1
|
Fujiwara T, Liu H, Meza-Torres EI, Morero RE, Vega AJ, Liang Z, Ebihara A, Leitch IJ, Schneider H. Evolution of genome space occupation in ferns: linking genome diversity and species richness. ANNALS OF BOTANY 2023; 131:59-70. [PMID: 34259813 PMCID: PMC9904345 DOI: 10.1093/aob/mcab094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/10/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The dynamics of genome evolution caused by whole genome duplications and other processes are hypothesized to shape the diversification of plants and thus contribute to the astonishing variation in species richness among the main lineages of land plants. Ferns, the second most species-rich lineage of land plants, are highly suitable to test this hypothesis because of several unique features that distinguish fern genomes from those of seed plants. In this study, we tested the hypothesis that genome diversity and disparity shape fern species diversity by recording several parameters related to genome size and chromosome number. METHODS We conducted de novo measurement of DNA C-values across the fern phylogeny to reconstruct the phylogenetic history of the genome space occupation in ferns by integrating genomic parameters such as genome size, chromosome number and average DNA amount per chromosome into a time-scaled phylogenetic framework. Using phylogenetic generalized least square methods, we determined correlations between chromosome number and genome size, species diversity and evolutionary rates of their transformation. KEY RESULTS The measurements of DNA C-values for 233 species more than doubled the taxon coverage from ~2.2 % in previous studies to 5.3 % of extant diversity. The dataset not only documented substantial differences in the accumulation of genomic diversity and disparity among the major lineages of ferns but also supported the predicted correlation between species diversity and the dynamics of genome evolution. CONCLUSIONS Our results demonstrated substantial genome disparity among different groups of ferns and supported the prediction that alterations of reproductive modes alter trends of genome evolution. Finally, we recovered evidence for a close link between the dynamics of genome evolution and species diversity in ferns for the first time.
Collapse
Affiliation(s)
- Tao Fujiwara
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
- Makino Herbarium, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, Japan
| | - Hongmei Liu
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | - Esteban I Meza-Torres
- Instituto de Botánica del Nordeste, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas, Corrientes, Argentina
| | - Rita E Morero
- Instituto Multidiscipinario de Biologia Vegetal, Universidad Nacional de Cordoba, Consejo Nacional de Investigaciones Científicas y Tecnicas, Cordoba, Argentina
| | - Alvaro J Vega
- Instituto de Botánica del Nordeste, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas, Corrientes, Argentina
| | - Zhenlong Liang
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | - Atsushi Ebihara
- Department of Botany, National Museum of Nature and Sciences, Tsukuba, Japan
| | | | | |
Collapse
|
2
|
Wang FG, Wang AH, Bai CK, Jin DM, Nie LY, Harris AJ, Che L, Wang JJ, Li SY, Xu L, Shen H, Gu YF, Shang H, Duan L, Zhang XC, Chen HF, Yan YH. Genome size evolution of the extant lycophytes and ferns. PLANT DIVERSITY 2022; 44:141-152. [PMID: 35505989 PMCID: PMC9043363 DOI: 10.1016/j.pld.2021.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 05/11/2023]
Abstract
Ferns and lycophytes have remarkably large genomes. However, little is known about how their genome size evolved in fern lineages. To explore the origins and evolution of chromosome numbers and genome size in ferns, we used flow cytometry to measure the genomes of 240 species (255 samples) of extant ferns and lycophytes comprising 27 families and 72 genera, of which 228 species (242 samples) represent new reports. We analyzed correlations among genome size, spore size, chromosomal features, phylogeny, and habitat type preference within a phylogenetic framework. We also applied ANOVA and multinomial logistic regression analysis to preference of habitat type and genome size. Using the phylogeny, we conducted ancestral character reconstruction for habitat types and tested whether genome size changes simultaneously with shifts in habitat preference. We found that 2C values had weak phylogenetic signal, whereas the base number of chromosomes (x) had a strong phylogenetic signal. Furthermore, our analyses revealed a positive correlation between genome size and chromosome traits, indicating that the base number of chromosomes (x), chromosome size, and polyploidization may be primary contributors to genome expansion in ferns and lycophytes. Genome sizes in different habitat types varied significantly and were significantly correlated with habitat types; specifically, multinomial logistic regression indicated that species with larger 2C values were more likely to be epiphytes. Terrestrial habitat is inferred to be ancestral for both extant ferns and lycophytes, whereas transitions to other habitat types occurred as the major clades emerged. Shifts in habitat types appear be followed by periods of genomic stability. Based on these results, we inferred that habitat type changes and multiple whole-genome duplications have contributed to the formation of large genomes of ferns and their allies during their evolutionary history.
Collapse
Affiliation(s)
- Fa-Guo Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ai-Hua Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China
| | - Cheng-Ke Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Dong-Mei Jin
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Li-Yun Nie
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Department of Biology, Oberlin College, Oberlin, OH, 44074, USA
| | - Le Che
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Juan-Juan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shi-Yu Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lei Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hui Shen
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yu-Feng Gu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, 518114, Shenzhen, China
- Life Science and Technology College, Harbin Normal University, Harbin, 150025, China
| | - Hui Shang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Lei Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hong-Feng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Corresponding author.
| | - Yue-Hong Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, 518114, Shenzhen, China
- Corresponding author. The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, 518114, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Igamberdiev AU. The drawbridge of nature: Evolutionary complexification as a generation and novel interpretation of coding systems. Biosystems 2021; 207:104454. [PMID: 34126191 DOI: 10.1016/j.biosystems.2021.104454] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023]
Abstract
The phenomenon of evolutionary complexification corresponds to the generation of new coding systems (defined as а codepoiesis by Marcello Barbieri). The whole process of generating novel coding statements that substantiate organizational complexification leads to an expansion of the system that incorporates externality to support newly generated complex structures. During complexifying evolution, the values are assigned to the previously unproven statements via their encoding by using new codes or rearranging the old ones. In this perspective, living systems during evolution continuously realize the proof of Gödel's theorem. In the real physical world, this realization is grounded in the irreversible reduction of the fundamental uncertainty appearing in the self-referential process of internal measurement performed by living systems. It leads to the formation of reflexive loops that establish novel interrelations between the biosystem and the external world and provide a possibility of active anticipatory transformation of externality. We propose a metamathematical framework that can account for the underlying logic of codepoiesis, outline the basic principles of the generation of new coding systems, and describe main codepoietic events in the course of progressive biological evolution. The evolutionary complexification is viewed as a metasystem transition that results in the increase of external work by the system based on the division of labor between its components.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
4
|
Slijepcevic P, Wickramasinghe C. Reconfiguring SETI in the microbial context: Panspermia as a solution to Fermi's paradox. Biosystems 2021; 206:104441. [PMID: 33965445 DOI: 10.1016/j.biosystems.2021.104441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022]
Abstract
All SETI (Search for Extraterrestrial Intelligence) programmes that were conceived and put into practice since the 1960s have been based on anthropocentric ideas concerning the definition of intelligence on a cosmic-wide scale. Brain-based neuronal intelligence, augmented by AI, are currently thought of as being the only form of intelligence that can engage in SETI-type interactions, and this assumption is likely to be connected with the dilemma of the famous Fermi paradox. We argue that high levels of intelligence and cognition inherent in ensembles of bacteria are much more likely to be the dominant form of cosmic intelligence, and the transfer of such intelligence is enabled by the processes of panspermia. We outline the main principles of bacterial intelligence, and how this intelligence may be used by the planetary-scale bacterial system, or the bacteriosphere, through processes of biological tropism, to connect to any extra-terrestrial microbial forms, independently of human interference.
Collapse
Affiliation(s)
- Predrag Slijepcevic
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Chandra Wickramasinghe
- Buckingham Centre for Astrobiology, University of Buckingham, UK; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; National Institute of Fundamental Studies, Kandy, Sri Lanka
| |
Collapse
|
5
|
Pellestor F, Gatinois V. Chromoanagenesis: a piece of the macroevolution scenario. Mol Cytogenet 2020; 13:3. [PMID: 32010222 PMCID: PMC6988253 DOI: 10.1186/s13039-020-0470-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/05/2020] [Indexed: 01/04/2023] Open
Abstract
Over the last decade, new types of massive and complex chromosomal rearrangements based on the chaotic shattering and restructuring of chromosomes have been identified in cancer cells as well as in patients with congenital diseases and healthy individuals. These unanticipated phenomena are named chromothripsis, chromoanasynthesis and chromoplexy, and are grouped under the term of chromoanagenesis. As mechanisms for rapid and profound genome modifications in germlines and early development, these processes can be regarded as credible pathways for genomic evolution and speciation process. Their discovery confirms the importance of genome-centric investigations to fully understand organismal evolution. Because they oppose the model of progressive acquisition of driver mutations or rearrangements, these phenomena conceptually give support to the concept of macroevolution, known through the models of “Hopeful Monsters” and the “Punctuated Equilibrium”. In this review, we summarize mechanisms underlying chromoanagenesis processes and we show that numerous cases of chromosomal speciation and short-term adaptation could be correlated to chromoanagenesis-related mechanisms. In the frame of a modern and integrative analysis of eukaryote evolutionary processes, it seems important to consider the unexpected chromoanagenesis phenomena.
Collapse
Affiliation(s)
- Franck Pellestor
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France.,INSERM 1183 «Genome and Stem Cell Plasticity in Development and Aging », Institute of Regenerative Medicine and Biotherapies, St Eloi Hospital, Montpellier, France
| | - Vincent Gatinois
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France.,INSERM 1183 «Genome and Stem Cell Plasticity in Development and Aging », Institute of Regenerative Medicine and Biotherapies, St Eloi Hospital, Montpellier, France
| |
Collapse
|
6
|
Hjelmen CE, Blackmon H, Holmes VR, Burrus CG, Johnston JS. Genome Size Evolution Differs Between Drosophila Subgenera with Striking Differences in Male and Female Genome Size in Sophophora. G3 (BETHESDA, MD.) 2019; 9:3167-3179. [PMID: 31358560 PMCID: PMC6778784 DOI: 10.1534/g3.119.400560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
Genome size varies across the tree of life, with no clear correlation to organismal complexity or coding sequence, but with differences in non-coding regions. Phylogenetic methods have recently been incorporated to further disentangle this enigma, yet most of these studies have focused on widely diverged species. Few have compared patterns of genome size change in closely related species with known structural differences in the genome. As a consequence, the relationship between genome size and differences in chromosome number or inter-sexual differences attributed to XY systems are largely unstudied. We hypothesize that structural differences associated with chromosome number and X-Y chromosome differentiation, should result in differing rates and patterns of genome size change. In this study, we utilize the subgenera within the Drosophila to ask if patterns and rates of genome size change differ between closely related species with differences in chromosome numbers and states of the XY system. Genome sizes for males and females of 152 species are used to answer these questions (with 92 newly added or updated estimates). While we find no relationship between chromosome number and genome size or chromosome number and inter-sexual differences in genome size, we find evidence for differing patterns of genome size change between the subgenera, and increasing rates of change throughout time. Estimated shifts in rates of change in sex differences in genome size occur more often in Sophophora and correspond to known neo-sex events.
Collapse
Affiliation(s)
- Carl E Hjelmen
- Department of Biology and
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Heath Blackmon
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | | - Crystal G Burrus
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | |
Collapse
|