naserabad SS, Hoseinifar SH, Van Doan H. Protective effect of dietary vitamin E on immunological and biochemical induction through silver nanoparticles (AgNPs) inclusion in diet and silver salt (AgNO 3) exposure on Zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:100-107. [PMID: 31004833 DOI: 10.1016/j.cbpc.2019.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022]
Abstract
The present study evaluated silver nanoparticle (AgNPs) toxicity using biomarkers of oxidative and metabolic stress, immunological impairment and cellular damage in zebrafish (Danio rerio), as well as the optimal dose of vitamin E neutralizing undesirable effects. Fish were fed for ten days and eight study groups were investigated: controls, AgNPs exposure alone (1.5 mg L-1) and combined with three different vitamin E doses (1.5 mg L-1 of AgNPs + vitamin E 100, 200 or 400 mg kg-1 of food), also one positive control group exposed to AgNO3 alone or combined with the same vitamin E doses. D. rerio exposed to AgNPs alone or combined with the lower vitamin E dose showed overall worse results in comparison with the control groups and the groups combining nanoparticles and 200 or 400 mg kg-1 of food of vitamin E-supplemented diet. AgNPs caused cell impairment by increasing LDH activity and cortisol levels, generated oxidative stress by inhibiting SOD and CAT activity and immunosuppression by inhibiting ACH50 and lysozyme activity. The groups exposed to Ag salt showed the same response-pattern found for the NPs groups, reinforcing that Ag toxicity of AgNPs is mediated by Ag+. In conclusion, although AgNPs are toxic to Danio rerio, vitamin E supplementation at 200 or 400 mg kg-1 can act protectively against its toxic effects.
Collapse
Affiliation(s)
- Seyed Aliakbar Hedayati
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hamed Ghafari Farsani
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay keaw Rd., Suthep, Muang, Chiang Mai 50200, Thailand.
| |
Collapse
|
21
|
Hamed M, Soliman HAM, Sayed AEDH. Ameliorative effect of Spirulina platensis against lead nitrate-induced cytotoxicity and genotoxicity in catfish Clarias gariepinus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20610-20618. [PMID: 31104244 DOI: 10.1007/s11356-019-05319-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
The present study was designed to investigate the protective role of dietary supplementation of Spirulina platensis (SP) against cytotoxic and genotoxic effects of lead nitrate in Clarias gariepinus. Four groups of fishes were used: first group as control which fed on basal diet, second group fed on basal diet and exposed to (1 mg/L of lead nitrate), third group fed on diet containing 0.25% SP and exposed to (1 mg/L of lead nitrate), and fourth group fed on diet containing 0.5%SP and exposed to (1 mg/L of lead nitrate). Fish samples were taken at 2nd and 4th week of exposure. The hematological indices of lead nitrate-exposed group were decreased significantly compared to the control group at 2nd and 4th week of exposure. Lead nitrate caused a significant increase in the percentage of poikilocytosis, micronuclei, and apoptotic cells as well as comet tail length and olive tail moment compared with the control group at 2nd and 4th week of exposure. The highest level of damage was found on 4th week of exposure with all parameters. Dietary inclusion of SP ameliorated these cytotoxic and genetic changes, as well as this amelioration was concentration and time dependent. Consequently, the present study proposed that the addition of SP to the fish diet can be used as a promising protective agent to oppose cytotoxic and genotoxic effects of lead nitrate in aquaculture. Graphical abstract.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
22
|
Soliman HAM, Hamed M, Lee JS, Sayed AEDH. Protective effects of a novel pyrazolecarboxamide derivative against lead nitrate induced oxidative stress and DNA damage in Clarias gariepinus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:678-684. [PMID: 30711823 DOI: 10.1016/j.envpol.2019.01.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 02/07/2023]
Abstract
Pyrazole derivatives display diverse biological and pharmacological activities. The aim of this study is to investigate the antioxidant properties of a novel pyrazolecarboxamide derivative (4-amino-N-[(4-chlorophenyl)]-3-methyl-1-phenyl-1H-thieno [2, 3-c] pyrazole-5-carboxamide) in African catfish, Clarias gariepinus, exposed to 1 mg/L PbNO3. Fish were intramuscularly injected with pyrazole-5-carboxamidederivative according to the following groupings: Group 1 (control), Group 2 (1 mg/L lead nitrate), Group 3 (1 mg/L lead nitrate + 5 mg pyrazole derivative/kg body weight), and Group 4 (1 mg/L lead nitrate + 10 mg pyrazole derivative/kg body weight) for two weeks and four weeks. Lead nitrate (1 mg/L) caused significant elevation of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, uric acid, cholesterol, and glucose-6-phosphate dehydrogenase (G6PDH) compared to the control group after two and four weeks of exposure, while serum total lipids, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were significantly reduced compared to the control group. Furthermore, levels of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and total antioxidant capacity (TAC) were reduced in group 2 compared to the control group. However, in group 2, hepatic lipid peroxidation (LPO) and DNA fragmentation percentage were significantly increased compared to the control group. Histopathological changes in the liver of lead-exposed groups included marked disturbance of hepatic tissue organization, degeneration of hepatocytes, dilation of blood sinusoids and the central vein as well as necrosis. Injection of pyrazole derivative for two weeks and four weeks reversed alterations in biochemical parameters, antioxidant biomarkers, lipid peroxidation, hepatic DNA damage, and histopathological changes in liver tissue induced by 1 mg/L lead nitrate. This amelioration was higher in response to high-dose pyrazole derivative (10 mg) at the fourth week of exposure, showing concentration-and time-dependency. Overall, the sensitized derivative pyrazolecarboxamide is likely a useful tool to minimize the effects of lead toxicity due to its potent antioxidant activity.
Collapse
Affiliation(s)
- Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, 8562, Sohag, Egypt
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al Azhar University (Assiut Branch), 71524, Assiut, Egypt
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| |
Collapse
|
23
|
Zhang Y, Wang Q, Bi Y, Cheng KW, Chen F. Nutritional and functional activities of protein from steamed, baked, and high hydrostatic pressure treated cod (Gadus morhua). Food Control 2019. [DOI: 10.1016/j.foodcont.2018.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Cinteza LO, Scomoroscenco C, Voicu SN, Nistor CL, Nitu SG, Trica B, Jecu ML, Petcu C. Chitosan-Stabilized Ag Nanoparticles with Superior Biocompatibility and Their Synergistic Antibacterial Effect in Mixtures with Essential Oils. NANOMATERIALS 2018; 8:nano8100826. [PMID: 30322127 PMCID: PMC6215195 DOI: 10.3390/nano8100826] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Silver nanoparticles (AgNPs) are considered a promising alternative to the use of antibiotics in fighting multidrug-resistant pathogens. However, their use in medical application is hindered by the public concern regarding the toxicity of metallic nanoparticles. In this study, rationally designed AgNP were produced, in order to balance the antibacterial activity and toxicity. A facile, environmentally friendly synthesis was used for the electrochemical fabrication of AgNPs. Chitosan was employed as the capping agent, both for the stabilization and to improve the biocompatibility. Size, morphology, composition, capping layer, and stability of the synthesized nanoparticles were characterized. The in vitro biocompatibility and antimicrobial activities of AgNPs against common Gram-negative and Gram-positive bacteria were evaluated. The results revealed that chitosan-stabilized AgNPs were nontoxic to normal fibroblasts, even at high concentrations, compared to bare nanoparticles, while significant antibacterial activity was recorded. The silver colloidal dispersion was further mixed with essential oils (EO) to increase the biological activity. Synergistic effects at some AgNP–EO ratios were observed, as demonstrated by the fractionary inhibitory concentration values. Our results reveal that the synergistic action of both polymer-stabilized AgNPs and essential oils could provide a significant efficiency against a large variety of microorganisms, with minimal side effects.
Collapse
Affiliation(s)
| | | | - Sorina Nicoleta Voicu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest 030018, Romania.
| | - Cristina Lavinia Nistor
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, 202 Spl. Independentei, Bucharest 060021, Romania.
| | - Sabina Georgiana Nitu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, 202 Spl. Independentei, Bucharest 060021, Romania.
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, 202 Spl. Independentei, Bucharest 060021, Romania.
| | - Maria-Luiza Jecu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, 202 Spl. Independentei, Bucharest 060021, Romania.
| | - Cristian Petcu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, 202 Spl. Independentei, Bucharest 060021, Romania.
| |
Collapse
|
25
|
Du J, Tang J, Xu S, Ge J, Dong Y, Li H, Jin M. A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms. Regul Toxicol Pharmacol 2018; 98:231-239. [PMID: 30096342 DOI: 10.1016/j.yrtph.2018.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/23/2018] [Accepted: 08/05/2018] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (Ag-NPs) are increasingly being applied in many consumer products due to their unique properties. Widespread use of Ag-NPs leads to an increasing human exposure to Ag-NPs in many different pathways. This review summarized the toxicity mechanisms of Ag-NPs based on various environmentally relevant test species, such as bacteria, cells, plants, aquatic animals and mammals, in both in vitro and in vivo experiments. Nanoparticles were usually exposed to combination chemicals but to single chemicals in the environment and thereby exert combined toxicities to the organisms. Therefore, the joint effects of nanomaterials and their co-existing characteristics were also discussed. The current knowledge gaps and safe product designs of Ag-NPs have been discussed in detail. The limited and existing data implied that understanding the toxicity mechanisms is crucial to the future research development of nanomaterials.
Collapse
Affiliation(s)
- Jia Du
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, 1158, Baiyang Rd, Hangzhou, 310018, PR China.
| | - Junhong Tang
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, 1158, Baiyang Rd, Hangzhou, 310018, PR China.
| | - Shaodan Xu
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, 1158, Baiyang Rd, Hangzhou, 310018, PR China.
| | - Jingyuan Ge
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, 1158, Baiyang Rd, Hangzhou, 310018, PR China.
| | - Yuwei Dong
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, 1158, Baiyang Rd, Hangzhou, 310018, PR China.
| | - Huanxuan Li
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, 1158, Baiyang Rd, Hangzhou, 310018, PR China.
| | - Meiqing Jin
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, 1158, Baiyang Rd, Hangzhou, 310018, PR China.
| |
Collapse
|
26
|
Sayed AEDH, Soliman HAM. Modulatory effects of green tea extract against the hepatotoxic effects of 4-nonylphenol in catfish (Clarias gariepinus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:159-165. [PMID: 29156308 DOI: 10.1016/j.ecoenv.2017.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
The antioxidant role of the green tea (Camellia sinensis) extract (GTE) was examined to remedy the toxic effects of (0.2mgl-1) 4-nonylphenol(4-NP). Biochemical parameters, antioxidant enzymes, liver lipid peroxidation (LPO), DNA fragmentation, and apoptosis as well as histopathology of liver of African catfish Clarias gariepinus were considered. Catfishes were divided into four groups: first group (control), second group (0.2mgl-1 of 4-NP), third group (0.2mgl-1of 4-NP +100mg GTE l-1water), and fourth group (0.2mgl-1 of 4-NP +200mg GTE l-1water). The results showed that significant increments of serum glucose, AST, ALT, total protein, total lipids, cholesterol, G6PDH, and cortisol. Meanwhile, serum acetylcholinesterase, ALP, and LDH were significantly reduced. In addition, antioxidant enzymes (SOD, CAT, GST, and TAC) levels were reduced in 4-NP treated fish compared to control. Also, there were significant increments in hepatic LPO, DNA fragmentation, and apoptotic erythrocytes in 4-NP treated fish compared to control. Liver of 4-NP treated fish showed some histopathological alterations such as, vacuolization in hepatocytes, congestion in central vein, infiltration of mononuclear inflammatory cells, and necrosis as well as depletion of glycogen content of liver. Addition of green tea extract into the water restored the alterations in most of those biomarkers induced by 4-NP. We concluded that, GTE has a protective role against hepatic failure, depletion of antioxidant defense, and genotoxicity induced 4-NP in C. gariepinus.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | - Hamdy A M Soliman
- Zoology Department, Faculty of Science, Sohag University, 8562 Sohag, Egypt
| |
Collapse
|
27
|
|