1
|
Matković K, Gerić M, Kazensky L, Milić M, Kašuba V, Cvitković A, Sanković M, Šumanovac A, Møller P, Gajski G. Comparison of DNA damage in fresh and frozen blood samples: implications for the comet assay in human biomonitoring studies. Arch Toxicol 2024; 98:3467-3476. [PMID: 39004639 DOI: 10.1007/s00204-024-03823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The use of the comet assay in large biomonitoring studies may present logistical and technical challenges because of the processing of numerous samples. Proper sample preservation becomes imperative to prevent spurious DNA breakage. Previous research has shown the feasibility of conducting the comet assay on frozen blood samples, highlighting the potential of freezing at - 80 °C in preserving DNA integrity. Nonetheless, this approach presents challenges, including potential DNA damage during freezing and thawing, variability in processing, and the need for standardized protocols. Our objective was to evaluate whether there are comparable results in DNA migration assessed by the comet assay between fresh and frozen blood samples on a larger scale (N = 373). In our findings, elevated DNA migration was evident in frozen samples relative to fresh ones. Additionally, smoking, alcohol consumption, and season were linked to increased DNA damage levels in whole blood cells. Based on our results and available literature, conducting the comet assay on frozen blood samples emerges as a practical and efficient approach for biomonitoring and epidemiological research. This method enables the assessment of DNA damage in large populations over time, with samples, if properly cryopreserved, that may be used for years, possibly even decades. These observations hold significant implications for large-scale human biomonitoring and long-term epidemiological studies, particularly when samples are collected during fieldwork or obtained from biobanks. Continued method optimization and validation efforts are essential to enhance the utility of this approach in environmental and occupational health studies, emphasizing caution when comparing data obtained between fresh and frozen blood samples.
Collapse
Affiliation(s)
- Katarina Matković
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Marko Gerić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Luka Kazensky
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mirta Milić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vilena Kašuba
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ante Cvitković
- Teaching Institute of Public Health Brod-Posavina County, Slavonski Brod, Croatia
- Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Mandica Sanković
- City of Vinkovci, Department of Physical Planning, Construction and Environmental Protection, Vinkovci, Croatia
| | - Antun Šumanovac
- Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
- County General Hospital Vinkovci, Vinkovci, Croatia
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
2
|
Zheng C, Collins A, Brunborg G, van Schooten FJ, Nordengen AL, Shaposhnikov S, Godschalk R. Assay conditions for estimating differences in base excision repair activity with Fpg-modified comet assay. Cell Biol Toxicol 2023; 39:2775-2786. [PMID: 36932276 PMCID: PMC10693524 DOI: 10.1007/s10565-023-09801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023]
Abstract
DNA repair is an essential agent in cancer development, progression, prognosis, and response to therapy. We have adapted a cellular repair assay based on the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay to assess DNA repair kinetics. The removal of oxidized nucleobases over time (0-480 min) was analyzed in peripheral blood mononuclear cells (PBMCs) and 8 cell lines. DNA damage was induced by exposure to either Ro19-8022 plus visible light or potassium bromate (KBrO3). The initial amount of damage induced by Ro 19-8022 plus light varied between cell lines, and this was apparently associated with the rate of repair. However, the amount of DNA damage induced by KBrO3 varied less between cell types, so we used this agent to study the kinetics of DNA repair. We found an early phase of ca. 60 min with fast removal of Fpg-sensitive sites, followed by slower removal over the following 7 h. In conclusion, adjusting the initial damage at T0 to an equal level can be achieved by the use of KBrO3, which allows for accurate analysis of subsequent cellular DNA repair kinetics in the first hour after exposure.
Collapse
Affiliation(s)
- Congying Zheng
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, Maastricht, Netherlands
- Norgenotech AS, 64/66, Ullernchassern, Oslo, Norway
- Oslo Cancer Cluster, 64/66, Ullernchassern, Oslo, Norway
| | | | | | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, Maastricht, Netherlands
| | - Anne Lene Nordengen
- Norgenotech AS, 64/66, Ullernchassern, Oslo, Norway
- Department of Public Health, Sport and Nutrition, University of Agder, 4604, Kristiansand, Norway
- Department of Nutrition, University of Oslo, 0372, Oslo, Norway
| | - Sergey Shaposhnikov
- Norgenotech AS, 64/66, Ullernchassern, Oslo, Norway
- Oslo Cancer Cluster, 64/66, Ullernchassern, Oslo, Norway
| | - Roger Godschalk
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, Maastricht, Netherlands.
| |
Collapse
|
3
|
Møller P, Azqueta A, Rodriguez-Garraus A, Bakuradze T, Richling E, Bankoglu EE, Stopper H, Claudino Bastos V, Langie SAS, Jensen A, Ristori S, Scavone F, Giovannelli L, Wojewódzka M, Kruszewski M, Valdiglesias V, Laffon B, Costa C, Costa S, Paulo Teixeira J, Marino M, Del Bo C, Riso P, Zheng C, Shaposhnikov S, Collins A. DNA strand break levels in cryopreserved mononuclear blood cell lines measured by the alkaline comet assay: results from the hCOMET ring trial. Mutagenesis 2023; 38:273-282. [PMID: 37357800 DOI: 10.1093/mutage/gead019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
The comet assay is widely used in biomonitoring studies for the analysis of DNA damage in leukocytes and peripheral blood mononuclear cells. Rather than processing blood samples directly, it can be desirable to cryopreserve whole blood or isolated cells for later analysis by the comet assay. However, this creates concern about artificial accumulation of DNA damage during cryopreservation. In this study, 10 laboratories used standardized cryopreservation and thawing procedures of monocytic (THP-1) or lymphocytic (TK6) cells. Samples were cryopreserved in small aliquots in 50% foetal bovine serum, 40% cell culture medium, and 10% dimethyl sulphoxide. Subsequently, cryopreserved samples were analysed by the standard comet assay on three occasions over a 3-year period. Levels of DNA strand breaks in THP-1 cells were increased (four laboratories), unaltered (four laboratories), or decreased (two laboratories) by long-term storage. Pooled analysis indicates only a modest positive association between storage time and levels of DNA strand breaks in THP-1 cells (0.37% Tail DNA per year, 95% confidence interval: -0.05, 0.78). In contrast, DNA strand break levels were not increased by cryopreservation in TK6 cells. There was inter-laboratory variation in levels of DNA strand breaks in THP-1 cells (SD = 3.7% Tail DNA) and TK6 reference sample cells (SD = 9.4% Tail DNA), whereas the intra-laboratory residual variation was substantially smaller (i.e. SD = 0.4%-2.2% Tail DNA in laboratories with the smallest and largest variation). In conclusion, the study shows that accumulation of DNA strand breaks in cryopreserved mononuclear blood cell lines is not a matter of concern.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31009 Pamplona, Spain
| | - Adriana Rodriguez-Garraus
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31009 Pamplona, Spain
| | - Tamara Bakuradze
- Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Elke Richling
- Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078 Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078 Wuerzburg, Germany
| | - Victoria Claudino Bastos
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Sabine A S Langie
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Annie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Sara Ristori
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), Section Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Scavone
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), Section Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Giovannelli
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), Section Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Maria Wojewódzka
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 01-310 Warsaw, Poland
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 01-310 Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Vanessa Valdiglesias
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, Departamento de Biología, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía - CICA, Departamento de Psicología, A Coruña, Spain
| | - Carla Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristian Del Bo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| | - Congying Zheng
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Nutrition, University of Oslo, Oslo, Norway
| | | | - Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
- NorGenotech AS, Oslo, Norway
| |
Collapse
|
4
|
Collins A, Møller P, Gajski G, Vodenková S, Abdulwahed A, Anderson D, Bankoglu EE, Bonassi S, Boutet-Robinet E, Brunborg G, Chao C, Cooke MS, Costa C, Costa S, Dhawan A, de Lapuente J, Bo' CD, Dubus J, Dusinska M, Duthie SJ, Yamani NE, Engelward B, Gaivão I, Giovannelli L, Godschalk R, Guilherme S, Gutzkow KB, Habas K, Hernández A, Herrero O, Isidori M, Jha AN, Knasmüller S, Kooter IM, Koppen G, Kruszewski M, Ladeira C, Laffon B, Larramendy M, Hégarat LL, Lewies A, Lewinska A, Liwszyc GE, de Cerain AL, Manjanatha M, Marcos R, Milić M, de Andrade VM, Moretti M, Muruzabal D, Novak M, Oliveira R, Olsen AK, Owiti N, Pacheco M, Pandey AK, Pfuhler S, Pourrut B, Reisinger K, Rojas E, Rundén-Pran E, Sanz-Serrano J, Shaposhnikov S, Sipinen V, Smeets K, Stopper H, Teixeira JP, Valdiglesias V, Valverde M, van Acker F, van Schooten FJ, Vasquez M, Wentzel JF, Wnuk M, Wouters A, Žegura B, Zikmund T, Langie SAS, Azqueta A. Measuring DNA modifications with the comet assay: a compendium of protocols. Nat Protoc 2023; 18:929-989. [PMID: 36707722 PMCID: PMC10281087 DOI: 10.1038/s41596-022-00754-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Abstract
The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.
Collapse
Affiliation(s)
- Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Soňa Vodenková
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Abdulhadi Abdulwahed
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Diana Anderson
- Biomedical Sciences Department, University of Bradford, Bradford, UK
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Gunnar Brunborg
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Christy Chao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Carla Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Alok Dhawan
- Centre of BioMedical Research, SGPGIMS Campus, Lucknow, India
| | - Joaquin de Lapuente
- Toxicology Department, AC MARCA Group, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Julien Dubus
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-Lez-Durance, France
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Susan J Duthie
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, Scotland
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Bevin Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Isabel Gaivão
- Genetics and Biotechnology Department and Veterinary and Animal Research Centre (CECAV), Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Lisa Giovannelli
- Department NEUROFARBA, Section Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Roger Godschalk
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Sofia Guilherme
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Khaled Habas
- School of Chemistry and Bioscience, Faculty of Life Sciences, Bradford University, Bradford, UK
| | - Alba Hernández
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola de Vallès, Spain
| | - Oscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Marina Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Siegfried Knasmüller
- Institute of Cancer Research, Internal Medicine I, Medical University Vienna, Vienna, Austria
| | - Ingeborg M Kooter
- Department Circular Economy and Environment, the Netherlands Organisation for Applied Scientific Research-TNO, Utrecht, The Netherlands
| | | | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Carina Ladeira
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Psicología, Facultad de Ciencias de la Educación, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Marcelo Larramendy
- Laboratory of Ecotoxicology, Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Argentina
| | - Ludovic Le Hégarat
- Anses, French Agency for Food, Environmental and Occupational Health and Safety, Fougeres Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Angélique Lewies
- Department of Cardiothoracic Surgery, University of the Free State, Bloemfontein, South Africa
| | - Anna Lewinska
- Department of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Guillermo E Liwszyc
- Laboratory of Ecotoxicology, Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Argentina
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Mugimane Manjanatha
- Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, Jefferson, AR, USA
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola de Vallès, Spain
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, University of Southern Santa Catarina, Criciuma, Brazil
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Perugia, Italy
| | - Damian Muruzabal
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Rui Oliveira
- Department of Biology, CBMA-Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Norah Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mário Pacheco
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Alok K Pandey
- Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Stefan Pfuhler
- Global Product Stewardship - Human Safety, The Procter & Gamble Co, Cincinnati, OH, USA
| | - Bertrand Pourrut
- Laboratoire Ecologie fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Emilio Rojas
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Julen Sanz-Serrano
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | | | - Ville Sipinen
- Norwegian Scientific Committee for Food and Environment, Oslo, Norway
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Vanessa Valdiglesias
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Universidade da Coruña, Grupo NanoToxGen, CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Biología, Facultad de Ciencias, A Coruña, Spain
| | - Mahara Valverde
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| | | | - Frederik-Jan van Schooten
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | | | | | - Maciej Wnuk
- Department of Biology, University of Rzeszow, Rzeszow, Poland
| | - Annelies Wouters
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tomas Zikmund
- Biocev, 1st Medical Faculty, Charles University, Vestec, Czech Republic
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Sabine A S Langie
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
5
|
Milić M, Ožvald I, Matković K, Radašević H, Nikolić M, Božičević D, Duh L, Matovinović M, Bituh M. Combined Approach: FFQ, DII, Anthropometric, Biochemical and DNA Damage Parameters in Obese with BMI ≥ 35 kg m -2. Nutrients 2023; 15:899. [PMID: 36839257 PMCID: PMC9958661 DOI: 10.3390/nu15040899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Although obesity with its comorbidities is linked with higher cancer risk, the data on genome stability in the obese/severely obese are scarce. This is the first study with three DNA damage assessment assays (Fpg-modified and alkaline comet assays and micronucleus cytome assay) performed on a severely obese population (n = 53) where the results were compared with daily intake of food groups, nutrient intake, dietary inflammatory index (DII), and anthropometric and biochemical parameters usually measured in obese individuals. Results demonstrated the association between DNA damage levels and a decrease in cell proliferation with anthropometric measurements and the severity of obese status, together with elevated levels of urates, inorganic phosphates, chlorides, and hs troponin I levels. DII was connected with oxidative DNA damage, while BMI and basal metabolic rate (BMR) were associated with a decrease in cell proliferation and DNA damage creation. Measured daily BMR and calculated daily energy intake from the food frequency questionnaire (FFQ) demonstrated no significant difference (1792.80 vs. 1869.86 kcal day-1 mean values). Groups with higher DNA damage than expected (tail intensity in comet assay >9% and >12.4%, micronucleus frequency >13), consumed daily, weekly, and monthly more often some type of food groups, but differences did not show a clear influence on the elevated DNA damage levels. Combination of all three DNA damage assays demonstrated that some type of damage can start earlier in the obese individual lifespan, such as nuclear buds and nucleoplasmic bridges, then comes decrease in cell proliferation and then elevated micronucleus frequencies, and that primary DNA damage is not maybe crucial in the overweight, but in severely obese. Biochemically changed parameters pointed out that obesity can have an impact on changes in blood cell counts and division and also on genomic instability. Assays were able to demonstrate groups of sensitive individuals that should be further monitored for genomic instability and cancer prevention, especially when obesity is already connected with comorbidities, 13 different cancers, and a higher mortality risk with 7-10 disease-free years loss. In the future, both DNA damage and biochemical parameters should be combined with anthropometric ones for further obese monitoring, better insight into biological changes in the severely obese, and a more individual approach in therapy and treatment. Patients should also get a proper education about the foodstuff with pro- and anti-inflammatory effect.
Collapse
Affiliation(s)
- Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health (IMROH), 10001 Zagreb, Croatia
| | - Ivan Ožvald
- Special Hospital for Extended Treatment of Duga Resa, 47250 Duga Resa, Croatia
- Neuropsychiatric Hospital dr. Ivan Barbot of Popovača, 44317 Popovača, Croatia
| | - Katarina Matković
- Mutagenesis Unit, Institute for Medical Research and Occupational Health (IMROH), 10001 Zagreb, Croatia
| | - Hrvoje Radašević
- Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia
| | - Maja Nikolić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health (IMROH), 10001 Zagreb, Croatia
| | - Dragan Božičević
- Special Hospital for Extended Treatment of Duga Resa, 47250 Duga Resa, Croatia
| | - Lidija Duh
- Special Hospital for Extended Treatment of Duga Resa, 47250 Duga Resa, Croatia
| | - Martina Matovinović
- Department of Internal Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Martina Bituh
- Laboratory for Food Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Ilari S, Russo P, Proietti S, Vitiello L, Muscoli C, Tomino C, Milic M, Bonassi S. DNA damage in dementia: Evidence from patients affected by severe Chronic Obstructive Pulmonary Disease (COPD) and meta-analysis of most recent literature. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503499. [PMID: 35649670 DOI: 10.1016/j.mrgentox.2022.503499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress that leads to oxidatively damaged DNA, plays a crucial role in chronic obstructive pulmonary disease (COPD) as well as in the onset of neurodegenerative diseases. The consequent genomic instability is the first neuropathological event found in the preclinical phase of cognitive impairment (CI), and the level of DNA damage is closely related to the degree of dementia. Since CI has been associated with COPD, we investigated the extent of DNA damage in isolated lymphocytes with the Comet assay, in a group of severe COPD patients with cognitive function measured by the Mini-Mental State Examination (MMSE). An increase in DNA damage was observed in COPD patients with dementia (MMSE≤24), although the difference was only borderline (22.4 ± 6.9 vs. 18.5 ± 7.1; p = 0.055). Meta-analysis, including the results of the current study, confirmed that patients with MMSE≤ 24 showed higher level of DNA damage than patients with MMSE> 24. We observed a significant reduction (p < 0.001) in the MMSE score in patients with cognitive decline in areas I (Orientation), III (Attention and Calculus) and V (Language). Only the temporal orientation category in area I was also associated with the level of oxidative damage, with higher levels of MDA (p < 0.01) and DNA damage (p < 0.03). Patients with the lowest temporal orientation score had a 12% higher mean DNA damage (Odds Ratio=1.12; 95% confidence interval (95%CI) 1.01-1.25; p < 0.036). Temporal orientation is a component of most screening tests for the diagnosis of cognitive impairment, on the bases that disorientation is a common factor in dementia. Present results show that each component of cognitive decline can have a different etiopathogenesis and clinical relevance. A more thorough assessment of the cognitive functions of patients starting COPD rehabilitation, together with the assessment of DNA and the level of oxidative stress, can provide essential information to adapt and customize the rehabilitation project.
Collapse
Affiliation(s)
- Sara Ilari
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88201 Catanzaro, Italy
| | - Patrizia Russo
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00166 Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy.
| | - Stefania Proietti
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Laura Vitiello
- Laboratory of Flow Cytometry, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Carolina Muscoli
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88201 Catanzaro, Italy
| | - Carlo Tomino
- Scientific Direction, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Mirta Milic
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00166 Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
| |
Collapse
|
7
|
Ožvald I, Božičević D, Duh L, Vinković Vrček I, Domijan AM, Milić M. Changes in anthropometric, biochemical, oxidative, and DNA damage parameters after 3-weeks-567-kcal-hospital-controlled-VLCD in severely obese patients with BMI ≥ 35 kg m -2. Clin Nutr ESPEN 2022; 49:319-327. [PMID: 35623833 DOI: 10.1016/j.clnesp.2022.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND & AIMS Severe obesity and its comorbidities relate to increased genomic instability/cancer risk. Obesity in Croatia is rapidly increasing, and long diets are sometimes the reason for obese to quit health improvement programs. A shorter diet with more strict calorie reduction could also lead to weight reduction and health improvements, but data are scarce. We tested for the first time if a very low-calorie diet (VLCD) can improve anthropometric, biochemical and genomic stability parameters in severely obese with BMI ≥ 35 kg m-2. METHODS 22 participants were chosen among those regularly attending the hospital for obesity control, with no other previous treatment for bodyweight reduction. Under 24 h medical surveillance, patients received 3-weeks-567-kcal-hospital-controlled-VLCD composed of 50-60% complex carbohydrates, 20-25% proteins, and 25-30% fat, with the attention to food carbo-glycemic index, in 3 meals freshly prepared in hospital. We analyzed changes in body weight, BMI, basal metabolism rate, waist-hip ratio, visceral fat level, body fat mass, percent body fat, skeletal muscle mass, basal metabolism, energy intake, lipid profile, thyroid hormones, TSH, and genomic instability (alkaline and oxidative FPG comet assay) before and on the last VLCD day. RESULTS Diet caused BMI reduction (in average 3-4 BMI units' loss), excessive weight loss (between 10 and 35%), significant weight loss (average 9 kg, range 4.8-14.4 kg) and a significant decrease in glucose, insulin, urea, cholesterol, HDL-c, LDL-c, oxidative (FPG) and DNA damage (alkaline comet assay) levels. CONCLUSIONS The diet can lead to ≥10% excessive weight loss, significant health, and genomic stability improvement, and keep severely obese interest in maintaining healthy habits. The study was registered at ClinicalTrials.gov as NCT05007171 (10.08.2021).
Collapse
Affiliation(s)
- Ivan Ožvald
- Special Hospital for Extended Treatment of Duga Resa, 47250 Duga Resa, Croatia
| | - Dragan Božičević
- Special Hospital for Extended Treatment of Duga Resa, 47250 Duga Resa, Croatia
| | - Lidija Duh
- Special Hospital for Extended Treatment of Duga Resa, 47250 Duga Resa, Croatia
| | - Ivana Vinković Vrček
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health (IMROH), 10 001 Zagreb, Croatia
| | - Ana-Marija Domijan
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health (IMROH), 10 001 Zagreb, Croatia.
| |
Collapse
|
8
|
Beyls E, Baeyens A, Vral A. The cytokinesis-block micronucleus assay for cryopreserved whole blood. Int J Radiat Biol 2021; 97:1252-1260. [PMID: 34138661 DOI: 10.1080/09553002.2021.1941378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The cytokinesis-block micronucleus (MN) assay is a widely used technique in basic radiobiology research, human biomonitoring studies and in vitro radiosensitivity testing. Fresh whole blood cultures are commonly used for these purposes, but immediate processing of fresh samples can be logistically challenging. Therefore, we aimed at establishing a protocol for the MN assay on cryopreserved whole blood, followed by a thorough evaluation of the reliability of this assay for use in radiosensitivity assessment in patients. MATERIALS AND METHODS Whole blood samples of 20 healthy donors and 4 patients with a primary immunodeficiency disease (PID) were collected to compare the results obtained with the MN assay performed on fresh versus cryopreserved whole blood samples. MN yields were scored after irradiation with 220 kV X-rays (dose rate 3 Gy/min), with doses ranging from 0.5-2 Gy. RESULTS The application of the MN assay on cryopreserved blood samples was successful in all analyzed samples. The radiation-induced MN and NDI scores in fresh and cryopreserved blood cultures were found to be similar. Acceptable inter-individual and intra-individual variabilities in MN yields were observed. Repeated analysis of cryopreserved blood cultures originating from the same blood sample, thawed at different time points, revealed that MN values remain stable for cryopreservation periods up to one year. Finally, radiosensitive patients were successfully identified using the MN assay on cryopreserved samples. CONCLUSIONS To our knowledge, this study is the first report of the successful use of cryopreserved whole blood samples for application of the MN assay. The data presented here demonstrate that the MN assay performed on cryopreserved whole blood is reliable for radiosensitivity testing. Our results also support its wider use in epidemiological, biomonitoring and genotoxicity studies. The presented method of cryopreservation of blood samples might also benefit other assays.
Collapse
Affiliation(s)
- Elien Beyls
- Radiobiology Research Group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Ans Baeyens
- Radiobiology Research Group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Anne Vral
- Radiobiology Research Group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Volobaev V, Bach S, Shchetnikova E, Vdovina E, Rosinskiy A, Larionov A. Short/long-term cryopreservation prior to comet assay of whole-blood leukocytes and in vitro-cultured lung fibroblasts. Toxicol Mech Methods 2021; 31:531-537. [PMID: 34016016 DOI: 10.1080/15376516.2021.1933286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Single-cell gel electrophoresis (comet assay) is a valuable test that can be used in ecotoxicological, epidemiological, and biomonitoring contexts. We assessed the effects of short- (without cryopreservation) and long-term (with cryopreservation) storage of DMEM-cultivated human peripheral blood leukocytes (HPBLs) and a human lung fibroblast cell line (FLECH-104) on comet assay results. Samples were stored for 6 or 24 h at room temperature (23°С) or 4 °C and frozen at -80 °C or -196 °C for 1, 2, or 4 weeks. Short-term storage led to significant increases in the comet tail intensity (TI) and Olive tail moment (OTM) in HPBL and FLECH-104 samples. Freezing FLECH-104 samples at -80°С and -196°С resulted in TI mean increases, with no differences in OTM. All frozen HPBL samples did not exhibit significant increases in TI or OTM, and instead exhibited a slight decrease in TI versus the control at both -80 °C and -196 °C. Increased frequency of highly damaged cells was observed in FLECH-104 and HPBL cultures during both short-term storage and after freezing, which may indicate a significant destructive effect. Therefore, freezing of cell cultures and whole blood according to our protocol is not recommended.
Collapse
Affiliation(s)
- V Volobaev
- Institute of Biology, Ecology and Natural Resources, Kemerovo State University, Kemerovo, Russian Federation
| | - S Bach
- Institute of Biology, Ecology and Natural Resources, Kemerovo State University, Kemerovo, Russian Federation
| | - E Shchetnikova
- Institute of Biology, Ecology and Natural Resources, Kemerovo State University, Kemerovo, Russian Federation
| | - E Vdovina
- Institute of Biology, Ecology and Natural Resources, Kemerovo State University, Kemerovo, Russian Federation
| | - A Rosinskiy
- Institute of Biology, Ecology and Natural Resources, Kemerovo State University, Kemerovo, Russian Federation
| | - A Larionov
- Institute of Biology, Ecology and Natural Resources, Kemerovo State University, Kemerovo, Russian Federation
| |
Collapse
|
10
|
Baydaş Z, Bacanli M, Başaran N. Does storage conditions of whole blood or blood cells effect genotoxicity assessment by comet assay? Food Chem Toxicol 2021; 152:112163. [PMID: 33836211 DOI: 10.1016/j.fct.2021.112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
Comet assay, applied to in vitro, in vivo and ex vivo systems, is a quick, simple, and sensitive method for the detection of genotoxicity. In general, fresh whole blood or peripheral blood mononuclear cells (PBMCs) are used in the assay for the determination of DNA damage and repair. In this study, the effects of storage conditions on genotoxicity assessed by Comet assay in human whole blood and lymphocyte samples, were evaluated. Whole blood and lymphocyte samples were stored at 4 °C for 1, 2, 3, 4, 5 and 7 days; at -20 °C for 1 month and at -80 °C for 3, 6 and 12 months. 1% DMSO was used as cryoprotectant. No significant differences in DNA damage were demonstrated in all of the storage conditions and durations, and the results were similar according to the median values (p < 0.05). According to Spearman or Pearson correlations, an important correlation was found between the DNA damage of the fresh samples and the samples which were kept at -80 °C for 6 months with temperature and time (p < 0.01 for Pearson and p < 0.05 for Spearman). The results of this study indicated that blood and lymphocyte samples stored in +4 °C, -20 °C and -80 °C up to 12 months can be used instead of fresh samples especially in human biomonitoring studies.
Collapse
Affiliation(s)
- Zeynep Baydaş
- Hacettepe University Faculty of Pharmacy Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - Merve Bacanli
- University of Health Sciences Turkey Gülhane Faculty of Pharmacy Department of Pharmaceutical Toxicology, Ankara, Turkey.
| | - Nurşen Başaran
- Hacettepe University Faculty of Pharmacy Department of Pharmaceutical Toxicology, Ankara, Turkey.
| |
Collapse
|
11
|
Møller P, Bankoglu EE, Stopper H, Giovannelli L, Ladeira C, Koppen G, Gajski G, Collins A, Valdiglesias V, Laffon B, Boutet-Robinet E, Perdry H, Del Bo' C, Langie SAS, Dusinska M, Azqueta A. Collection and storage of human white blood cells for analysis of DNA damage and repair activity using the comet assay in molecular epidemiology studies. Mutagenesis 2021; 36:193-212. [PMID: 33755160 DOI: 10.1093/mutage/geab012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 01/08/2023] Open
Abstract
DNA damage and repair activity are often assessed in blood samples from humans in different types of molecular epidemiology studies. However, it is not always feasible to analyse the samples on the day of collection without any type of storage. For instance, certain studies use repeated sampling of cells from the same subject or samples from different subjects collected at different time-points, and it is desirable to analyse all these samples in the same comet assay experiment. In addition, flawless comet assay analyses on frozen samples open up the possibility of using this technique on biobank material. In this article we discuss the use of cryopreserved peripheral blood mononuclear cells (PBMCs), buffy coat (BC) and whole blood (WB) for analysis of DNA damage and repair using the comet assay. The published literature and the authors' experiences indicate that various types of blood samples can be cryopreserved with only a minor effect on the basal level of DNA damage. There is evidence to suggest that WB and PBMCs can be cryopreserved for several years without much effect on the level of DNA damage. However, care should be taken when cryopreserving WB and BCs. It is possible to use either fresh or frozen samples of blood cells, but results from fresh and frozen cells should not be used in the same dataset. The article outlines detailed protocols for the cryopreservation of PBMCs, BCs and WB samples.
Collapse
Affiliation(s)
- Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078 Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078 Wuerzburg, Germany
| | - Lisa Giovannelli
- Department NEUROFARBA, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Carina Ladeira
- H&TRC - Health & Technology Research Center, Escola Superior de Tecnologia da Saúde (ESTeSL), Instituto Politécnico de Lisboa, Avenida D. João II, lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal.,NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal.,Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Portugal
| | | | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Andrew Collins
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Vanessa Valdiglesias
- Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, 15071, A Coruña, Spain.,Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain.,Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Universidade da Coruña, Campus Elviña s/n, 15071, A Coruña, Spain
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Hervé Perdry
- Université Paris-Saclay, UVSQ, Inserm, CESP, 94807, Villejuif, France
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Sabine A S Langie
- School of Nutrition and Translational Research in Metabolism, Department of Pharmacology and Toxicology, University of Maastricht, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - Maria Dusinska
- Environmental Chemistry Department, Health Effects Laboratory, NILU - Norwegian Institute for Air Research, 2027 Kjeller, Norway
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, C/Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
12
|
Bankoglu EE, Stipp F, Gerber J, Seyfried F, Heidland A, Bahner U, Stopper H. Effect of cryopreservation on DNA damage and DNA repair activity in human blood samples in the comet assay. Arch Toxicol 2021; 95:1831-1841. [PMID: 33666708 PMCID: PMC8113209 DOI: 10.1007/s00204-021-03012-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/25/2021] [Indexed: 11/26/2022]
Abstract
The comet assay is a commonly used method to determine DNA damage and repair activity in many types of samples. In recent years, the use of the comet assay in human biomonitoring became highly attractive due to its various modified versions, which may be useful to determine individual susceptibility in blood samples. However, in human biomonitoring studies, working with large sample numbers that are acquired over an extended time period requires some additional considerations. One of the most important issues is the storage of samples and its effect on the outcome of the comet assay. Another important question is the suitability of different blood preparations. In this study, we analysed the effect of cryopreservation on DNA damage and repair activity in human blood samples. In addition, we investigated the suitability of different blood preparations. The alkaline and FPG as well as two different types of repair comet assay and an in vitro hydrogen peroxide challenge were applied. Our results confirmed that cryopreserved blood preparations are suitable for investigating DNA damage in the alkaline and FPG comet assay in whole blood, buffy coat and PBMCs. Ex vivo hydrogen peroxide challenge yielded its optimal effect in isolated PBMCs. The utilised repair comet assay with either UVC or hydrogen peroxide-induced lesions and an aphidicolin block worked well in fresh PBMCs. Cryopreserved PBMCs could not be used immediately after thawing. However, a 16-h recovery with or without mitotic stimulation enabled the application of the repair comet assay, albeit only in a surviving cell fraction.
Collapse
Affiliation(s)
- Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Straße 9, 97078, Wuerzburg, Germany
| | - Franzisca Stipp
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Straße 9, 97078, Wuerzburg, Germany
| | - Johanna Gerber
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Straße 9, 97078, Wuerzburg, Germany
| | - Florian Seyfried
- Department of General and Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - August Heidland
- Department of Internal Medicine and KfH Kidney Center, University of Wuerzburg, KfH Kidney Center Wuerzburg, Wuerzburg, Germany
| | - Udo Bahner
- Department of Internal Medicine and KfH Kidney Center, University of Wuerzburg, KfH Kidney Center Wuerzburg, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Straße 9, 97078, Wuerzburg, Germany.
| |
Collapse
|
13
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
14
|
Marino M, Gigliotti L, Møller P, Riso P, Porrini M, Del Bo C. Impact of 12-month cryopreservation on endogenous DNA damage in whole blood and isolated mononuclear cells evaluated by the comet assay. Sci Rep 2021; 11:363. [PMID: 33432000 PMCID: PMC7801598 DOI: 10.1038/s41598-020-79670-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
The comet assay is an electrophoretic technique used to assess DNA damage, as a marker of genotoxicity and oxidative stress, in tissues and biological samples including peripheral blood mononuclear cells (PBMCs) and whole blood (WB). Although numerous studies are performed on stored samples, the impact of cryopreservation on artifactual formation of DNA damage is not widely considered. The present study aims to evaluate the impact of storage at different time-points on the levels of strand breaks (SBs) and formamidopyrimidine DNA glycosylase (Fpg)-sensitive sites in isolated PBMCs and WB. Samples were collected, aliquoted and stored at − 80 °C. DNA damage was analyzed on fresh samples, and subsequently on frozen samples every 2 months up to a year. Results have shown no changes in DNA damage in samples of PBMCs and WB stored for up to 4 months, while a significant increase in SBs and Fpg-sensitive sites was documented starting from 6-month up to 12-month storage of both the samples. In addition, fresh and frozen WB showed higher basal levels of DNA damage compared to PBMCs. In conclusion, WB samples show high levels of DNA damage compared to PBMCs. One-year of storage increased the levels of SBs and Fpg-sensitive sites especially in the WB samples. Based on these findings, the use of short storage times and PBMCs should be preferred because of low background level of DNA damage in the comet assay.
Collapse
Affiliation(s)
- Mirko Marino
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Letizia Gigliotti
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, 1014, Copenhagen K, Denmark
| | - Patrizia Riso
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Marisa Porrini
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Cristian Del Bo
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
15
|
B-Comet Assay (Comet Assay on Buccal Cells) for the Evaluation of Primary DNA Damage in Human Biomonitoring Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249234. [PMID: 33321868 PMCID: PMC7763633 DOI: 10.3390/ijerph17249234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Many subjects perceive venous blood collection as too invasive, and thus moving to better-accepted procedures for leukocytes collection might be crucial in human biomonitoring studies (e.g., biomonitoring of occupational or residential exposure to genotoxins) management. In this context, primary DNA damage was assessed in buccal lymphocytes (BLs), fresh whole venous, and capillary blood leukocytes, and compared with that in peripheral blood lymphocytes (PBLs)—the most frequently used cells—in 15 young subjects. Mouthwashes were collected after the volunteers rinsed their mouths with normal saline, and BLs were isolated by density gradient centrifugation. Blood samples were collected by venipuncture or by lancet. Anthropometric and lifestyle information was obtained by the administration of a structured questionnaire. As shown in the Bland-Altman plots, the level of agreement between BLs and PBLs lied within the accepted range, we thus enrolled a wider population (n = 54) to assess baseline DNA damage in BLs. In these cells, mean values of tail length (µm), tail intensity (%), and tail moment were 25.7 ± 0.9, 6.7 ± 0.4 and 1.0 ± 0.1, respectively. No significant association was observed between sex and smoking habit with any of the DNA damage parameters. Conversely, underweight subjects displayed significantly higher genomic instability compared with normal weight group (p < 0.05). In conclusion, we successfully managed to set up and update a non-invasive and well-accepted procedure for the isolation of BLs from saliva that could be useful in upcoming biomonitoring studies.
Collapse
|
16
|
Gajski G, Gerić M, Živković Semren T, Tariba Lovaković B, Oreščanin V, Pizent A. Application of the comet assay for the evaluation of DNA damage from frozen human whole blood samples: Implications for human biomonitoring. Toxicol Lett 2019; 319:58-65. [PMID: 31730884 DOI: 10.1016/j.toxlet.2019.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
This study proposes the application of the comet assay for the evaluation of DNA damage from frozen human whole blood samples that could be readily used in human biomonitoring and epidemiological studies. It was done on simply frozen whole blood samples collected from male volunteers (N = 60) aliquoted in small volumes and stored at -80 °C without the addition of cryopreservatives for a period of 5 years. To test the applicability of the alkaline comet assay for the evaluation of DNA damage in frozen whole blood, samples were quickly thawed at 37 °C and immediately embedded in an agarose matrix followed by an alkaline comet assay procedure. We concluded that the whole blood freezing and prolonged storage do not severely affect comet assay values, although background values were higher compared to our historical control data from the fresh whole blood. Even the influence of the variables tested, such as age, body mass index, smoking habit and alcohol consumption were in agreement with our previous data using fresh blood. The obtained results suggest that the comet assay could be applied to frozen blood samples, if properly stored, even for decades, which would certainly facilitate large-scale human biomonitoring and long-term epidemiological studies.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia.
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Tanja Živković Semren
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | | | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
Application of the comet assay in human biomonitoring: An hCOMET perspective. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 783:108288. [PMID: 32192646 DOI: 10.1016/j.mrrev.2019.108288] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
The comet assay is a well-accepted biomonitoring tool to examine the effect of dietary, lifestyle, environmental and occupational exposure on levels of DNA damage in human cells. With such a wide range of determinants for DNA damage levels, it becomes challenging to deal with confounding and certain factors are inter-related (e.g. poor nutritional intake may correlate with smoking status). This review describes the effect of intrinsic (i.e. sex, age, tobacco smoking, occupational exposure and obesity) and extrinsic (season, environmental exposures, diet, physical activity and alcohol consumption) factors on the level of DNA damage measured by the standard or enzyme-modified comet assay. Although each factor influences at least one comet assay endpoint, the collective evidence does not indicate single factors have a large impact. Thus, controlling for confounding may be necessary in a biomonitoring study, but none of the factors is strong enough to be regarded a priori as a confounder. Controlling for confounding in the comet assay requires a case-by-case approach. Inter-laboratory variation in levels of DNA damage and to some extent also reproducibility in biomonitoring studies are issues that have haunted the users of the comet assay for years. Procedures to collect specimens, and their storage, are not standardized. Likewise, statistical issues related to both sample-size calculation (before sampling of specimens) and statistical analysis of the results vary between studies. This review gives guidance to statistical analysis of the typically complex exposure, co-variate, and effect relationships in human biomonitoring studies.
Collapse
|
18
|
The comet assay in human biomonitoring: Technical and epidemiological perspectives. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 843:1-2. [DOI: 10.1016/j.mrgentox.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|