1
|
Schryvers S, Jung C, Pavicich MA, Saeger SD, Lachat C, Jacxsens L. Risk ranking of mycotoxins in plant-based meat and dairy alternatives under protein transition scenarios. Food Res Int 2025; 200:115422. [PMID: 39779162 DOI: 10.1016/j.foodres.2024.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
While reducing the consumption of animal-source foods is recommended for planetary and human health, potential emerging food safety risks associated with the transition to dietary patterns featuring plant-based meat (PBMA) and dairy alternatives (PBDA) remain unexplored. We assessed the exposure to mycotoxins and ranked the associated health risks related to the consumption of PBMA and PBDA. We simulated diets by replacing animal-source proteins with their plant-based alternatives. A risk ratio method, based on the hazard quotient (HQ), was applied to rank mycotoxin-related food safety risks. An aggregated dataset containing contamination data of 45 mycotoxins distributed over 182 PBDA and 131 PBMA samples, collected and analyzed in Europe, representing a convenience sample, was used as input in our risk assessment. The highest risk mycotoxins identified for PBMA in the lower bound scenario (LB) were the sum of aflatoxins (sum AF), alternariol monomethyl ether (AME), aflatoxin B1 (AFB1) and alternariol (AOH), with HQs for children of 121.3, 66.8, 24.0 and 4.3, respectively. In the milk substitution model (LB), HQs of 4.9 (sum AF) and 1.4 (AFB1) were calculated for children, indicating a potential food safety risk. Further analysis demonstrated that soy-based meat alternatives are the highest risk food products, in particular for sum AF, AME, AOH and AFB1. With regard to PBDA, highest HQs were found for sum AF in almond and oat drink, and AFB1 in oat drink. This research presents an approach to overcome the lack of data in the assessment of emerging risks associated with the shift to more sustainable dietary patterns.
Collapse
Affiliation(s)
- Sofie Schryvers
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium.
| | - Christian Jung
- Department of Exposure, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Maria Agustina Pavicich
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Department of Biotechnology and Food Technology, Faculty of Science, Doornfontein Campus, University of Johannesburg, South Africa
| | - Carl Lachat
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - Liesbeth Jacxsens
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Zhang Y, Liu C, van der Fels‐Klerx HJ. Occurrence, toxicity, dietary exposure, and management of Alternaria mycotoxins in food and feed: A systematic literature review. Compr Rev Food Sci Food Saf 2025; 24:e70085. [PMID: 39746866 PMCID: PMC11695269 DOI: 10.1111/1541-4337.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/18/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Alternaria mycotoxins are emerging contaminants frequently detected in food products and threaten human health. This systematic review aims to provide an up-to-date overview of scientific data and knowledge and gaps therein of natural occurrence, toxicological effects, dietary exposure, and prevention and control management of Alternaria mycotoxins in food and feed. A systematic review has been performed, using the databases Scopus and PubMed, retrieving relevant scientific papers published in English from 2011 to 2024. Alternaria mycotoxins are widely present in various food and feed products, with tomatoes and cereals being the most contaminated products. From the Alternaria mycotoxins, tenuazonic acid (TeA) and alternariol were reported with the highest detection rate and concentrations. Identified toxicological effects vary between the different Alternaria mycotoxins and include carcinogenicity, immune toxicity, cytotoxicity, and genotoxicity. Dietary exposure assessments for Alternaria mycotoxins have been conducted in several countries but vary in their scope. The calculations and risk values suggest that exposure of children to TeA via their diet is close to their tolerable daily intake. A similar finding has been reported for exposure of adults to alternariol and alternariol monomethyl ether via food consumption. Most Alternaria mycotoxins are heat-stable and cannot easily be removed during food processing; therefore, prevention and control measures for Alternaria mycotoxin contamination in food and feed are crucial. Fungicide and biocontrol applications have been shown effective in reducing Alternaria fungal growth and toxin production, and the development of predictive models may be promising. Collectively, they can contribute to mitigating the impact of Alternaria mycotoxins on human health.
Collapse
Affiliation(s)
- Yimin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Business Economics GroupWageningen University & ResearchWageningenThe Netherlands
- Wageningen Food Safety ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Cheng Liu
- Wageningen Food Safety ResearchWageningen University & ResearchWageningenThe Netherlands
| | - H. J. van der Fels‐Klerx
- Business Economics GroupWageningen University & ResearchWageningenThe Netherlands
- Wageningen Food Safety ResearchWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
3
|
Lázaro Á, Vila-Donat P, Manyes L. Emerging mycotoxins and preventive strategies related to gut microbiota changes: probiotics, prebiotics, and postbiotics - a systematic review. Food Funct 2024; 15:8998-9023. [PMID: 39229841 DOI: 10.1039/d4fo01705f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Recent research has focused on the involvement of the gut microbiota in various diseases, where probiotics, prebiotics, synbiotics, and postbiotics (PPSP) exert beneficial effects through modulation of the microbiome. This systematic review aims to provide insight into the interplay among emerging mycotoxins, gut microbiota, and PPSP. The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. In this review, unregulated yet highly recurrent mycotoxins are classified as emerging mycotoxins. The most frequently observed mycotoxins included those from the Fusarium genus-enniatins (n = 11) and beauvericin (n = 11)-and the Alternaria genus-alternariol monomethyl ether, altertoxin, and tentoxin (n = 10). Among probiotics, the most studied genera were Lactobacillus, Bifidobacterium, and the yeast Saccharomyces cerevisiae. Inulin and cellulose were the most found prebiotics. Data on synbiotics and postbiotics are scarce. Studies have shown that both the gut microbiota and PPSP can detoxify and mitigate the harmful effects of emerging mycotoxins. PPSP not only reduced mycotoxin bioaccessibility, but also counteracted their detrimental effects by activating health-promoting pathways such as short-chain fatty acid production, genoprotection, and reduction of oxidative stress. However, both quantitative and qualitative data remain limited, indicating a need for further in vivo and long-term studies. The formulation of PPSP as functional foods, feeds, or nutraceuticals should be considered a preventive strategy against the toxicity of emerging mycotoxins, for which, there is no established regulatory framework.
Collapse
Affiliation(s)
- Álvaro Lázaro
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| | - Pilar Vila-Donat
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| | - Lara Manyes
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| |
Collapse
|
4
|
Podlech J. Natural resorcylic lactones derived from alternariol. Beilstein J Org Chem 2024; 20:2171-2207. [PMID: 39224229 PMCID: PMC11368053 DOI: 10.3762/bjoc.20.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
In this overview, naturally occurring resorcylic lactones biosynthetically derived from alternariol and almost exclusively produced by fungi, are discussed with view on their isolation, structure, biological activities, biosynthesis, and total syntheses. This class of compounds consists until now of 127 naturally occurring compounds, with very divers structural motifs. Although only a handful of these toxins (i.e., alternariol and its 9-O-methyl ether, altenusin, dehydroaltenusin, altertenuol, and altenuene) were frequently found and isolated as fungal contaminants in food and feed and have been investigated in significant detail, further metabolites, which were much more rarely found as natural products, similarly show interesting biological activities.
Collapse
Affiliation(s)
- Joachim Podlech
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
5
|
Zhang D, Liu B, Xiao T, Wang Y, Zhao Z, Xie J, Li W, Li R, Cui J. Development and validation of a simultaneous quantitative analytical method for two Alternaria toxins and their metabolites in plasma and urine using ultra-high-performance liquid chromatography-tandem mass spectrometry. J Sep Sci 2024; 47:e2400223. [PMID: 39031838 DOI: 10.1002/jssc.202400223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
Much more attention has been paid to the contamination of Alternaria toxins because of food contamination and the threat to human health. In this study, an ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous detection of the prototypical alternariol, alternariol monomethylether, and the metabolites 4-oxhydryl alternariol, and alternariol monomethylether 3-sulfate ammonium salt of Alternaria toxins. The positive samples were used as matrix samples to optimize the different experimental conditions. 0.01% formic acid solution and acetonitrile were used as the mobile phase, and analytes were scanned in negative electron spray ionization under multiple reaction monitoring, and quantitative determination by isotope internal standard method. Application of this method to samples of human plasma and urine showed the detection of the above analytes. The results showed that the recoveries were from 80.40% to 116.4%, intra-day accuracy was between 0.6% and 8.0%, and inter-day accuracy was between 1.1% and 12.1%. The limit of detection of the four analytes ranged from 0.02 to 0.6 µg/L in urine, and 0.02 to 0.5 µg/L in plasma, respectively. Thus, the developed method was rapid and accurate for the simultaneous detection of analytes and provided a theoretical basis for the risk assessment of Alternaria toxins for human exposure.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
| | - Bolin Liu
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Department of Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
| | - Tingting Xiao
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yan Wang
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Ziwei Zhao
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Ji'an Xie
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Weidong Li
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Department of Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
| | - Rui Li
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Jie Cui
- Physical and Chemical Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| |
Collapse
|
6
|
Marin DE, Bulgaru VC, Pertea A, Grosu IA, Pistol GC, Taranu I. Alternariol Monomethyl-Ether Induces Toxicity via Cell Death and Oxidative Stress in Swine Intestinal Epithelial Cells. Toxins (Basel) 2024; 16:223. [PMID: 38787075 PMCID: PMC11125839 DOI: 10.3390/toxins16050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Alternariol monomethyl-ether (AME), together with altenuene and alternariol, belongs to the Alternaria mycotoxins group, which can contaminate different substrates, including cereals. The aim of the present study was to obtain a deeper understanding concerning the effects of AME on pig intestinal health using epithelial intestinal cell lines as the data concerning the possible effects of Alternaria toxins on swine are scarce and insufficient for assessing the risk represented by Alternaria toxins for animal health. Our results have shown a dose-related effect on IPEC-1 cell viability, with an IC50 value of 10.5 μM. Exposure to the toxin induced an increase in total apoptotic cells, suggesting that AME induces programmed cell death through apoptosis based on caspase-3/7 activation in IPEC-1 cells. DNA and protein oxidative damage triggered by AME were associated with an alteration of the antioxidant response, as shown by a decrease in the enzymatic activity of catalase and superoxide dismutase. These effects on the oxidative response can be related to an inhibition of the Akt/Nrf2/HO-1 signaling pathway; however, further studies are needed in order to validate these in vitro data using in vivo trials in swine.
Collapse
Affiliation(s)
- Daniela Eliza Marin
- National Research and Development Institute for Biology and Animal Nutrition (INCDBNA-IBNA-Balotesti), Calea Bucuresti nr.1, 077015 Balotesti Ilfov, Romania; (V.C.B.); (A.P.); (I.A.G.); (G.C.P.); (I.T.)
| | | | | | | | | | | |
Collapse
|
7
|
Cao L, Miao Y, Liu Y, Huang S, Tian L, Yu M, Huo J, Zhang L, Li X, Chen J. Genotoxic mode of action and threshold exploration of 2-methyl furan under 120-day sub-chronic exposure in male Sprague-Dawley rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116125. [PMID: 38394755 DOI: 10.1016/j.ecoenv.2024.116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
2-Methylfuran (2-MF) is an important member of the furan family generated during food thermal processing. An in-vivo multiple endpoint genotoxicity assessment system was applied to explore the genotoxic mode of action and threshold of 2-MF. Male Sprague-Dawley rats received 2-MF by oral gavage at doses of 0.16, 0.625, 2.5, and 10 mg/kg.bw/day for 120 days. An additional 15 days were granted for recovery. The Pig-a gene mutation frequency of RET and RBC showed significant increases among the 2-MF groups on day 120. After a 15-day recovery period, the Pig-a gene mutation frequency returned to levels similar to those in the vehicle control. The tail intensity (TI) values of peripheral blood cells at a dose of 10 mg/kg.bw/day significantly increased from day 4 and remained at a high level after the recovery period. No statistical difference was found in the micronucleus frequency of peripheral blood between any 2-MF dose group and the corn oil group at any timepoint. 2-MF may not induce the production of micronuclei, but it could cause DNA breakage. It could not be ruled out that 2-MF may accumulate in vivo and cause gene mutations. Hence, DNA, other than the spindle, may be directly targeted. The mode of action of 2-MF may be that it was metabolized by EPHX1 to more DNA-active metabolites, thus leading to oxidative and direct DNA damage. The point of departure (PoD) of 2-MF-induced genotoxicity was derived as 0.506 mg/kg bw/day.
Collapse
Affiliation(s)
- Li Cao
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yeqiu Miao
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yufei Liu
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuzhen Huang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Luojia Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengqi Yu
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiao Huo
- Department of Nutrition and Food Safety, Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
8
|
Zhu X, Cao L, Liu Y, Tang X, Miao Y, Zhang J, Zhang L, Jia Z, Chen J. Genotoxicity of bisphenol AF in rats: Detrimental to male reproductive system and probable stronger micronucleus induction potency than BPA. J Appl Toxicol 2024; 44:428-444. [PMID: 37837293 DOI: 10.1002/jat.4552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Bisphenol AF (BPAF), as one of structural analogs of BPA, has been increasingly used in recent years. However, limited studies have suggested its adverse effects similar to or higher than BPA. In order to explore the general toxicity and genotoxicity of subacute exposure to BPAF, the novel 28-day multi-endpoint (Pig-a assay + micronucleus [MN] test + comet assay) genotoxicity evaluation platform was applied. Male rats were randomly distributed into seven main experimental groups and four satellite groups. The main experimental groups included BPAF-treated groups (0.5, 5, and 50 μg/kg·bw/d), BPA group (10 μg/kg·bw/d), two solvent control groups (PBS and 0.1% ethanol/99.9% oil), and one positive control group (N-ethyl-N-nitrosourea, 40 mg/kg bw). The satellite groups included BPAF high-dose recovery group (BPAF-HR), oil recovery group (oil-R), ENU recovery group (ENU-R), and PBS recovery group (PBS-R). All groups received the agents orally via gavage for 28 consecutive days, and satellite groups were given a recovery period of 35 days. Among all histopathologically examined organs, testis and epididymis damage was noticed, which was further manifested as blood-testis barrier (BTB) junction protein (Connexin 43 and Occludin) destruction. BPAF can induce micronucleus production and DNA damage, but the genotoxic injury can be repaired after the recovery period. The expression of DNA repair gene OGG1 was downregulated by BPAF. To summarize, under the design of this experiment, male reproductive toxicity of BPAF was noticed, which is similar to that of BPA, but its ability to induce micronucleus production may be stronger than that of BPA.
Collapse
Affiliation(s)
- Xia Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Second People's Hospital of Yibin City, Yibin, China
| | - Li Cao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yufei Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xinyao Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yeqiu Miao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhenchao Jia
- Department of Prevention and Health Care, Sichuan University Hospital of Sichuan University, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
9
|
Louro H, Vettorazzi A, López de Cerain A, Spyropoulou A, Solhaug A, Straumfors A, Behr AC, Mertens B, Žegura B, Fæste CK, Ndiaye D, Spilioti E, Varga E, Dubreil E, Borsos E, Crudo F, Eriksen GS, Snapkow I, Henri J, Sanders J, Machera K, Gaté L, Le Hegarat L, Novak M, Smith NM, Krapf S, Hager S, Fessard V, Kohl Y, Silva MJ, Dirven H, Dietrich J, Marko D. Hazard characterization of Alternaria toxins to identify data gaps and improve risk assessment for human health. Arch Toxicol 2024; 98:425-469. [PMID: 38147116 PMCID: PMC10794282 DOI: 10.1007/s00204-023-03636-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 12/27/2023]
Abstract
Fungi of the genus Alternaria are ubiquitous plant pathogens and saprophytes which are able to grow under varying temperature and moisture conditions as well as on a large range of substrates. A spectrum of structurally diverse secondary metabolites with toxic potential has been identified, but occurrence and relative proportion of the different metabolites in complex mixtures depend on strain, substrate, and growth conditions. This review compiles the available knowledge on hazard identification and characterization of Alternaria toxins. Alternariol (AOH), its monomethylether AME and the perylene quinones altertoxin I (ATX-I), ATX-II, ATX-III, alterperylenol (ALP), and stemphyltoxin III (STTX-III) showed in vitro genotoxic and mutagenic properties. Of all identified Alternaria toxins, the epoxide-bearing analogs ATX-II, ATX-III, and STTX-III show the highest cytotoxic, genotoxic, and mutagenic potential in vitro. Under hormone-sensitive conditions, AOH and AME act as moderate xenoestrogens, but in silico modeling predicts further Alternaria toxins as potential estrogenic factors. Recent studies indicate also an immunosuppressive role of AOH and ATX-II; however, no data are available for the majority of Alternaria toxins. Overall, hazard characterization of Alternaria toxins focused, so far, primarily on the commercially available dibenzo-α-pyrones AOH and AME and tenuazonic acid (TeA). Limited data sets are available for altersetin (ALS), altenuene (ALT), and tentoxin (TEN). The occurrence and toxicological relevance of perylene quinone-based Alternaria toxins still remain to be fully elucidated. We identified data gaps on hazard identification and characterization crucial to improve risk assessment of Alternaria mycotoxins for consumers and occupationally exposed workers.
Collapse
Affiliation(s)
- Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA) and Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade Nova de Lisboa, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Ariane Vettorazzi
- MITOX Research Group, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, UNAV-University of Navarra, Pamplona, Spain
| | - Adela López de Cerain
- MITOX Research Group, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, UNAV-University of Navarra, Pamplona, Spain
| | - Anastasia Spyropoulou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61, Attica, Greece
| | - Anita Solhaug
- Norwegian Veterinary Institute, PO Box 64, 1431, Ås, Norway
| | - Anne Straumfors
- National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Anne-Cathrin Behr
- Department Food Safety, BfR, German Federal Institute for Risk Assessment, Max-Dohrnstraße 8-10, 10589, Berlin, Germany
| | - Birgit Mertens
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | | | - Dieynaba Ndiaye
- INRS, Institut National de Recherche et de Sécurité pour la Prévention des accidents du travail et des maladies professionnelles, Rue du Morvan, CS 60027, 54519, Vandœuvre Lès Nancy Cedex, France
| | - Eliana Spilioti
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61, Attica, Greece
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Food Hygiene and Technology, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Estelle Dubreil
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health and Safety, 10 B rue Claude Bourgelat, 35306, Fougères, France
| | - Eszter Borsos
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Francesco Crudo
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | - Igor Snapkow
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Lovisenberggate 8, 0456, Oslo, Norway
| | - Jérôme Henri
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health and Safety, 10 B rue Claude Bourgelat, 35306, Fougères, France
| | - Julie Sanders
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Kyriaki Machera
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61, Attica, Greece
| | - Laurent Gaté
- INRS, Institut National de Recherche et de Sécurité pour la Prévention des accidents du travail et des maladies professionnelles, Rue du Morvan, CS 60027, 54519, Vandœuvre Lès Nancy Cedex, France
| | - Ludovic Le Hegarat
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health and Safety, 10 B rue Claude Bourgelat, 35306, Fougères, France
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Nicola M Smith
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Lovisenberggate 8, 0456, Oslo, Norway
| | - Solveig Krapf
- National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Sonja Hager
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Valérie Fessard
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health and Safety, 10 B rue Claude Bourgelat, 35306, Fougères, France
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-Von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA) and Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade Nova de Lisboa, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Hubert Dirven
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Lovisenberggate 8, 0456, Oslo, Norway
| | - Jessica Dietrich
- Department Safety in the Food Chain, BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Tang X, Miao Y, Cao L, Liu Y, Zhu X, Zhang J, Wang D, Li X, Zhang L, Huo J, Chen J. Adverse outcome pathway exploration of furan-induced liver fibrosis in rats: Genotoxicity pathway or oxidative stress pathway through CYP2E1 activation? CHEMOSPHERE 2023; 341:139998. [PMID: 37657698 DOI: 10.1016/j.chemosphere.2023.139998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Furan is a widespread endogenous contaminant in heat-processed foods that can accumulate rapidly in the food chain and has been widely detected in foods, such as wheat, bread, coffee, canned meat products, and baby food. Dietary exposure to this chemical may bring health risk. Furan is classified as a possible category 2B human carcinogen by the International Agency for Research on Cancer, with the liver as its primary target organ. Hepatic fibrosis is the most important nontumoral harmful effect of furan and also an important event in the carcinogenesis of furan. Although the specific mechanism of furan-induced liver fibrosis is still unclear, it may involve oxidative stress and genetic toxicity, in which the activation of cytochrome P450 2E1 (CYP2E1) may be the key event. Thus, we conducted a study using an integrating multi-endpoint genotoxicity platform in 120-day in vivo subchronic toxicity test in rats. Results showed that the rats with activated CYP2E1 exhibited DNA double-strand breaks in D4, gene mutations in D60, and increased expression of reactive oxygen species and nuclear factor erythroid 2-related factor 2 in D120. Necrosis, apoptosis, hepatic stellate cell activation, and fibrosis also occurred in the liver, suggesting that furan can independently affect liver fibrosis through oxidative stress and genotoxicity pathways. Point of Departure (PoD) was obtained by benchmark-dose (BMD) method to establish health-based guidance values. The human equivalent dose of PoD derived from BMDL05 was 2.26 μg/kg bw/d. The findings laid a foundation for the safety evaluation and risk assessment of furan and provided data for the further construction and improvement of the adverse outcome pathway network in liver fibrosis.
Collapse
Affiliation(s)
- Xinyao Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yeqiu Miao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Li Cao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yufei Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xia Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Dongxia Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xiaomeng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jiao Huo
- Department of Nutrition and Food Safety, Chongqing Center for Disease Control and Prevention, Chongqing, China.
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Mao X, Chen W, Wu H, Shao Y, Zhu Y, Guo Q, Li Y, Xia L. Alternaria Mycotoxins Analysis and Exposure Investigation in Ruminant Feeds. Toxins (Basel) 2023; 15:495. [PMID: 37624252 PMCID: PMC10467096 DOI: 10.3390/toxins15080495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Alternaria mycotoxins are a class of important, agriculture-related hazardous materials, and their contamination in ruminant feeds and products might bring severe toxic effects to animals and even human beings. To control these hazardous compounds, a reliable and sensitive LC-MS/MS (liquid chromatography-tandem mass spectrometry) method was established for simultaneous determination of six target Alternaria mycotoxins in ruminant feeds, including ALT (Altenuene), AME (Alternariol Monomethyl Ether), AOH (Alternariol), ATX-Ι (Altertoxins I), TeA (Tenuazonic Acid), and TEN (Tentoxin). This developed analytical method was used for the determination of the presence of these substances in cattle and sheep feeds in Xinjiang Province, China. The results revealed that Alternaria mycotoxins are ubiquitously detected in feed samples. Especially, AME, AOH, TeA, and TEN are the most frequently found mycotoxins with a positive rate over 40% and a concentration range of 4~551 µg/kg. The proposed method could be applied for exposure investigation of Alternaria mycotoxins in ruminant feeds and for the reduction in the health risk to animals and even consumers.
Collapse
Affiliation(s)
- Xin Mao
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Wanzhao Chen
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Huimin Wu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Ying Shao
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Ya’ning Zhu
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Lining Xia
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| |
Collapse
|
12
|
Islam MT, Martorell M, González-Contreras C, Villagran M, Mardones L, Tynybekov B, Docea AO, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. An updated overview of anticancer effects of alternariol and its derivatives: underlying molecular mechanisms. Front Pharmacol 2023; 14:1099380. [PMID: 37033617 PMCID: PMC10076758 DOI: 10.3389/fphar.2023.1099380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Alternariol is a toxic metabolite of Alternaria fungi and studies have shown multiple potential pharmacological effects. To outline the anticancer effects and mechanisms of alternariol and its derivatives based on database reports, an updated search of PubMed/MedLine, ScienceDirect, Web of Science, and Scopus databases was performed with relevant keywords for published articles. The studies found to suggest that this mycotoxin and/or its derivatives have potential anticancer effects in many pharmacological preclinical test systems. Scientific reports indicate that alternariol and/or its derivatives exhibit anticancer through several pathways, including cytotoxic, reactive oxygen species leading to oxidative stress and mitochondrial dysfunction-linked cytotoxic effect, anti-inflammatory, cell cycle arrest, apoptotic cell death, genotoxic and mutagenic, anti-proliferative, autophagy, and estrogenic and clastogenic mechanisms. In light of these results, alternariol may be one of the hopeful chemotherapeutic agents.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Carlos González-Contreras
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Marcelo Villagran
- Biomedical Sciences Research Laboratory, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Lorena Mardones
- Biomedical Sciences Research Laboratory, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
13
|
Ji X, Xiao Y, Lyu W, Li M, Wang W, Tang B, Wang X, Yang H. Probabilistic Risk Assessment of Combined Exposure to Deoxynivalenol and Emerging Alternaria Toxins in Cereal-Based Food Products for Infants and Young Children in China. Toxins (Basel) 2022; 14:toxins14080509. [PMID: 35893751 PMCID: PMC9330788 DOI: 10.3390/toxins14080509] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Deoxynivalenol (DON) and emerging Alternaria toxins often co-occur in cereal-based products, but the current risk assessment is commonly conducted for only one type of mycotoxin at a time. Compared to adults, infants and young children are more susceptible to mycotoxins through food consumption, especially with cereal-based food products which are the main source of exposure. This study aimed to perform a probabilistic risk assessment of combined exposure to DON and three major Alternaria toxins, namely including alternariol monomethyl ether (AME), alternariol (AOH), and tenuazonic acid (TeA) through consumption of cereal-based foods for Chinese infants and young children. A total of 872 cereal-based food products were randomly collected and tested for the occurrence of DON and three major Alternaria toxins. The results on mycotoxin occurrence showed the DON, TeA, AOH, and AME was detected in 56.4%, 47.5%, 7.5%, and 5.7% of the samples, respectively. Co-contamination of various mycotoxins was observed in 39.9% of the analyzed samples. A preliminary cumulative risk assessment using the models of hazard index (HI) and combined margin of exposure (MoET) was performed on DON and Alternaria toxins that were present in cereal-based food products for infants and young children in China for the first time. The results showed that only 0.2% and 1.5%, respectively, of individuals exceeded the corresponding reference value for DON and TeA, indicating a low health risk. However, in the case of AME and AOH, the proportion of individuals exceeding the reference value was 24.1% and 33.5%, respectively, indicating the potential health risks. In the cumulative risk assessment of AME and AOH, both HI and MoET values indicated a more serious risk than that related to individual exposure. Further research is necessary to reduce the uncertainties that are associated with the toxicities of the Alternaria toxins and cumulative risk assessment methods.
Collapse
Affiliation(s)
- Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Minglu Li
- China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Xiaodan Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China;
- Correspondence: (X.W.); (H.Y.)
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
- Correspondence: (X.W.); (H.Y.)
| |
Collapse
|