1
|
Saito S, Ueda J. Preclinical magnetic resonance imaging and spectroscopy in the fields of radiological technology, medical physics, and radiology. Radiol Phys Technol 2024; 17:47-59. [PMID: 38351261 PMCID: PMC10901953 DOI: 10.1007/s12194-024-00785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 03/01/2024]
Abstract
Magnetic resonance imaging (MRI) is an indispensable diagnostic imaging technique used in the clinical setting. MRI is advantageous over X-ray and computed tomography (CT), because the contrast provided depends on differences in the density of various organ tissues. In addition to MRI systems in hospitals, more than 100 systems are used for research purposes in Japan in various fields, including basic scientific research, molecular and clinical investigations, and life science research, such as drug discovery, veterinary medicine, and food testing. For many years, additional preclinical imaging studies have been conducted in basic research in the fields of radiation technology, medical physics, and radiology. The preclinical MRI research includes studies using small-bore and whole-body MRI systems. In this review, we focus on the animal study using small-bore MRI systems as "preclinical MRI". The preclinical MRI can be used to elucidate the pathophysiology of diseases and for translational research. This review will provide an overview of previous preclinical MRI studies such as brain, heart, and liver disease assessments. Also, we provide an overview of the utility of preclinical MRI studies in radiological physics and technology.
Collapse
Affiliation(s)
- Shigeyoshi Saito
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, 560-0871, Japan.
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center Research Institute, Suita, 564-8565, Japan.
| | - Junpei Ueda
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, 560-0871, Japan
| |
Collapse
|
2
|
Onishi R, Ueda J, Ide S, Koseki M, Sakata Y, Saito S. Application of Magnetic Resonance Strain Analysis Using Feature Tracking in a Myocardial Infarction Model. Tomography 2023; 9:871-882. [PMID: 37104142 PMCID: PMC10141923 DOI: 10.3390/tomography9020071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
This study validates the usefulness of myocardial strain analysis with cardiac cine magnetic resonance imaging (MRI) by evaluating the changes in the cardiac function and myocardial strain values longitudinally in a myocardial disease model. Six eight-week-old male Wistar rats were used as a model of myocardial infarction (MI). Cine images were taken in the short axis, two-chamber view longitudinal axis, and four-chamber view longitudinal axis directions in rats 3 and 9 days after MI and in control rats, with preclinical 7-T MRI. The control images and the images on days 3 and 9 were evaluated by measuring the ventricular ejection fraction (EF) and the strain values in the circumferential (CS), radial (RS), and longitudinal directions (LS). The CS decreased significantly 3 days after MI, but there was no difference between the images on days 3 and 9. The two-chamber view LS was -9.7 ± 2.1% at 3 days and -13.9 ± 1.4% at 9 days after MI. The four-chamber view LS was -9.9 ± 1.5% at 3 days and -11.9 ± 1.3% at 9 days after MI. Both the two- and four-chamber LS values were significantly decreased 3 days after MI. Myocardial strain analysis is, therefore, useful for assessing the pathophysiology of MI.
Collapse
Affiliation(s)
- Ryutaro Onishi
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Junpei Ueda
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Seiko Ide
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center Research Institute, Osaka 564-8565, Japan
| |
Collapse
|
3
|
Bengs S, Warnock GI, Portmann A, Mikail N, Rossi A, Ahmed H, Etter D, Treyer V, Gisler L, Pfister SK, Jie CVML, Meisel A, Keller C, Liang SH, Schibli R, Mu L, Buechel RR, Kaufmann PA, Ametamey SM, Gebhard C, Haider A. Rest/stress myocardial perfusion imaging by positron emission tomography with 18F-Flurpiridaz: A feasibility study in mice. J Nucl Cardiol 2023; 30:62-73. [PMID: 35484467 PMCID: PMC9984310 DOI: 10.1007/s12350-022-02968-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Myocardial perfusion imaging by positron emission tomography (PET-MPI) is the current gold standard for quantification of myocardial blood flow. 18F-flurpiridaz was recently introduced as a valid alternative to currently used PET-MPI probes. Nonetheless, optimum scan duration and time interval for image analysis are currently unknown. Further, it is unclear whether rest/stress PET-MPI with 18F-flurpiridaz is feasible in mice. METHODS Rest/stress PET-MPI was performed with 18F-flurpiridaz (0.6-3.0 MBq) in 27 mice aged 7-8 months. Regadenoson (0.1 µg/g) was used for induction of vasodilator stress. Kinetic modeling was performed using a metabolite-corrected arterial input function. Image-derived myocardial 18F-flurpiridaz uptake was assessed for different time intervals by placing a volume of interest in the left ventricular myocardium. RESULTS Tracer kinetics were best described by a two-tissue compartment model. K1 ranged from 6.7 to 20.0 mL·cm-3·min-1, while myocardial volumes of distribution (VT) were between 34.6 and 83.6 mL·cm-3. Of note, myocardial 18F-flurpiridaz uptake (%ID/g) was significantly correlated with K1 at rest and following pharmacological vasodilation for all time intervals assessed. However, while Spearman's coefficients (rs) ranged between 0.478 and 0.681, R2 values were generally low. In contrast, an excellent correlation of myocardial 18F-flurpiridaz uptake with VT was obtained, particularly when employing the averaged myocardial uptake from 20 to 40 min post tracer injection (R2 ≥ 0.98). Notably, K1 and VT were similarly sensitive to pharmacological vasodilation induction. Further, mean stress-to-rest ratios of K1, VT, and %ID/g 18F-flurpiridaz were virtually identical, suggesting that %ID/g 18F-flurpiridaz can be used to estimate coronary flow reserve (CFR) in mice. CONCLUSION Our findings suggest that a simplified assessment of relative myocardial perfusion and CFR, based on image-derived tracer uptake, is feasible with 18F-flurpiridaz in mice, enabling high-throughput mechanistic CFR studies in rodents.
Collapse
Affiliation(s)
- Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Geoffrey I Warnock
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Dominik Etter
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Livio Gisler
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Stefanie K Pfister
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Caitlin V M L Jie
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Roger Schibli
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Achi Haider
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Optimized Conditions for the Long-Term Maintenance of Precision-Cut Murine Myocardium in Biomimetic Tissue Culture. Bioengineering (Basel) 2023; 10:bioengineering10020171. [PMID: 36829664 PMCID: PMC9952453 DOI: 10.3390/bioengineering10020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Organotypic heart slices from mice might provide a promising in vitro model for cardiac research because of the vast availability of genetically modified specimens, combined with the unrestricted feasibility of experimental interventions. However, murine heart slices undergo rapid degeneration in culture. Therefore, we developed optimal conditions to preserve their structure and function in culture. Mouse ventricular heart samples were transversely cut into 300 µm thick slices. Slices were then cultured under various conditions of diastolic preload, systolic compliance and medium agitation. Continuous stimulation was performed either by optical stimulation or by electrical field stimulation. Contractility was continuously measured, and cellular survival, structure and gene expression were analyzed. Significant improvements in viability and function were achieved by elastic fixation with the appropriate diastolic preload and the rapid shaking of a ß-mercaptoethanol-supplemented medium. At 1 Hz pacing, mouse heart slices maintained stable contractility for up to 48 h under optogenetic pacing and for one week under electrical pacing. In cultured slices, the native myofibril structure was well preserved, and the mRNAs of myosin light chain, titin and connexin 43 were constantly expressed. Conclusions: Adult murine heart slices can be preserved for one week and provide a new opportunity to study cardiac functions.
Collapse
|
5
|
Electro-anatomical computational cardiology in humans and experimental animal models. TRANSLATIONAL RESEARCH IN ANATOMY 2022. [DOI: 10.1016/j.tria.2022.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Borrelli MA, Turnquist HR, Little SR. Biologics and their delivery systems: Trends in myocardial infarction. Adv Drug Deliv Rev 2021; 173:181-215. [PMID: 33775706 PMCID: PMC8178247 DOI: 10.1016/j.addr.2021.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is the leading cause of death around the world, in which myocardial infarction (MI) is a precipitating event. However, current therapies do not adequately address the multiple dysregulated systems following MI. Consequently, recent studies have developed novel biologic delivery systems to more effectively address these maladies. This review utilizes a scientometric summary of the recent literature to identify trends among biologic delivery systems designed to treat MI. Emphasis is placed on sustained or targeted release of biologics (e.g. growth factors, nucleic acids, stem cells, chemokines) from common delivery systems (e.g. microparticles, nanocarriers, injectable hydrogels, implantable patches). We also evaluate biologic delivery system trends in the entire regenerative medicine field to identify emerging approaches that may translate to the treatment of MI. Future developments include immune system targeting through soluble factor or chemokine delivery, and the development of advanced delivery systems that facilitate the synergistic delivery of biologics.
Collapse
Affiliation(s)
- Matthew A Borrelli
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA.
| | - Heth R Turnquist
- Starzl Transplantation Institute, 200 Darragh St, Pittsburgh, PA 15213, USA; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA; Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
7
|
Inagaki T, Pearson JT, Tsuchimochi H, Schwenke DO, Saito S, Higuchi T, Masaki T, Umetani K, Shirai M, Nakaoka Y. Evaluation of right coronary vascular dysfunction in severe pulmonary hypertensive rats using synchrotron radiation microangiography. Am J Physiol Heart Circ Physiol 2021; 320:H1021-H1036. [PMID: 33481696 DOI: 10.1152/ajpheart.00327.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
Pulmonary hypertension (PH) causes cardiac hypertrophy in the right ventricle (RV) and eventually leads to RV failure due to persistently elevated ventricular afterload. We hypothesized that the mechanical stress on the RV associated with increased afterload impairs vasodilator function of the right coronary artery (RCA) in PH. Coronary vascular response was assessed using microangiography with synchrotron radiation (SR) in two well-established PH rat models, monocrotaline injection or the combined exposure to chronic hypoxia and vascular endothelial growth factor receptor blockade with Su5416 (SuHx model). In the SuHx model, the effect of the treatment with the nonselective endothelin-1 receptor antagonist (ERA), macitentan, was also examined. Myocardial viability was determined in SuHx model rats, using 18F-FDG Positron emission tomography (PET) and magnetic resonance imaging (MRI). Endothelium-dependent and endothelium-independent vasodilator responses were significantly attenuated in the medium and small arteries of severe PH rats. ERA treatment significantly improved RCA vascular function compared with the untreated group. ERA treatment improved both the decrease in ejection fraction and the increased glucose uptake, and reduced RV remodeling. In addition, the upregulation of inflammatory genes in the RV was almost suppressed by ERA treatment. We found impairment of vasodilator responses in the RCA of severe PH rat models. Endothelin-1 activation in the RCA plays a major role in impaired vascular function in PH rats and is partially restored by ERA treatment. Treatment of PH with ERA may improve RV function in part by indirectly attenuating right heart afterload and in part by associated improvements in right coronary endothelial function.NEW & NOTEWORTHY We demonstrated for the first time the impairment of vascular responses in the right coronary artery (RCA) of the dysfunctional right heart in pulmonary hypertensive rats in vivo. Treatment with an endothelin-1 receptor antagonist ameliorated vascular dysfunction in the RCA, enabled tissue remodeling of the right heart, and improved cardiac function. Our results suggest that impaired RCA function might also contribute to the early progression to heart failure in patients with severe pulmonary arterial hypertension (PAH). The endothelium of the coronary vasculature might be considered as a potential target in treatments to prevent heart failure in severe patients with PAH.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/pharmacology
- Coronary Angiography
- Coronary Vessels/diagnostic imaging
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/physiopathology
- Disease Models, Animal
- Endothelin Receptor Antagonists/pharmacology
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Hypertrophy, Right Ventricular/diagnostic imaging
- Hypertrophy, Right Ventricular/drug therapy
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypoxia/complications
- Indoles
- Monocrotaline
- Predictive Value of Tests
- Pulmonary Arterial Hypertension/diagnostic imaging
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/physiopathology
- Pyrimidines/pharmacology
- Pyrroles
- Rats, Sprague-Dawley
- Severity of Illness Index
- Sulfonamides/pharmacology
- Synchrotrons
- Vasodilation/drug effects
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Dysfunction, Right/drug therapy
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Right
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
- Tadakatsu Inagaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Daryl O Schwenke
- Department of Physiology Heart-Otago, University of Otago, Dunedin, New Zealand
| | - Shigeyoshi Saito
- Department of Bio_Medical Imaging, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takahiro Higuchi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Takeshi Masaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiji Umetani
- Japan Synchrotron Radiation Research Institute, Harima, Japan
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Department of Advanced Medical Research for Pulmonary Hypertension, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Hussaini S, Venkatesan V, Biasci V, Romero Sepúlveda JM, Quiñonez Uribe RA, Sacconi L, Bub G, Richter C, Krinski V, Parlitz U, Majumder R, Luther S. Drift and termination of spiral waves in optogenetically modified cardiac tissue at sub-threshold illumination. eLife 2021; 10:59954. [PMID: 33502313 PMCID: PMC7840178 DOI: 10.7554/elife.59954] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/28/2020] [Indexed: 01/01/2023] Open
Abstract
The development of new approaches to control cardiac arrhythmias requires a deep understanding of spiral wave dynamics. Optogenetics offers new possibilities for this. Preliminary experiments show that sub-threshold illumination affects electrical wave propagation in the mouse heart. However, a systematic exploration of these effects is technically challenging. Here, we use state-of-the-art computer models to study the dynamic control of spiral waves in a two-dimensional model of the adult mouse ventricle, using stationary and non-stationary patterns of sub-threshold illumination. Our results indicate a light-intensity-dependent increase in cellular resting membrane potentials, which together with diffusive cell-cell coupling leads to the development of spatial voltage gradients over differently illuminated areas. A spiral wave drifts along the positive gradient. These gradients can be strategically applied to ensure drift-induced termination of a spiral wave, both in optogenetics and in conventional methods of electrical defibrillation.
Collapse
Affiliation(s)
- Sayedeh Hussaini
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany.,Institute for the Dynamics of Complex Systems, Goettingen University, Goettingen, Germany.,German Center for Cardiovascular Research, Partner Site Goettingen, Goettingen, Germany
| | - Vishalini Venkatesan
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany.,University Medical Center Goettingen, Clinic of Cardiology and Pneumology, Goettingen, Germany
| | - Valentina Biasci
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino (FI), Italy.,Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Raul A Quiñonez Uribe
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany.,German Center for Cardiovascular Research, Partner Site Goettingen, Goettingen, Germany
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino (FI), Italy.,Institute for Experimental Cardiovascular Medicine, University of Freiburg, Freiburg, Germany.,National Institute of Optics, National Research Council, Florence, Italy
| | - Gil Bub
- Department of Physiology, MGill University, Montreal, Canada
| | - Claudia Richter
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany.,German Center for Cardiovascular Research, Partner Site Goettingen, Goettingen, Germany.,University Medical Center Goettingen, Clinic of Cardiology and Pneumology, Goettingen, Germany
| | - Valentin Krinski
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany.,German Center for Cardiovascular Research, Partner Site Goettingen, Goettingen, Germany.,INPHYNI, CNRS, Sophia Antipolis, Paris, France
| | - Ulrich Parlitz
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany.,Institute for the Dynamics of Complex Systems, Goettingen University, Goettingen, Germany.,German Center for Cardiovascular Research, Partner Site Goettingen, Goettingen, Germany
| | - Rupamanjari Majumder
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany.,German Center for Cardiovascular Research, Partner Site Goettingen, Goettingen, Germany
| | - Stefan Luther
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany.,Institute for the Dynamics of Complex Systems, Goettingen University, Goettingen, Germany.,German Center for Cardiovascular Research, Partner Site Goettingen, Goettingen, Germany.,University Medical Center Goettingen, Institute of Pharmacology and Toxicology, Goettingen, Germany
| |
Collapse
|
9
|
Bauer TM, Giles AV, Sun J, Femnou A, Covian R, Murphy E, Balaban RS. Perfused murine heart optical transmission spectroscopy using optical catheter and integrating sphere: Effects of ischemia/reperfusion. Anal Biochem 2019; 586:113443. [PMID: 31539522 DOI: 10.1016/j.ab.2019.113443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022]
Abstract
Tissue transmission optical absorption spectroscopy provides dynamic information on metabolism and function. Murine genetic malleability makes it a major model for heart research. The diminutive size of the mouse heart makes optical transmission studies challenging. Using a perfused murine heart center mounted in an integrating sphere for light collection with a ventricular cavity optical catheter as an internal light source provided an effective method of optical data collection in this model. This approach provided high signal to noise optical spectra which when fit with model spectra provided information on tissue oxygenation and redox state. This technique was applied to the study of cardiac ischemia and ischemia reperfusion which generates extreme heart motion, especially during the ischemic contracture. The integrating sphere reduced motion artifacts associated with a fixed optical pickup and methods were developed to compensate for changes in tissue thickness. During ischemia, rapid decreases in myoglobin oxygenation occurred along with increases in cytochrome reduction levels. Surprisingly, when ischemic contracture occurred, myoglobin remained fully deoxygenated, while the cytochromes became more reduced consistent with a further, and critical, reduction of mitochondrial oxygen tension during ischemic contraction. This optical arrangement is an effective method of monitoring murine heart metabolism.
Collapse
Affiliation(s)
- Tyler M Bauer
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Abigail V Giles
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Junhui Sun
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Armel Femnou
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Raul Covian
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Robert S Balaban
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
10
|
Longitudinal observations of progressive cardiac dysfunction in a cardiomyopathic animal model by self-gated cine imaging based on 11.7-T magnetic resonance imaging. Sci Rep 2017; 7:9106. [PMID: 28831129 PMCID: PMC5567262 DOI: 10.1038/s41598-017-09755-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to longitudinally assess left ventricular function and wall thickness in a hamster model of cardiomyopathy using 11.7-T magnetic resonance imaging (MRI). MRI were performed for six cardiomyopathic J2N-k hamsters and six J2N-n hamsters at 5, 10, 15, and 20 weeks of age. Echocardiography was also performed at 20 weeks. The ejection fraction (EF) at 15 and 20 weeks of age in J2N-k hamsters showed a significant decrease compared with those in controls. Conversely, the end-systolic and end-diastolic volumes in cardiomyopathic hamsters showed a significant increase compared with those in controls. Moreover, the heart walls of J2N-k hamsters at 15 and 20 weeks were thicker than those of controls at end-systole; however, there were no significant differences at end-diastole. Optical microscopy with Masson’s trichrome staining depicted no fibrosis in the control myocardium, although it showed interstitial fibrosis in the 20-week-old J2N-k cardiomyopathic myocardium. There were no differences in EF and the wall thickness observed on MRI and those observed on echocardiography. These results indicate the presence of systolic dysfunction in cardiomyopathic hamsters. Self-gated cine imaging based on 11.7-T MRI can be used for serial measurements of cardiac function and wall thickness in a cardiomyopathic model.
Collapse
|