1
|
Vacario BGL, da Silva IM, Machado MG, Orrutéa JFG, Campos AGH, Matos RO, Federige ACL, Koizumi BY, Leite MB, Komori IMS, Dos Santos Jaques H, Rech D, Guembarovski RL, Amarante MK, Serpeloni JM, Panis C. Pesticide exposure and oxidative stress generation are linked to poor prognosis outcomes in breast cancer women carrying the allelic variant rs7438135 in the UGT2B7 gene. J Biochem Mol Toxicol 2024; 38:e70013. [PMID: 39392214 DOI: 10.1002/jbt.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Pesticide exposure is a risk factor for the development of several diseases, including breast cancer (BC). The enzyme UGT2B7 participate in detoxification of pesticides and the presence rs7438135 (G > A) variant in your gene increases its glucuronidation potential, contributing to oxidative stress metabolites neutralization. Here we investigated the impact of occupational pesticide exposure on the systemic oxidative stress generation from 228 women with BC depending on their UGT2B7 rs7438135 (G > A) status. q-PCR investigated the presence of the rs7438135 variant, and oxidative stress markers (lipid peroxidation levels, total antioxidant capacity-TRAP, and nitric oxide metabolites-NOx) were measured in plasma. Pesticide exposure induced significant augment in the systemic lipid peroxidation in the presence of the variant for several clinicopathological conditions, including tumors with high proliferation index (ki67) and with high aggressiveness. NOx was augmented in high ki67, positive progesterone receptors, high-grade and triple-negative/Luminal B tumors, and low-risk stratified patients. TRAP was depleted in young patients at menopause and those with triple-negative/Luminal B tumors, as well as those stratified as at low risk for death and recurrence. These findings showed that the presence of the variant was not able to protect from pesticide-induced oxidative stress generation in BC patients.
Collapse
Affiliation(s)
- Beatriz Geovana Leite Vacario
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
- Laboratory of Tumor Biology, State University of West Paraná (UNIOESTE), Francisco Beltrão, Paraná, Brazil
| | - Isabely Mayara da Silva
- Laboratory of Mutagenesis and Oncogenetics, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Murilo Galvani Machado
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | | | | | - Rafaela Oliveira Matos
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Ana Carolina Lopes Federige
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Bruna Yukie Koizumi
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Maikely Bruna Leite
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Isabela Mitsu Suo Komori
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Hellen Dos Santos Jaques
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Daniel Rech
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Roberta Losi Guembarovski
- Laboratory of Mutagenesis and Oncogenetics, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Marla Karine Amarante
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Juliana Mara Serpeloni
- Laboratory of Mutagenesis and Oncogenetics, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Carolina Panis
- Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil
- Laboratory of Tumor Biology, State University of West Paraná (UNIOESTE), Francisco Beltrão, Paraná, Brazil
| |
Collapse
|
2
|
Yow HY, Ikawati M, Siswanto S, Hermawan A, Rahmat AK, Tan JSL, Tee YC, Ng KP, Ikawati Z. Influence of genetic polymorphisms on pharmacokinetics and treatment response of mycophenolic acid: a scoping review. Pharmacogenomics 2024; 25:259-288. [PMID: 38884938 PMCID: PMC11388138 DOI: 10.1080/14622416.2024.2344430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
This scoping review explores the impact of genetic polymorphisms on the pharmacokinetics and treatment responses of mycophenolic acid (MPA), an immunosuppressant. The study includes 83 articles from 1226 original studies, focusing on transplantation (n = 80) and autoimmune disorders (n = 3). Genetic variants in uridine 5'-diphospho-glucuronosyltransferase (UGT1A9, UGT1A8 and UGT2B7) and transmembrane transporters (ABCC2, SLCO1B1, SLCO1B3 and ABCB1) significantly affected MPA's pharmacokinetics and susceptibility to its adverse effect. Whereas variants in several genes including UGT1A9, UGT2B7, IMPDH1 and IMPDH2 have been associated with a higher risk of transplant rejection. However, there is a lack of studies on MPA's impact on autoimmune disorders and limited research on the Asian population. The findings underscore the need for further research on MPA's impact across different populations and diseases, particularly among other Asian ethnic groups, to advance personalized medicine in MPA therapy.
Collapse
Affiliation(s)
- Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Muthi Ikawati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Soni Siswanto
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Adam Hermawan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
- Advanced Pharmaceutical Sciences Laboratory, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Alim Khodimul Rahmat
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Janet Sui-Ling Tan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ying-Chew Tee
- Rheumatology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kok-Peng Ng
- Nephrology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zullies Ikawati
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| |
Collapse
|
3
|
Xie Q, Cao Z, You W, Cai X, Shen M, Yin Z, Jiang Y, Wang X, Ye S. Ganodermanontriol Suppresses the Progression of Lung Adenocarcinoma by Activating CES2 to Enhance the Metabolism of Mycophenolate Mofetil. J Microbiol Biotechnol 2024; 34:249-261. [PMID: 38419324 PMCID: PMC10940751 DOI: 10.4014/jmb.2306.06020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 03/02/2024]
Abstract
New anti-lung cancer therapies are urgently required to improve clinical outcomes. Since ganodermanontriol (GDNT) has been identified as a potential antineoplastic agent, its role in lung adenocarcinoma (LUAD) is investigated in this study. Concretely, lung cancer cells were treated with GDNT and/or mycophenolate mofetil (MMF), after which MTT assay, flow cytometry and Western blot were conducted. Following bioinformatics analysis, carboxylesterase 2 (CES2) was knocked down and rescue assays were carried out in vitro. Xenograft experiment was performed on mice, followed by drug administration, measurement of tumor growth and determination of CES2, IMPDH1 and IMPDH2 expressions. As a result, the viability of lung cancer cells was reduced by GDNT or MMF. GDNT enhanced the effects of MMF on suppressing viability, promoting apoptosis and inducing cell cycle arrest in lung cancer cells. GDNT up-regulated CES2 level, and strengthened the effects of MMF on down-regulating IMPDH1 and IMPDH2 levels in the cells. IMPDH1 and IMPDH2 were highly expressed in LUAD samples. CES2 was a potential target for GDNT. CES2 knockdown reversed the synergistic effect of GDNT and MMF against lung cancer in vitro. GDNT potentiated the role of MMF in inhibiting tumor growth and expressions of CES2 and IMPDH1/2 in lung cancer in vivo. Collectively, GDNT suppresses the progression of LUAD by activating CES2 to enhance the metabolism of MMF.
Collapse
Affiliation(s)
- Qingfeng Xie
- Respiratory Department, Longquan People’s Hospital, No. 699, Dongcha Road, Longquan City, Zhejiang Province, 323000, P.R. China
| | - Zhuo Cao
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Street, Liandu District, Lishui City, Zhejiang Province, 323000, P.R. China
| | - Weiling You
- Respiratory Department, Longquan People’s Hospital, No. 699, Dongcha Road, Longquan City, Zhejiang Province, 323000, P.R. China
| | - Xiaoping Cai
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Street, Liandu District, Lishui City, Zhejiang Province, 323000, P.R. China
| | - Mei Shen
- Longquan People’s Hospital, No. 699, Dongcha Road, Longquan City, Zhejiang Province, 323000, P.R. China
| | - Zhangyong Yin
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Street, Liandu District, Lishui City, Zhejiang Province, 323000, P.R. China
| | - Yiwei Jiang
- Wenzhou Medical University, Wenzhou Chashan Higher Education Park, Wenzhou, Zhejiang Province, 325006, P.R. China
| | - Xin Wang
- Wenzhou Medical University, Wenzhou Chashan Higher Education Park, Wenzhou, Zhejiang Province, 325006, P.R. China
| | - Siyu Ye
- School of Public Administration, Wenzhou Medical University, Wenzhou Chashan Higher Education Park, Wenzhou, Zhejiang Province, 325006, P.R. China
| |
Collapse
|
4
|
Abderahmene A, Ellouz A, Amor D, Ajmi M, Khalij Y, Hamdouni H, Sahtout W, Azzabi A, Omezzine A, Achour A, Bouslama A. The pharmacogenetics of mycophenolate mofetil in Tunisian renal transplant patients. Per Med 2022; 19:383-393. [PMID: 35770851 DOI: 10.2217/pme-2021-0092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The effects of variants in IMPDH, UGT1A9, UGT1A8, UGT2B7 and SLCO1B1 genes on the efficacy and safety of mycophenolate mofetil (MMF) in the Tunisian population were investigated. Materials & methods: A total of 245 kidney transplant patients being treated with MMF were recruited and cotreated with cyclosporine or tacrolimus. Genotyping was performed using the polymerase chain reaction-restriction fragment length polymorphism method. MMF, cyclosporine and tacrolimus trough levels were measured by immunoassay. The AUC (AUC0-12hMPA) was estimated by a Bayesian method. Results: In the tacrolimus-treated group, anemia and diarrhea were associated with the UGT1A9-98C and UGT1A9-275T alleles, respectively (p < 0.05). In the cyclosporine-treated group, leukopenia was associated with the SLCO1B1-521T allele (p < 0.05). Both groups had an increased risk of rejection (p < 0.05) associated with the variant alleles of IMPDH2-3757T>C, UGT1A9-2152C>T and UGT1A9-275C>A and the common allele of SLCO1B1-388A>G. However, no significant association was found between the studied genotypes and AUC0-12hMPA or cotreatment levels. Conclusion: The results constitute preliminary evidence for the inclusion of the pharmacogenetics of MMF in kidney pretransplantation evaluations.
Collapse
Affiliation(s)
- Amani Abderahmene
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia.,University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Amel Ellouz
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia.,University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Dorra Amor
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia.,University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Marwa Ajmi
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia.,University of Monastir, Higher Institute of Biotechnology of Monastir, Street Taher Hadded, 5000, Monastir, Tunisia
| | - Yassine Khalij
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia.,University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Haithem Hamdouni
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia.,University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Wissal Sahtout
- Nephrology Department, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
| | - Awatef Azzabi
- Nephrology Department, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
| | - Asma Omezzine
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia.,University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Abdellatif Achour
- Nephrology Department, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
| | - Ali Bouslama
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia.,University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| |
Collapse
|
5
|
Cheng L, Yao P, Weng B, Yang M, Wang Q. Meta-analysis of the associations of IMPDH and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking mycophenolic acid. Eur J Clin Pharmacol 2022; 78:1227-1238. [PMID: 35524809 DOI: 10.1007/s00228-022-03311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/05/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the associations of IMPDH and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking mycophenolic acid (MPA). METHODS PubMed, Web of Science, Embase, Cochrane Library, Wanfang Data, and the China Academic Journal Network Publishing Database were systematically searched for studies investigating the associations of IMPDH1, IMPDH2, and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking MPA. Associations were evaluated by pooled odds ratios (ORs) and effect sizes (ESs) with 95% confidence intervals (CIs). RESULTS Twelve studies were included in the analysis, including a total of 2342 kidney transplant recipients. The results showed that compared with the TC + CC variant genotypes, the TT genotype of IMPDH2 3757 T > C was significantly associated with a higher risk of rejection (ES = 1.60, 95% CI = 1.07-2.40, P = 0.021), while there was no significant association of the IMPDH2 3757 T > C polymorphism with acute rejection within 1 year in kidney transplant recipients (OR = 1.49, 95% CI = 0.79-2.80, P = 0.217; ES = 1.44, 95% CI = 0.88-2.36, P = 0.142). The GG genotypes of IMPDH1 125G > A and IMPDH1 106G > A were significantly associated with a higher risk of rejection (ES = 1.91, 95% CI = 1.11-3.28, P = 0.019) and acute rejection within 1 year (ES = 2.12, 95% CI = 1.45-3.10, P < 0.001) than the variant genotypes GA + AA. The TT genotype of UGT1A9 275 T > A showed a decreased risk of rejection compared with the variant genotypes TA + AA (ES = 0.44, 95% CI = 0.23-0.84, P = 0.013). CONCLUSIONS IMPDH1, IMPDH2, and UGT1A9 polymorphisms were associated with rejection in kidney transplant recipients, and the genetic backgrounds of patients should be considered when using MPA.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pu Yao
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Bangbi Weng
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ming Yang
- Department of Pharmacy, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Qian Wang
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Jiang Z, Hu N. Effect of UGT polymorphisms on pharmacokinetics and adverse reactions of mycophenolic acid in kidney transplant patients. Pharmacogenomics 2021; 22:1019-1040. [PMID: 34581204 DOI: 10.2217/pgs-2021-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycophenolic acid (MPA) is a common immunosuppressive drug for kidney transplantation patients, and is characterized by a narrow therapeutic index and significant individual variability. UGTs are the main enzymes responsible for the metabolism of MPA. Although, many studies have focused on the relationship between UGT polymorphisms and pharmacokinetics and adverse reactions of MPA, the conclusion are controversial. We reviewed the relevant literature and summarized the significant influences of UGT polymorphisms, such as UGT1A8 (rs1042597, rs17863762), UGT1A9 (rs72551330, rs6714486, rs17868320, rs2741045, rs2741045) and UGT2B7 (rs7438135, rs7439366, rs7662029), on the pharmacokinetics of MPA and its metabolites and adverse reactions. The review provides a reference for guiding the individualized administration of MPA and reducing adverse reactions to MPA.
Collapse
Affiliation(s)
- Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| |
Collapse
|
7
|
Na Takuathung M, Sakuludomkan W, Koonrungsesomboon N. The Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Mycophenolic Acid: Systematic Review and Meta-analysis. Clin Pharmacokinet 2021; 60:1291-1302. [PMID: 34105062 DOI: 10.1007/s40262-021-01037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Mycophenolic acid (MPA) is among the most commonly prescribed medications for immunosuppression following organ transplantation. Highly variable MPA exposure and drug response are observed among individuals receiving the same dosage of the drug. Identification of candidate genes whose polymorphisms could be used to predict MPA exposure and clinical outcome is of clinical value. OBJECTIVES This study aimed to determine the impact of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of MPA in humans by means of a systematic review and meta-analysis. METHODS A systematic search was conducted on PubMed, EMBASE, Web of Sciences, Scopus, and the Cochrane Library databases. A meta-analysis was conducted to determine any associations between genetic polymorphisms and pharmacokinetic or pharmacodynamic parameters of MPA. Pooled-effect estimates were calculated by means of the random-effects model. RESULTS A total of 37 studies involving 3844 individuals were included in the meta-analysis. Heterozygous carriers of the UGT1A9 -275T>A polymorphism were observed to have a significantly lower MPA exposure than wild-type individuals. Four single nucleotide polymorphisms (SNPs), namely UGT1A9 -2152C>T, UGT1A8 518C>G, UGT2B7 211G>T, and SLCO1B1 521T>C, were also significantly associated with altered MPA pharmacokinetics. However, none of the investigated SNPs, including SNPs in the IMPDH gene, were found to be associated with the clinical efficacy of MPA. The only SNP that was associated with adverse outcomes was SLCO1B3 344T>G. CONCLUSIONS The present systematic review and meta-analysis identified six SNPs that were significantly associated with pharmacokinetic variability or adverse effects of MPA. Our findings represent the basis for future research and clinical implications with regard to the role of pharmacogenetics in MPA pharmacokinetics and drug response.
Collapse
Affiliation(s)
- Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - Wannachai Sakuludomkan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research (MSTR) Center, , Chiang Mai University, Muang, Chiang Mai, Thailand.
| |
Collapse
|
8
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Ehren R, Schijvens AM, Hackl A, Schreuder MF, Weber LT. Therapeutic drug monitoring of mycophenolate mofetil in pediatric patients: novel techniques and current opinion. Expert Opin Drug Metab Toxicol 2020; 17:201-213. [PMID: 33107768 DOI: 10.1080/17425255.2021.1843633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Mycophenolate mofetil (MMF) is an ester prodrug of the immunosuppressant mycophenolic acid (MPA) and is recommended and widely used for maintenance immunosuppressive therapy in solid organ and stem-cell transplantation as well as in immunological kidney diseases. MPA is a potent, reversible, noncompetitive inhibitor of the inosine monophosphate dehydrogenase (IMPDH), a crucial enzyme in the de novo purine synthesis in T- and B-lymphocytes, thereby inhibiting cell-mediated immunity and antibody formation. The use of therapeutic drug monitoring (TDM) of MMF is still controversial as outcome data of clinical trials are equivocal. Areas covered: This review covers in great depth the existing literature on TDM of MMF in the field of pediatric (kidney) transplantation. In addition, the relevance of TDM in immunological kidney diseases, in particular childhood nephrotic syndrome is highlighted. Expert opinion: TDM of MMF has the potential to optimize therapy in pediatric transplantation as well as in nephrotic syndrome. Limited sampling strategies to estimate MPA exposure increase its feasibility. Future perspectives rather encompass approaches reflecting total immunosuppressive load than single drug TDM.
Collapse
Affiliation(s)
- Rasmus Ehren
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne , Cologne, Germany
| | - Anne M Schijvens
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Agnes Hackl
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne , Cologne, Germany
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Lutz T Weber
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne , Cologne, Germany
| |
Collapse
|
10
|
Collins KS, Cheng YH, Ferreira RM, Gao H, Dollins MD, Janosevic D, Khan NA, White C, Dagher PC, Eadon MT. Interindividual Variability in Lymphocyte Stimulation and Transcriptomic Response Predicts Mycophenolic Acid Sensitivity in Healthy Volunteers. Clin Transl Sci 2020; 13:1137-1149. [PMID: 32415749 PMCID: PMC7719379 DOI: 10.1111/cts.12795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/23/2020] [Indexed: 11/30/2022] Open
Abstract
Mycophenolic acid (MPA) is an immunosuppressant commonly used to prevent renal transplant rejection and treat glomerulonephritis. MPA inhibits IMPDH2 within stimulated lymphocytes, reducing guanosine synthesis. Despite the widespread use of MPA, interindividual variability in response remains with rates of allograft rejection up to 15% and approximately half of individuals fail to achieve complete remission to lupus nephritis. We sought to identify contributors to interindividual variability in MPA response, hypothesizing that the HPRT1 salvage guanosine synthesis contributes to variability. MPA sensitivity was measured in 40 healthy individuals using an ex vivo lymphocyte viability assay. Measurement of candidate gene expression (n ± 40) and single‐cell RNA‐sequencing (n ± 6) in lymphocytes was performed at baseline, poststimulation, and post‐MPA treatment. After stimulation, HPRT1 expression was 2.1‐fold higher in resistant individuals compared with sensitive individuals (P ± 0.049). Knockdown of HPRT1 increased MPA sensitivity (12%; P ± 0.003), consistent with higher expression levels in resistant individuals. Sensitive individuals had higher IMPDH2 expression and 132% greater stimulation. In lymphocyte subpopulations, differentially expressed genes between sensitive and resistant individuals included KLF2 and LTB. Knockdown of KLF2 and LTB aligned with the predicted direction of effect on proliferation. In sensitive individuals, more frequent receptor‐ligand interactions were observed after stimulation (P ± 0.0004), but fewer interactions remained after MPA treatment (P ± 0.0014). These data identify a polygenic transcriptomic signature in lymphocyte subpopulations predictive of MPA response. The degree of lymphocyte stimulation, HPRT1, KLF2, and LTB expression may serve as markers of MPA efficacy.
Collapse
Affiliation(s)
- Kimberly S Collins
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ying-Hua Cheng
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ricardo M Ferreira
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongyu Gao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew D Dollins
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Danielle Janosevic
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nida A Khan
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chloe White
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Pierre C Dagher
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael T Eadon
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Zheng P, Li L. FANCI Cooperates with IMPDH2 to Promote Lung Adenocarcinoma Tumor Growth via a MEK/ERK/MMPs Pathway. Onco Targets Ther 2020; 13:451-463. [PMID: 32021289 PMCID: PMC6970268 DOI: 10.2147/ott.s230333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/12/2019] [Indexed: 01/15/2023] Open
Abstract
Purpose Fanconi anemia complementation group I (FANCI) is a key protein in ribosome biogenesis and DNA repair. Here, we aimed to determine the clinical significance, prognostic value and biology functions of FANCI in lung adenocarcinoma (LUAD). Methods The expression of FANCI in LUAD tissue and its relationship with patient outcomes were assessed using bioinformatics analysis, as well as quantitative reverse-transcription PCR (qRT-PCR) and Western blot analysis of LUAD tissue and adjacent normal lung tissue. The chi-squared test and Cox regression analysis were used to analyze the clinical significance of FANCI expression. The biological effects of FANCI knockdown in human LUAD cell lines were investigated by analysis of proliferation, colony formation, cell cycle distribution, migration, and invasion in vitro, and monitoring of tumor xenograft growth in vivo. FANCI interactions with IMPDH2 and involvement in MEK/ERK/MMPs signaling were analyzed using co-immunoprecipitation assays, immunofluorescence microscopy, and Western blotting. Results FANCI was identified as a hub gene for LUAD. FANCI expression was upregulated in LUAD tissues compared with normal lung tissues and was positively associated with lymphatic metastasis, distant metastasis, and poor outcome. FANCI was also an independent prognostic factor in LUAD patients. Knockdown of FANCI in LUAD cell lines decreased their proliferation, migration, invasion, and cell cycle progression in vitro, and decreased the growth of xenografts in mice. Direct binding of FANCI to IMPDH2 decreased IMPDH2 degradation, regulated activation of MEK/ERK/MMPs signaling. Overexpression of IMPDH2 reversed the inhibitory effects of FANCI knockdown. Conclusion FANCI may act as an oncogene in LUAD by cooperating with IMPDH2 to promote cell proliferation via the MEK/ERK/MMPs pathway. These results identify FANCI as a potential prognostic biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Pengchao Zheng
- Department of Cardio-Thoracic Surgery, Second People's Hospital of Jinmen, Jingmen, Hubei 448000, People's Republic of China.,Department of Cardio-Thoracic Surgery, Jingchu Center Hospital Affiliated to the Institute of Technology, Jingmen, Hubei 448000, People's Republic of China
| | - Lei Li
- Department of Cardio-Thoracic Surgery, Second People's Hospital of Jinmen, Jingmen, Hubei 448000, People's Republic of China.,Department of Cardio-Thoracic Surgery, Jingchu Center Hospital Affiliated to the Institute of Technology, Jingmen, Hubei 448000, People's Republic of China
| |
Collapse
|
12
|
Laizure SC, Parker RB. Is genetic variability in carboxylesterase-1 and carboxylesterase-2 drug metabolism an important component of personalized medicine? Xenobiotica 2019; 50:92-100. [DOI: 10.1080/00498254.2019.1678078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- S. Casey Laizure
- Department of Clinical Pharmacy & Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert B Parker
- Department of Clinical Pharmacy & Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|