1
|
Alund AW, Xia L, Chen T. Genotoxicity of nanoparticles evaluated using the in vitro micronucleus assay, a review of recent data §. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2025:1-19. [PMID: 40381206 DOI: 10.1080/26896583.2025.2503646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The in vitro micronucleus assay is a well-known and established component of the standard genotoxicity test battery. The growing use of nanomaterials around the world along with human exposure to them has increased the need for risk assessment with regard to safety, including potential genotoxicity. The in vitro micronucleus assay is one of the most used tests for evaluating the genotoxicity of nanomaterials. This review compiles studies since 2017 that performed assessments of micronucleus formation in vitro after cellular exposure to different nanomaterials. Genotoxicity of a broad range of nanomaterials including silver, cerium, zinc, gold, nickel, cadmium, titanium, carbon, and aluminum in different cell types were reviewed. While clear trends could be seen for some nanoparticle types like silver and cerium nanoparticles, others like gold nanoparticles showed mixed results. This review highlights the usefulness and effectiveness of the micronucleus assay for studying the genotoxicity of nanomaterials, in part, and is also careful to note that standard guidelines should be followed when conducting this assay in order to generate reliable and quality-driven data.
Collapse
Affiliation(s)
- Alexander W Alund
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Li Xia
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
2
|
Cheng TM, Chu HY, Huang HM, Li ZL, Chen CY, Shih YJ, Whang-Peng J, Cheng RH, Mo JK, Lin HY, Wang K. Toxicologic Concerns with Current Medical Nanoparticles. Int J Mol Sci 2022; 23:7597. [PMID: 35886945 PMCID: PMC9322368 DOI: 10.3390/ijms23147597] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Nanotechnology is one of the scientific advances in technology. Nanoparticles (NPs) are small materials ranging from 1 to 100 nm. When the shape of the supplied nanoparticles changes, the physiological response of the cells can be very different. Several characteristics of NPs such as the composition, surface chemistry, surface charge, and shape are also important parameters affecting the toxicity of nanomaterials. This review covered specific topics that address the effects of NPs on nanomedicine. Furthermore, mechanisms of different types of nanomaterial-induced cytotoxicities were described. The distributions of different NPs in organs and their adverse effects were also emphasized. This review provides insight into the scientific community interested in nano(bio)technology, nanomedicine, and nanotoxicology. The content may also be of interest to a broad range of scientists.
Collapse
Affiliation(s)
- Tsai-Mu Cheng
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-M.C.); (H.-Y.C.)
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Yi Chu
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-M.C.); (H.-Y.C.)
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chiang-Ying Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | | | - R. Holland Cheng
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA;
| | - Ju-Ku Mo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hung-Yun Lin
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
| |
Collapse
|
3
|
Al-Saleh I, Elkhatib R, Al-Rajoudi T, Al-Qudaihi G, Manogarannogaran P, Eltabache C, Alotaibi A, Mummer AB, Almugbel S. Cytotoxic and genotoxic effects of e-liquids and their potential associations with nicotine, menthol and phthalate esters. CHEMOSPHERE 2020; 249:126153. [PMID: 32058129 DOI: 10.1016/j.chemosphere.2020.126153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/15/2020] [Accepted: 02/06/2020] [Indexed: 05/06/2023]
Abstract
In this study, we determined DNA damage and chromosome breakage (indicators of genotoxicity) and cell viability (an indicator of cytotoxicity) in human lymphoblastoid TK6 and Chinese hamster ovary (CHO) cells treated with 33 e-liquids using in vitro single cell gel (comet), micronucleus (MN), and trypan blue assays, respectively. We also measured the contents of nicotine, five phthalate esters, and DL-menthol in the e-liquids to examine their effects on DNA damage, chromosome breakage, and cell viability. Our chemical analyses showed that: (1) six e-liquids had nicotine ≥2-fold higher than the manufacture's label claim (2-3.5 mg); (2) both dimethyl- and dibutyl-phthalate levels were >0.1 μg/g, i.e., their threshold limits as additives in cosmetics; and (3) the DL-menthol contents ranged from 0.0003 to 85757.2 μg/g, with those of two e-liquids being >1 mg/g, the threshold limit for trigging sensory irritation. Though all the e-liquids induced DNA damage in TK6 cells, 20 resulted in cell viabilities ≤75%, indicating cytotoxicity, yet the inverse relationship between cell viability and DNA damage (r = -0.628, p = 0.003) might reflect their role as pro-apoptotic and DNA damage inducers. Fifteen e-liquids induced MN% in TK6 cells ≥3-fold that of untreated cells. Some of the increase in %MN might be false due to high cytotoxicity, yet six brands showed acceptable cell viabilities (59-71%), indicating chromosome damage. DNA damage and %MN increased when the TK6 cells were exposed to metabolic activation. The CHO cells were less sensitive to the genotoxic effects of the e-liquids than the TK6 cells. DL-menthol was found to be associated with decreased cell viability and increased DNA damage, even at low levels. We cannot dismiss the presence of other ingredients in e-liquids with cytotoxic/genotoxic properties since out of the 63 different flavors, 47 induced DNA damage (≥3-folds), and 26 reduced cell viability (≤75%) in TK6 cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aminah Alotaibi
- National Center for Biotechnology and Genomic Research, King Abdulaziz City for Science and Technology, Saudi Arabia
| | - Abdulrahman Bin Mummer
- Biostatistics, Epidemiology & Scientific Computing Department, King Faisal Specialist Hospital & Research Centre, Saudi Arabia
| | - Saad Almugbel
- College of Medicine, Al-Imam Muhammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Keerthana S, Kumar A. Potential risks and benefits of zinc oxide nanoparticles: a systematic review. Crit Rev Toxicol 2020; 50:47-71. [PMID: 32186437 DOI: 10.1080/10408444.2020.1726282] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Zinc oxide nanoparticles are well-known metal oxide nanoparticles having numbers of applications in the field of cosmetology, medicine, and chemistry. However, the number of reports has indicated its toxicity also such as hepatotoxicity, pulmonary toxicity, neurotoxicity, and immunotoxicity. Thus, in this article, we have analyzed the potential risks and benefits of zinc oxide nanoparticles. The data related to risks and benefits of zinc oxide nanoparticles have been extracted from PubMed (from January 2007 to August 2019). A total of 3,892 studies have been published during this period regarding zinc oxide nanoparticles. On the basis of inclusion and exclusion criteria, 277 studies have been included for the analysis of risks and benefits. Emerging reports have indicated both risks and benefits of zinc oxide nanoparticles in concentration- and time-dependent manner under in vitro and in vivo conditions through different mechanism of action. In conclusion, zinc oxide nanoparticles could play a beneficial role in the treatment of various diseases but safety of these particles at particular effective concentration should be thoroughly evaluated.
Collapse
Affiliation(s)
- S Keerthana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| | - A Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Salimi A, Rahimi HR, Forootanfar H, Jafari E, Ameri A, Shakibaie M. Toxicity of microwave-assisted biosynthesized zinc nanoparticles in mice: a preliminary study. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1846-1858. [DOI: 10.1080/21691401.2019.1611592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Azad Salimi
- Sudent Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid-Reza Rahimi
- Sudent Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Atefeh Ameri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|