1
|
Tardieu M, Salameh N, Souris L, Rousseau D, Jourdain L, Skeif H, Prévot F, de Rochefort L, Ducreux D, Louis B, Garteiser P, Sinkus R, Darrasse L, Poirier-Quinot M, Maître X. Magnetic resonance elastography with guided pressure waves. NMR IN BIOMEDICINE 2022; 35:e4701. [PMID: 35088465 DOI: 10.1002/nbm.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Magnetic resonance elastography aims to non-invasively and remotely characterize the mechanical properties of living tissues. To quantitatively and regionally map the shear viscoelastic moduli in vivo, the technique must achieve proper mechanical excitation throughout the targeted tissues. Although it is straightforward, ante manibus, in close organs such as the liver or the breast, which practitioners clinically palpate already, it is somewhat fortunately highly challenging to trick the natural protective barriers of remote organs such as the brain. So far, mechanical waves have been induced in the latter by shaking the surrounding cranial bones. Here, the skull was circumvented by guiding pressure waves inside the subject's buccal cavity so mechanical waves could propagate from within through the brainstem up to the brain. Repeatable, reproducible and robust displacement fields were recorded in phantoms and in vivo by magnetic resonance elastography with guided pressure waves such that quantitative mechanical outcomes were extracted in the human brain.
Collapse
Affiliation(s)
- Marion Tardieu
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
- Montpellier Cancer Research Institute (IRCM), Inserm U1194, University of Montpellier, Montpellier, France
| | - Najat Salameh
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
- Center for Adaptable MRI Technology, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Line Souris
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| | | | - Laurène Jourdain
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| | - Hanadi Skeif
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| | - François Prévot
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| | - Ludovic de Rochefort
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
- AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Denis Ducreux
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| | - Bruno Louis
- Inserm-UPEC UMR955, CNRS EMR7000, Equipe Biomécanique Cellulaire et Respiratoire, Créteil, France
| | - Philippe Garteiser
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149, Inserm, Université de Paris, Paris, France
| | - Ralph Sinkus
- Imaging Sciences & Biomedical Engineering Division, King's College, London, United Kingdom
| | - Luc Darrasse
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| | | | - Xavier Maître
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| |
Collapse
|
2
|
Triolo E, Khegai O, Ozkaya E, Rossi N, Alipour A, Fleysher L, Balchandani P, Kurt M. Design, Construction, and Implementation of a Magnetic Resonance Elastography Actuator for Research Purposes. Curr Protoc 2022; 2:e379. [PMID: 35286023 PMCID: PMC9517172 DOI: 10.1002/cpz1.379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic resonance elastography (MRE) is a technique for determining the mechanical response of soft materials using applied harmonic deformation of the material and a motion-sensitive magnetic resonance imaging sequence. This technique can elucidate significant information about the health and development of human tissue such as liver and brain, and has been used on phantom models (e.g., agar, silicone) to determine their suitability for use as a mechanical surrogate for human tissues in experimental models. The applied harmonic deformation used in MRE is generated by an actuator, transmitted in bursts of a specified duration, and synchronized with the magnetic resonance signal excitation. These actuators are most often a pneumatic design (common for human tissues or phantoms) or a piezoelectric design (common for small animal tissues or phantoms). Here, we describe how to design and assemble both a pneumatic and a piezoelectric MRE actuator for research purposes. For each of these actuator types, we discuss displacement requirements, end-effector options and challenges, electronics and electronic-driving requirements and considerations, and full MRE implementation. We also discuss how to choose the actuator type, size, and power based on the intended material and use. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Design, construction, and implementation of a convertible pneumatic MRE actuator for use with tissues and phantom models Basic Protocol 2: Design, construction, and implementation of a piezoelectric MRE actuator for localized excitation in phantom models.
Collapse
Affiliation(s)
- E.R. Triolo
- University of Washington, Dept. of Mechanical Engineering (3900 E Stevens Way NE Seattle, WA 98195)
| | - O. Khegai
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute (1470 Madison Ave, New York City, NY 10029)
| | - E. Ozkaya
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute (1470 Madison Ave, New York City, NY 10029)
| | - N. Rossi
- Stevens Institute of Technology, Dept. of Mechanical Engineering (1 Castle Point Terrace, Hoboken, NJ 07030)
| | - A. Alipour
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute (1470 Madison Ave, New York City, NY 10029)
| | - L. Fleysher
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute (1470 Madison Ave, New York City, NY 10029)
| | - P. Balchandani
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute (1470 Madison Ave, New York City, NY 10029)
| | - M. Kurt
- University of Washington, Dept. of Mechanical Engineering (3900 E Stevens Way NE Seattle, WA 98195)
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute (1470 Madison Ave, New York City, NY 10029)
| |
Collapse
|
3
|
Li H, Flé G, Bhatt M, Qu Z, Ghazavi S, Yazdani L, Bosio G, Rafati I, Cloutier G. Viscoelasticity Imaging of Biological Tissues and Single Cells Using Shear Wave Propagation. FRONTIERS IN PHYSICS 2021; 9. [DOI: 10.3389/fphy.2021.666192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Changes in biomechanical properties of biological soft tissues are often associated with physiological dysfunctions. Since biological soft tissues are hydrated, viscoelasticity is likely suitable to represent its solid-like behavior using elasticity and fluid-like behavior using viscosity. Shear wave elastography is a non-invasive imaging technology invented for clinical applications that has shown promise to characterize various tissue viscoelasticity. It is based on measuring and analyzing velocities and attenuations of propagated shear waves. In this review, principles and technical developments of shear wave elastography for viscoelasticity characterization from organ to cellular levels are presented, and different imaging modalities used to track shear wave propagation are described. At a macroscopic scale, techniques for inducing shear waves using an external mechanical vibration, an acoustic radiation pressure or a Lorentz force are reviewed along with imaging approaches proposed to track shear wave propagation, namely ultrasound, magnetic resonance, optical, and photoacoustic means. Then, approaches for theoretical modeling and tracking of shear waves are detailed. Following it, some examples of applications to characterize the viscoelasticity of various organs are given. At a microscopic scale, a novel cellular shear wave elastography method using an external vibration and optical microscopy is illustrated. Finally, current limitations and future directions in shear wave elastography are presented.
Collapse
|
4
|
Numano T, Habe T, Ito D, Onishi T, Takamoto K, Mizuhara K, Nishijo H, Igarashi K, Ueki T. A new technique for motion encoding gradient-less MR elastography of the psoas major muscle: A gradient-echo type multi-echo sequence. Magn Reson Imaging 2019; 63:85-92. [PMID: 31425804 DOI: 10.1016/j.mri.2019.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 11/29/2022]
Abstract
The present study aimed to develop vibration techniques for magnetic resonance (MR) elastography (MRE) of the psoas major muscle (PM). Seven healthy volunteers were included. MRE was performed with motion-encoding gradient (MEG)-less multi-echo MRE sequence, which allows clinicians to perform MRE using conventional MR imaging. In order to transmit mechanical vibration of the pneumatic type to the PM, a long narrow vibration pad was designed using a 3D printer, and the optimum vibration techniques were verified. The vibration pad was placed under the lower back, with the volunteers in the supine position. The results indicated that the PM vibrated well through the transmitted vibration from the lumbar spine, which suggests that the placement of a narrow vibration pad under the supine body, along the lumbar spine, allows the vibration of the PM. The shear modulus of the PM (n = 7) was 1.23 ± 0.09 kPa (mean ± SEM) on the right side and 1.22 ± 0.15 kPa on the left side, with no significant difference (t-test, P > 0.05). Increased stiffness of the muscle due to continuous local contraction may be an important cause of non-specific low back pain (LBP). The present vibration techniques for MRE of the PM provide a quantitative diagnostic tool for changes in muscle stiffness associated with non-specific LBP.
Collapse
Affiliation(s)
- Tomokazu Numano
- Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, Japan; Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan.
| | - Tetsushi Habe
- Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, Japan
| | - Daiki Ito
- Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, Japan; Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan; Office of Radiation Technology, Keio University Hospital, Japan
| | - Takaaki Onishi
- Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, Japan
| | - Koichi Takamoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | | | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Keisuke Igarashi
- Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, Japan
| | - Takamichi Ueki
- Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, Japan
| |
Collapse
|
5
|
Huang X, Chafi H, Matthews KL, Carmichael O, Li T, Miao Q, Wang S, Jia G. Magnetic resonance elastography of the brain: A study of feasibility and reproducibility using an ergonomic pillow-like passive driver. Magn Reson Imaging 2019; 59:68-76. [PMID: 30858002 DOI: 10.1016/j.mri.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 01/12/2023]
Abstract
Magnetic resonance elastography (MRE) can be used to noninvasively resolve the displacement pattern of induced mechanical waves propagating in tissue. The goal of this study is to establish an ergonomically flexible passive-driver design for brain MRE, to evaluate the reproducibility of MRE tissue-stiffness measurements, and to investigate the relationship between tissue-stiffness measurements and driver frequencies. An ergonomically flexible passive pillow-like driver was designed to induce mechanical waves in the brain. Two-dimensional finite-element simulation was used to evaluate mechanical wave propagation patterns in brain tissues. MRE scans were performed on 10 healthy volunteers at mechanical frequencies of 60, 50, and 40 Hz. An axial mid-brain slice was acquired using an echo-planar imaging sequence to map the displacement pattern with the motion-encoding gradient along the through-plane (z) direction. All subjects were scanned and rescanned within 1 h. The Wilcoxon signed-rank test was used to test for differences between white matter and gray matter shear-stiffness values. One-way analysis of variance (ANOVA) was used to test for differences between shear-stiffness measurements made at different frequencies. Scan-rescan reproducibility was evaluated by calculating the within-subject coefficient of variation (CV) for each subject. The finite-element simulation showed that a pillow-like passive driver is capable of efficient shear-wave propagation through brain tissue. No subjects complained about discomfort during MRE acquisitions using the ergonomically designed driver. The white-matter elastic modulus (mean ± standard deviation) across all subjects was 3.85 ± 0.12 kPa, 3.78 ± 0.15 kPa, and 3.36 ± 0.11 kPa at frequencies of 60, 50, and 40 Hz, respectively. The gray-matter elastic modulus across all subjects was 3.33 ± 0.14 kPa, 2.82 ± 0.16 kPa, and 2.24 ± 0.14 kPa at frequencies of 60, 50, and 40 Hz, respectively. The Wilcoxon signed-rank test confirmed that the shear stiffness was significantly higher in white matter than gray matter at all three frequencies. The ranges of within-subject coefficients of variation for white matter, gray matter, and whole-brain shear-stiffness measurements for the three frequencies were 1.8-3.5% (60 Hz), 4.7-6.0% (50 Hz), and 3.7-4.1% (40 Hz). An ergonomic pneumatic pillow-like driver is feasible for highly reproducible in vivo evaluation of brain-tissue shear stiffness. Brain-tissue shear-stiffness values were frequency-dependent, thus emphasizing the importance of standardizing MRE acquisition protocols in multi-center studies.
Collapse
Affiliation(s)
- Xunan Huang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Hatim Chafi
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kenneth L Matthews
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Tanping Li
- School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
| | - Qiguang Miao
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Shuzhen Wang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.
| | - Guang Jia
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.
| |
Collapse
|
6
|
Neumann W, Bichert A, Fleischhauer J, Stern A, Figuli R, Wilhelm M, Schad LR, Zöllner FG. A novel 3D printed mechanical actuator using centrifugal force for magnetic resonance elastography: Initial results in an anthropomorphic prostate phantom. PLoS One 2018; 13:e0205442. [PMID: 30296308 PMCID: PMC6175527 DOI: 10.1371/journal.pone.0205442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
This work demonstrates a new method for the generation of mechanical shear wave during magnetic resonance elastography (MRE) that creates greater forces at higher vibrational frequencies as opposed to conventionally used pneumatic transducers. We developed an MR-compatible pneumatic turbine with an eccentric mass that creates a sinusoidal centrifugal force. The turbine was assessed with respect to its technical parameters and evaluated for MRE on a custom-made anthropomorphic prostate phantom. The silicone-based tissue-mimicking materials of the phantom were selected with regard to their complex shear moduli examined by rheometric testing. The tissue-mimicking materials closely matched human soft tissue elasticity values with a complex shear modulus ranging from 3.21 kPa to 7.29 kPa. We acquired MRE images on this phantom at 3 T with actuation frequencies of 50, 60 Hz, 70 Hz, and 80 Hz. The turbine generated vibrational wave amplitudes sufficiently large to entirely penetrate the phantoms during the feasibility study. Increased wave length in the stiffer inclusions compared to softer background material were detected. Our initial results suggest that silicone-based phantoms are useful for the evaluation of elasticities during MRE. Furthermore, our turbine seems suitable for the mechanical assessment of soft tissue during MRE.
Collapse
Affiliation(s)
- Wiebke Neumann
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Bichert
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jonas Fleischhauer
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antonia Stern
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roxana Figuli
- Institute for Chemical Technology and Polymer Chemistry of Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Manfred Wilhelm
- Institute for Chemical Technology and Polymer Chemistry of Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Lothar R. Schad
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G. Zöllner
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
7
|
Guidetti M, Lorgna G, Hammersly M, Lewis P, Klatt D, Vena P, Shah R, Royston TJ. Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography. J Mech Behav Biomed Mater 2018; 89:199-208. [PMID: 30292169 DOI: 10.1016/j.jmbbm.2018.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
The presence and progression of neuromuscular pathology, including spasticity, Duchenne's muscular dystrophy and hyperthyroidism, has been correlated with changes in the intrinsic mechanical properties of skeletal muscle tissue. Tools for noninvasively measuring and monitoring these properties, such as Magnetic Resonance Elastography (MRE), could benefit basic research into understanding neuromuscular pathologies, as well as translational research to develop therapies, by providing a means of assessing and tracking their efficacy. Dynamic elastography methods for noninvasive measurement of tissue mechanical properties have been under development for nearly three decades. Much of the technological development to date, for both Ultrasound (US)-based and Magnetic Resonance Imaging (MRI)-based strategies, has been grounded in assumptions of local homogeneity and isotropy. Striated skeletal and cardiac muscle, as well as brain white matter and soft tissue in some other organ regions, exhibit a fibrous microstructure which entails heterogeneity and anisotropic response; as one seeks to improve the accuracy and resolution in mechanical property assessment, heterogeneity and anisotropy need to be accounted for in order to optimize both the dynamic elastography experimental protocol and the interpretation of the measurements. Advances in elastography methodology at every step have been aided by the use of tissue-mimicking phantoms. The aim of the present study was to develop and characterize a heterogeneous composite phantom design with uniform controllable anisotropic properties meant to be comparable to the frequency-dependent anisotropic properties of skeletal muscle. MRE experiments and computational finite element (FE) studies were conducted on a novel 3D-printed composite phantom design. The displacement maps obtained from simulation and experiment show the same elliptical shaped wavefronts elongated in the plane where the structure presents higher shear modulus. The model exhibits a degree of anisotropy in line with literature data from skeletal muscle tissue MRE experiments. FE simulations of the MRE experiments provide insight into proper interpretation of experimental measurements, and help to quantify the importance of heterogeneity in the anisotropic material at different scales.
Collapse
Affiliation(s)
- Martina Guidetti
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA.
| | - Gloria Lorgna
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milan, Italy.
| | - Margaret Hammersly
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Phillip Lewis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Dieter Klatt
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA.
| | - Pasquale Vena
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milan, Italy.
| | - Ramille Shah
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Thomas J Royston
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA.
| |
Collapse
|
8
|
Feng Y, Zhu M, Qiu S, Shen P, Ma S, Zhao X, Hu CH, Guo L. A multi-purpose electromagnetic actuator for magnetic resonance elastography. Magn Reson Imaging 2018; 51:29-34. [DOI: 10.1016/j.mri.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/15/2018] [Indexed: 01/17/2023]
|
9
|
Neumann W, Schad LR, Zollner FG. A novel 3D-printed mechanical actuator using centrifugal force for magnetic resonance elastography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:3541-3544. [PMID: 29060662 DOI: 10.1109/embc.2017.8037621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Magnetic resonance elastography (MRE) is a technique for the quantification of tissue stiffness during MR examinations. It requires consistent methods for mechanical shear wave induction to the region of interest in the human body to reliably quantify elastic properties of soft tissues. This work proposes a novel 3D-printed mechanical actuator using the principle of centrifugal force for wave induction. The driver consists of a 3D-printed turbine vibrator powered by compressed air (located inside the scanner room) and an active driver controlling the pressure of inflowing air (placed outside the scanner room). The generated force of the proposed actuator increases for higher actuation frequencies as opposed to conventionally used air cushions. There, the displacement amplitude decreases with increasing actuation frequency resulting in a smaller signal-to-noise ratio. An initial phantom study is presented which demonstrates the feasibility of the actuator for MRE. The wave-actuation frequency was regulated in a range between 15 Hz and 60 Hz for force measurements and proved sufficiently stable (± 0.3 Hz) for any given nominal frequency. The generated forces depend on the weight of the eccentric unbalance within the turbine and ranged between 0.67 N to 2.70 N (for 15 Hz) and 3.09 N to 7.77 N (for 60 Hz). Therefore, the generated force of the presented actuator increases with rotational speed of the turbine and offers an elegant solution for sufficiently large wave actuation at higher frequencies. In future work, we will investigate an optimal ratio of the weight of unbalance to the size of turbine for appropriately large but tolerable wave actuation for a given nominal frequency.
Collapse
|
10
|
Anderson AT, Van Houten EEW, McGarry MDJ, Paulsen KD, Holtrop JL, Sutton BP, Georgiadis JG, Johnson CL. Observation of direction-dependent mechanical properties in the human brain with multi-excitation MR elastography. J Mech Behav Biomed Mater 2016; 59:538-546. [PMID: 27032311 PMCID: PMC4860072 DOI: 10.1016/j.jmbbm.2016.03.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 02/08/2023]
Abstract
Magnetic resonance elastography (MRE) has shown promise in noninvasively capturing changes in mechanical properties of the human brain caused by neurodegenerative conditions. MRE involves vibrating the brain to generate shear waves, imaging those waves with MRI, and solving an inverse problem to determine mechanical properties. Despite the known anisotropic nature of brain tissue, the inverse problem in brain MRE is based on an isotropic mechanical model. In this study, distinct wave patterns are generated in the brain through the use of multiple excitation directions in order to characterize the potential impact of anisotropic tissue mechanics on isotropic inversion methods. Isotropic inversions of two unique displacement fields result in mechanical property maps that vary locally in areas of highly aligned white matter. Investigation of the corpus callosum, corona radiata, and superior longitudinal fasciculus, three highly ordered white matter tracts, revealed differences in estimated properties between excitations of up to 33%. Using diffusion tensor imaging to identify dominant fiber orientation of bundles, relationships between estimated isotropic properties and shear asymmetry are revealed. This study has implications for future isotropic and anisotropic MRE studies of white matter tracts in the human brain.
Collapse
Affiliation(s)
- Aaron T Anderson
- Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Elijah E W Van Houten
- Département de génie mécanique, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K2R1; Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | - Matthew D J McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA; Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756, USA.
| | - Joseph L Holtrop
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Bradley P Sutton
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - John G Georgiadis
- Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; Biomedical Engineering Department, Illinois Institute of Technology, Chicago, Illinois 60616, USA.
| | - Curtis L Johnson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA.
| |
Collapse
|
11
|
Grasland-Mongrain P, Miller-Jolicoeur E, Tang A, Catheline S, Cloutier G. Contactless remote induction of shear waves in soft tissues using a transcranial magnetic stimulation device. Phys Med Biol 2016; 61:2582-93. [PMID: 26952900 DOI: 10.1088/0031-9155/61/6/2582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study presents the first observation of shear waves induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitudes of 5 and 0.5 μm were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.
Collapse
Affiliation(s)
- Pol Grasland-Mongrain
- Laboratory of Biorheology and Medical Ultrasonics, Research Center of the University of Montreal Hospital (CRCHUM), Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
12
|
Fehlner A, Papazoglou S, McGarry MD, Paulsen KD, Guo J, Streitberger KJ, Hirsch S, Braun J, Sack I. Cerebral multifrequency MR elastography by remote excitation of intracranial shear waves. NMR IN BIOMEDICINE 2015; 28:1426-32. [PMID: 26373228 PMCID: PMC4962702 DOI: 10.1002/nbm.3388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 05/05/2023]
Abstract
The aim of this study was to introduce remote wave excitation for high-resolution cerebral multifrequency MR elastography (mMRE). mMRE of 25-45-Hz drive frequencies by head rocker stimulation was compared with mMRE by remote wave excitation based on a thorax mat in 12 healthy volunteers. Maps of the magnitude |G*| and phase φ of the complex shear modulus were reconstructed using multifrequency dual elasto-visco (MDEV) inversion. After the scan, the subjects and three operators assessed the comfort and convenience of cerebral mMRE using two methods of stimulating the brain. Images were acquired in a coronal view in order to identify anatomical regions along the spinothalamic pathway. In mMRE by remote actuation, all subjects and operators appreciated an increased comfort and simplified procedural set-up. The resulting strain amplitudes in the brain were sufficiently large to analyze using MDEV inversion, and yielded high-resolution viscoelasticity maps which revealed specific anatomical details of brain mechanical properties: |G*| was lowest in the pons (0.97 ± 0.08 kPa) and decreased within the corticospinal tract in the caudal-cranial direction from the crus cerebri (1.64 ± 0.26 kPa) to the capsula interna (1.29 ± 0.14 kPa). By avoiding onerous mechanical stimulation of the head, remote excitation of intracranial shear waves can be used to measure viscoelastic parameters of the brain with high spatial resolution. Therewith, the new mMRE method is suitable for neuroradiological examinations in the clinic.
Collapse
Affiliation(s)
- Andreas Fehlner
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Sebastian Hirsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Pepin KM, Ehman RL, McGee KP. Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:32-48. [PMID: 26592944 PMCID: PMC4660259 DOI: 10.1016/j.pnmrs.2015.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 05/07/2023]
Abstract
Tissue mechanical properties are significantly altered with the development of cancer. Magnetic resonance elastography (MRE) is a noninvasive technique capable of quantifying tissue mechanical properties in vivo. This review describes the basic principles of MRE and introduces some of the many promising MRE methods that have been developed for the detection and characterization of cancer, evaluation of response to therapy, and investigation of the underlying mechanical mechanisms associated with malignancy.
Collapse
|
14
|
Numano T, Mizuhara K, Hata J, Washio T, Homma K. A simple method for MR elastography: a gradient-echo type multi-echo sequence. Magn Reson Imaging 2015; 33:31-7. [DOI: 10.1016/j.mri.2014.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/27/2014] [Accepted: 10/05/2014] [Indexed: 12/20/2022]
|
15
|
Transfer characteristics of arterial pulsatile force in regional intracranial tissue using dynamic diffusion MRI: A phantom study. Magn Reson Imaging 2014; 32:1284-9. [DOI: 10.1016/j.mri.2014.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/29/2014] [Accepted: 08/21/2014] [Indexed: 11/21/2022]
|
16
|
Braun J, Guo J, Lützkendorf R, Stadler J, Papazoglou S, Hirsch S, Sack I, Bernarding J. High-resolution mechanical imaging of the human brain by three-dimensional multifrequency magnetic resonance elastography at 7T. Neuroimage 2014; 90:308-14. [DOI: 10.1016/j.neuroimage.2013.12.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/05/2013] [Accepted: 12/14/2013] [Indexed: 12/15/2022] Open
|
17
|
Iravani A, Mueller J, Yousefi AM. Producing homogeneous cryogel phantoms for medical imaging: a finite-element approach. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 25:181-202. [DOI: 10.1080/09205063.2013.848327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Numano T, Kawabata Y, Mizuhara K, Washio T, Nitta N, Homma K. Magnetic resonance elastography using an air ball-actuator. Magn Reson Imaging 2013; 31:939-46. [DOI: 10.1016/j.mri.2013.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/23/2013] [Accepted: 02/20/2013] [Indexed: 11/26/2022]
|
19
|
Yamaguchi D, Kanda T, Suzumori K, Fujisawa K, Takegoshi K, Mizuno T. Ultrasonic Motor Using Two Sector-Shaped Piezoelectric Transducers for Sample Spinning in High Magnetic Field. JOURNAL OF ROBOTICS AND MECHATRONICS 2013. [DOI: 10.20965/jrm.2013.p0384] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper presents the design, fabrication process, and evaluation of an ultrasonic motor for sample spinning in a high magnetic field of solid-state Nuclear Magnetic Resonance (NMR). To decrease effects of the magnetic field on rotation, all motor components are made of materials that have low magnetic permeability. The motor, including the sample casing, is a maximum 31 mm in diameter and 50 mm high. The motor has two sector-shaped piezoelectric transducers. One transducer generates two different vibration modes, longitudinal and flexural, when two sinusoidal voltages are applied to transducers. To confirm that transducers can be driven in a high magnetic field, the effect of the magnetic field on the transducer was evaluated. The motor was driven at a frequency of 329.0 kHz. The maximum rotation speed and starting torque were 1.50 × 103rpm and 26 µNm when applied voltage was 40 Vp-p. The rotation speed, controlled by a proportional-integral control system, was 1.20 × 103rpm in a 7.0-T magnetic field. The motor was also applied to the sample spinning system of a high-resolution NMR spectrometer. We succeeded in obtaining1H-NMR signals of H2O. The motor can therefore be used for a sample spinning system in a high magnetic field.
Collapse
|
20
|
Glaser KJ, Manduca A, Ehman RL. Review of MR elastography applications and recent developments. J Magn Reson Imaging 2012; 36:757-74. [PMID: 22987755 PMCID: PMC3462370 DOI: 10.1002/jmri.23597] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The technique of MR elastography (MRE) has emerged as a useful modality for quantitatively imaging the mechanical properties of soft tissues in vivo. Recently, MRE has been introduced as a clinical tool for evaluating chronic liver disease, but many other potential applications are being explored. These applications include measuring tissue changes associated with diseases of the liver, breast, brain, heart, and skeletal muscle including both focal lesions (e.g., hepatic, breast, and brain tumors) and diffuse diseases (e.g., fibrosis and multiple sclerosis). The purpose of this review article is to summarize some of the recent developments of MRE and to highlight some emerging applications.
Collapse
Affiliation(s)
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
21
|
Kornelsen J, Smith SD, McIver TA, Sboto-Frankenstein U, Latta P, Tomanek B. Functional MRI of the thoracic spinal cord during vibration sensation. J Magn Reson Imaging 2012; 37:981-5. [PMID: 23011888 DOI: 10.1002/jmri.23819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/14/2012] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To demonstrate that it is possible to acquire accurate functional magnetic resonance images from thoracic spinal cord neurons. MATERIALS AND METHODS The lower thoracic spinal dermatomes (T7-T11) on the right side of the body were mechanically stimulated by vibration for 15 participants. Neuronal responses to vibration sensation were measured in the thoracic spinal cord using a HASTE sequence on a 3 Tesla MRI system. RESULTS Signal increases were observed in the corresponding lower thoracic spinal cord segments ipsilateral to the side of stimulation in the dorsal aspect of the spinal cord. CONCLUSION This is the first study to provide proof of principle that functional imaging of the entire thoracic spinal cord is possible, by detecting neuronal activity in the thoracic spinal cord during sensory stimulation using spinal fMRI.
Collapse
Affiliation(s)
- Jennifer Kornelsen
- National Research Council Institute for Biodiagnostics, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | |
Collapse
|
22
|
Li BN, Chui CK, Ong SH, Numano T, Washio T, Homma K, Chang S, Venkatesh S, Kobayashi E. Modeling shear modulus distribution in magnetic resonance elastography with piecewise constant level sets. Magn Reson Imaging 2012; 30:390-401. [PMID: 22245696 DOI: 10.1016/j.mri.2011.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 08/01/2011] [Accepted: 09/18/2011] [Indexed: 01/22/2023]
Abstract
Magnetic resonance elastography (MRE) is designed for imaging the mechanical properties of soft tissues. However, the interpretation of shear modulus distribution is often confusing and cumbersome. For reliable evaluation, a common practice is to specify the regions of interest and consider regional elasticity. Such an experience-dependent protocol is susceptible to intrapersonal and interpersonal variability. In this study we propose to remodel shear modulus distribution with piecewise constant level sets by referring to the corresponding magnitude image. Optimal segmentation and registration are achieved by a new hybrid level set model comprised of alternating global and local region competitions. Experimental results on the simulated MRE data sets show that the mean error of elasticity reconstruction is 11.33% for local frequency estimation and 18.87% for algebraic inversion of differential equation. Piecewise constant level set modeling is effective to improve the quality of shear modulus distribution, and facilitates MRE analysis and interpretation.
Collapse
Affiliation(s)
- Bing Nan Li
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Murphy MC, Huston J, Jack CR, Glaser KJ, Manduca A, Felmlee JP, Ehman RL. Decreased brain stiffness in Alzheimer's disease determined by magnetic resonance elastography. J Magn Reson Imaging 2011; 34:494-8. [PMID: 21751286 PMCID: PMC3217096 DOI: 10.1002/jmri.22707] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 06/06/2011] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To test patient acceptance and reproducibility of the 3D magnetic resonance elastography (MRE) brain exam using a soft vibration source, and to determine if MRE could noninvasively measure a change in the elastic properties of the brain parenchyma due to Alzheimer's disease (AD). MATERIALS AND METHODS MRE exams were performed using an accelerated spin-echo echo planar imaging (EPI) pulse sequence and stiffness was calculated with a 3D direct inversion algorithm. Reproducibility of the technique was assessed in 10 male volunteers, who each underwent four MRE exams separated into two imaging sessions. The effect of AD on brain stiffness was assessed in 28 volunteers, 7 with probable AD, 14 age- and gender-matched PIB-negative (Pittsburgh Compound B, a PET amyloid imaging ligand) cognitively normal controls (CN-), and 7 age- and gender-matched PIB-positive cognitively normal controls (CN+). RESULTS The median stiffness of the 10 volunteers was 3.07 kPa with a range of 0.40 kPa. The median and maximum coefficients of variation for these volunteers were 1.71% and 3.07%. The median stiffness of the 14 CN- subjects was 2.37 kPa (0.44 kPa range) compared to 2.32 kPa (0.49 kPa range) within the CN+ group and 2.20 kPa (0.33 kPa range) within the AD group. A significant difference was found between the three groups (P = 0.0055, Kruskal-Wallis one-way analysis of variance). Both the CN+ and CN- groups were significantly different from the AD group. CONCLUSION 3D MRE of the brain can be performed reproducibly and demonstrates significantly reduced brain tissue stiffness in patients with AD.
Collapse
Affiliation(s)
- Matthew C. Murphy
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905
| | - John Huston
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905
| | - Kevin J. Glaser
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905
| | - Armando Manduca
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905
| | - Joel P. Felmlee
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905
| | - Richard L. Ehman
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905
| |
Collapse
|