1
|
Tahedl M, Tournier JD, Smith RE. Structural connectome construction using constrained spherical deconvolution in multi-shell diffusion-weighted magnetic resonance imaging. Nat Protoc 2025:10.1038/s41596-024-01129-1. [PMID: 39953164 DOI: 10.1038/s41596-024-01129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/05/2024] [Indexed: 02/17/2025]
Abstract
Connectional neuroanatomical maps can be generated in vivo by using diffusion-weighted magnetic resonance imaging (dMRI) data, and their representation as structural connectome (SC) atlases adopts network-based brain analysis methods. We explain the generation of high-quality SCs of brain connectivity by using recent advances for reconstructing long-range white matter connections such as local fiber orientation estimation on multi-shell dMRI data with constrained spherical deconvolution, which yields both increased sensitivity to detecting crossing fibers compared with competing methods and the ability to separate signal contributions from different macroscopic tissues, and improvements to streamline tractography such as anatomically constrained tractography and spherical-deconvolution informed filtering of tractograms, which have increased the biological accuracy of SC creation. Here, we provide step-by-step instructions to creating SCs by using these methods. In addition, intermediate steps of our procedure can be adapted for related analyses, including region of interest-based tractography and quantification of local white matter properties. The associated software MRtrix3 implements the relevant tools for easy application of the protocol, with specific processing tasks deferred to components of the FSL software. The protocol is suitable for users with expertise in dMRI and neuroscience and requires between 2 h and 13 h to complete, depending on the available computational system.
Collapse
Affiliation(s)
- Marlene Tahedl
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Robert E Smith
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Shamir I, Assaf Y. Tutorial: a guide to diffusion MRI and structural connectomics. Nat Protoc 2025; 20:317-335. [PMID: 39232202 DOI: 10.1038/s41596-024-01052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/09/2024] [Indexed: 09/06/2024]
Abstract
Diffusion magnetic resonance imaging (dMRI) is a versatile imaging technique that has gained popularity thanks to its sensitive ability to measure displacement of water molecules within a living tissue on a micrometer scale. Although dMRI has been around since the early 1990s, its applications are constantly evolving, primarily regarding the inference of structural connectomics from nerve fiber trajectories. However, these applications require expertise in image processing and statistics, and it can be difficult for a newcomer to choose an appropriate pipeline to fit their research needs, not least because dMRI is such a flexible methodology that dozens of acquisition and analysis pipelines have been developed over the years. This introductory guide is designed for graduate students and researchers in the neuroscience community who are interested in integrating this new methodology regardless of their background in neuroimaging and computational tools. The guide provides a brief overview of the basic dMRI methodologies but focuses on its applications in neuroplasticity and connectomics. The guide starts with dMRI experimental designs and a complete step-by-step pipeline for structural connectomics. The following section covers the basics of dMRI, including parameters and clinical applications (apparent diffusion coefficient, mean diffusivity, fractional anisotropy and microscopic fractional anisotropy), as well as different approaches and models. The final section focuses on structural connectomics, covering subjects from fiber tracking (techniques, evaluation and limitations) to structural networks (constructing, analyzing and visualizing a network).
Collapse
Affiliation(s)
- Ittai Shamir
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Gruen J, Bauer T, Rüber T, Schultz T. Deep learning based tractography with TractSeg in patients with hemispherotomy: Evaluation and refinement. Neuroimage Clin 2025; 45:103738. [PMID: 39922027 PMCID: PMC11849110 DOI: 10.1016/j.nicl.2025.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025]
Abstract
Deep learning-based tractography implicitly learns anatomical prior knowledge that is required to resolve ambiguities inherent in traditional streamline tractography. TractSeg is a particularly widely used example of such an approach. Even though it has exclusively been trained on healthy subjects, a certain level of generalization to different pathologies has been demonstrated, and TractSeg is now increasingly used for clinical cases. We explore the limits of TractSeg by evaluating it on a unique dataset of 25 patients with epilepsy who underwent hemispherotomy, a type of surgery in which the two hemispheres are surgically separated. We compare results to those on 25 healthy controls who have been imaged with the same setup. We find that TractSeg generalizes remarkably well, given the severity of the abnormalities. However, to our knowledge, we are the first to document cases in which TractSeg erroneously reconstructs ("hallucinates") tracts that are known to have been surgically disconnected, and we found cases in which it implausibly continues tracts through obvious lesions. At the same time, TractSeg failed to reconstruct or undersegmented some tracts that are known to be preserved. We subsequently propose a refinement of TractSeg which aims to improve its applicability to data with pathologies, by using its Tract Orientation Maps as an anatomical prior in low-rank tensor approximation based tractography such that tracking is guaranteed to continue only where presence of the tract is directly supported by the data ("data fidelity"). We demonstrate that our extension not only eliminates hallucinated tracts and reconstructions within lesions, but that it also increases the ability to reconstruct the preserved tracts, and leads to more complete reconstructions even in healthy controls. Despite these advances, we recommend caution and manual quality control when applying deep learning based tractography to patient data.
Collapse
Affiliation(s)
- Johannes Gruen
- B-IT and Institute for Computer Science, University of Bonn, Friedrich-Hirzebruch-Allee 8, Bonn, 53115, Germany.
| | - Tobias Bauer
- Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany; Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany; German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Theodor Rüber
- Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany; Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany; German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany; Center for Medical Data Usability and Translation, University of Bonn, Regina-Pacis-Weg 3, Bonn, 53113, Germany
| | - Thomas Schultz
- B-IT and Institute for Computer Science, University of Bonn, Friedrich-Hirzebruch-Allee 8, Bonn, 53115, Germany; Lamarr Institute for Machine Learning and Artificial Intelligence, Germany (1)
| |
Collapse
|
4
|
Laamoumi M, Hendriks T, Chamberland M. A taxonomic guide to diffusion MRI tractography visualization tools. NMR IN BIOMEDICINE 2025; 38:e5267. [PMID: 39375843 PMCID: PMC11631367 DOI: 10.1002/nbm.5267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
Visualizing neuroimaging data is a key step in evaluating data quality, interpreting results, and communicating findings. This survey focuses on diffusion MRI tractography, which has been widely used in both research and clinical domains within the neuroimaging community. With an increasing number of tractography tools and software, navigating this landscape poses a challenge, especially for newcomers. A systematic exploration of a diverse range of features is proposed across 27 research tools, delving into their main purpose and examining the presence or absence of prevalent visualization and interactive techniques. The findings are structured within a proposed taxonomy, providing a comprehensive overview. Insights derived from this analysis will help (novice) researchers, clinicians, and developers in identifying knowledge gaps and navigating the landscape of tractography visualization tools.
Collapse
Affiliation(s)
- Miriam Laamoumi
- Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Tom Hendriks
- Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
| | - Maxime Chamberland
- Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
5
|
Wu ST, Voltoline R, Benites RL, de Campos BM, de Souza JPSS, Ghizoni E. Interactive mining of neural pathways to preoperative neurosurgical planning. Comput Biol Med 2025; 184:109334. [PMID: 39549526 DOI: 10.1016/j.compbiomed.2024.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Preoperative understanding of white matter anatomy, including its spatial relationship with pathology and superficial landmarks, is vital for effective surgical planning. The ability to interactively synthesize neural pathways from diffusion data and dynamically discern neuroanatomy-referenced fiber patterns enables neurosurgeons to construct detailed mental models of the patient's brain and assess surgical risks. We present a novel interactive software designed for real-time mining of neural pathways from diffusion-weighted magnetic resonance imaging (DW-MRI) data. This software leverages a user-guided approach, integrating curvilinear reformatting and surgeon expertise with diffusion tensor imaging (DTI) data, and employs a finite-state machine interaction model to facilitate intuitive use through a windows, icons, menus, and pointers (WIMP) interface. METHODS The proposed system merges user analytical skills with neuroanatomy-referenced DTI data, including scalar maps, tensor glyphs, and streamlines, within a visually interactive environment. Key features of the system include optimized GPU-based rendering for enhanced graphical representation and the proposed finite-state machine model that enables seamless interaction through intuitive controls. This approach allows for real-time manipulation of DTI data and dynamic generation of depth maps for each frame, facilitating practical exploration and analysis. RESULTS After testing seven control volumes, our system demonstrates tract reconstruction capabilities comparable to MRTrix software's. The evaluation of GPU-based fiber tracking and rendering performance, using NVIDIA Nsight Visual Studio Edition, confirms the system's interactive responsiveness. Preliminary results indicate that the environment effectively extracts critical fibers and evaluates their spatial relationships with surgical targets and landmarks. This functionality provides valuable insights for refining preoperative planning, optimizing surgical approaches, and minimizing potential functional damage. CONCLUSION Our WIMP-based interactive environment empowers surgeons with enhanced capabilities for real-time manipulation of neuroanatomy-referenced DTI data. Integrating curvilinear reformatting and finite-state machine interaction enhances user experience significantly, making it a valuable tool for improving surgical safety and precision. This low-cost, accessible approach has the potential to facilitate minimally invasive procedures, accurate landmark identification, and reduced functional damage, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Shin-Ting Wu
- School of Computer and Electrical Engineering, Universidade Estadual de Campinas, Av. Albert Einstein, 400, Campinas, 13083-852, São Paulo, Brazil; BRAINN Research, Innovation, and Dissemination Center, R. Vital Brasil, 251, Campinas, 13083-888, São Paulo, Brazil.
| | - Raphael Voltoline
- School of Computer and Electrical Engineering, Universidade Estadual de Campinas, Av. Albert Einstein, 400, Campinas, 13083-852, São Paulo, Brazil; BRAINN Research, Innovation, and Dissemination Center, R. Vital Brasil, 251, Campinas, 13083-888, São Paulo, Brazil
| | - Rodrigo Lacerda Benites
- School of Computer and Electrical Engineering, Universidade Estadual de Campinas, Av. Albert Einstein, 400, Campinas, 13083-852, São Paulo, Brazil
| | - Brunno Machado de Campos
- Medical Sciences School, Universidade Estadual de Campinas, R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, São Paulo, Brazil; BRAINN Research, Innovation, and Dissemination Center, R. Vital Brasil, 251, Campinas, 13083-888, São Paulo, Brazil
| | | | - Enrico Ghizoni
- Medical Sciences School, Universidade Estadual de Campinas, R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, São Paulo, Brazil; BRAINN Research, Innovation, and Dissemination Center, R. Vital Brasil, 251, Campinas, 13083-888, São Paulo, Brazil
| |
Collapse
|
6
|
Zalesky A, Sarwar T, Tian Y, Liu Y, Yeo BTT, Ramamohanarao K. Predicting an individual's functional connectivity from their structural connectome: Evaluation of evidence, recommendations, and future prospects. Netw Neurosci 2024; 8:1291-1309. [PMID: 39735518 PMCID: PMC11674402 DOI: 10.1162/netn_a_00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/11/2024] [Indexed: 12/31/2024] Open
Abstract
Several recent studies have optimized deep neural networks to learn high-dimensional relationships linking structural and functional connectivity across the human connectome. However, the extent to which these models recapitulate individual-specific characteristics of resting-state functional brain networks remains unclear. A core concern relates to whether current individual predictions outperform simple benchmarks such as group averages and null conditions. Here, we consider two measures to statistically evaluate whether functional connectivity predictions capture individual effects. We revisit our previously published functional connectivity predictions for 1,000 healthy adults and provide multiple lines of evidence supporting that our predictions successfully capture subtle individual-specific variation in connectivity. While predicted individual effects are statistically significant and outperform several benchmarks, we find that effect sizes are small (i.e., 8%-11% improvement relative to group-average benchmarks). As such, initial expectations about individual prediction performance expressed by us and others may require moderation. We conclude that individual predictions can significantly outperform appropriate benchmark conditions and we provide several recommendations for future studies in this area. Future studies should statistically assess the individual prediction performance of their models using one of the measures and benchmarks provided here.
Collapse
Affiliation(s)
- Andrew Zalesky
- Systems Lab, Department of Psychiatry, The University of Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Tabinda Sarwar
- School of Computing Technologies, RMIT University, Victoria, Australia
| | - Ye Tian
- Systems Lab, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Yuanzhe Liu
- Systems Lab, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - B. T. Thomas Yeo
- Department of Electrical and Computer Engineering, Center for Sleep & Cognition and N.1 Institute for Health, National University of Singapore, Singapore
| | | |
Collapse
|
7
|
Karimi D, Warfield SK. Diffusion MRI with Machine Learning. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00353. [PMID: 40206511 PMCID: PMC11981007 DOI: 10.1162/imag_a_00353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) of the brain offers unique capabilities including noninvasive probing of tissue microstructure and structural connectivity. It is widely used for clinical assessment of disease and injury, and for neuroscience research. Analyzing the dMRI data to extract useful information for medical and scientific purposes can be challenging. The dMRI measurements may suffer from strong noise and artifacts, and may exhibit high inter-session and inter-scanner variability in the data, as well as inter-subject heterogeneity in brain structure. Moreover, the relationship between measurements and the phenomena of interest can be highly complex. Recent years have witnessed increasing use of machine learning methods for dMRI analysis. This manuscript aims to assess these efforts, with a focus on methods that have addressed data preprocessing and harmonization, microstructure mapping, tractography, and white matter tract analysis. We study the main findings, strengths, and weaknesses of the existing methods and suggest topics for future research. We find that machine learning may be exceptionally suited to tackle some of the difficult tasks in dMRI analysis. However, for this to happen, several shortcomings of existing methods and critical unresolved issues need to be addressed. There is a pressing need to improve evaluation practices, to increase the availability of rich training datasets and validation benchmarks, as well as model generalizability, reliability, and explainability concerns.
Collapse
Affiliation(s)
- Davood Karimi
- Harvard Medical School and Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Simon K. Warfield
- Harvard Medical School and Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Feng Y, Xie L, Wang J, Tian Q, He J, Zeng Q, Gao F. Bundle-specific tractogram distribution estimation using higher-order streamline differential equation. Neuroimage 2024; 298:120766. [PMID: 39142523 DOI: 10.1016/j.neuroimage.2024.120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Streamline tractography locally traces peak directions extracted from fiber orientation distribution (FOD) functions, lacking global information about the trend of the whole fiber bundle. Therefore, it is prone to producing erroneous tracks while missing true positive connections. In this work, we propose a new bundle-specific tractography (BST) method based on a bundle-specific tractogram distribution (BTD) function, which directly reconstructs the fiber trajectory from the start region to the termination region by incorporating the global information in the fiber bundle mask. A unified framework for any higher-order streamline differential equation is presented to describe the fiber bundles with disjoint streamlines defined based on the diffusion vectorial field. At the global level, the tractography process is simplified as the estimation of BTD coefficients by minimizing the energy optimization model, and is used to characterize the relations between BTD and diffusion tensor vector under the prior guidance by introducing the tractogram bundle information to provide anatomic priors. Experiments are performed on simulated Hough, Sine, Circle data, ISMRM 2015 Tractography Challenge data, FiberCup data, and in vivo data from the Human Connectome Project (HCP) for qualitative and quantitative evaluation. Results demonstrate that our approach reconstructs complex fiber geometry more accurately. BTD reduces the error deviation and accumulation at the local level and shows better results in reconstructing long-range, twisting, and large fanning tracts.
Collapse
Affiliation(s)
- Yuanjing Feng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China; Zhejiang Provincial Collaborative Innovation Center for High-end Digital Intelligence Diagnosis and Treatment Equipment, Hangzhou, China; Zhejiang Provincial United Key Laboratory of Embedded Systems, Hangzhou, China.
| | - Lei Xie
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China; Zhejiang Provincial Collaborative Innovation Center for High-end Digital Intelligence Diagnosis and Treatment Equipment, Hangzhou, China; Zhejiang Provincial United Key Laboratory of Embedded Systems, Hangzhou, China
| | - Jingqiang Wang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiyuan Tian
- Department of Biomedical Engineering, Tsinghua University, Beijing, China.
| | - Jianzhong He
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China; Zhejiang Provincial Collaborative Innovation Center for High-end Digital Intelligence Diagnosis and Treatment Equipment, Hangzhou, China; Zhejiang Provincial United Key Laboratory of Embedded Systems, Hangzhou, China
| | - Qingrun Zeng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China; Zhejiang Provincial Collaborative Innovation Center for High-end Digital Intelligence Diagnosis and Treatment Equipment, Hangzhou, China; Zhejiang Provincial United Key Laboratory of Embedded Systems, Hangzhou, China
| | - Fei Gao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
Konell HG, Junior LOM, Dos Santos AC, Salmon CEG. Assessment of U-Net in the segmentation of short tracts: Transferring to clinical MRI routine. Magn Reson Imaging 2024; 111:217-228. [PMID: 38754751 DOI: 10.1016/j.mri.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Accurately studying structural connectivity requires precise tract segmentation strategies. The U-Net network has been widely recognized for its exceptional capacity in image segmentation tasks and provides remarkable results in large tract segmentation when high-quality diffusion-weighted imaging (DWI) data are used. However, short tracts, which are associated with various neurological diseases, pose specific challenges, particularly when high-quality DWI data acquisition within clinical settings is concerned. Here, we aimed to evaluate the U-Net network ability to segment short tracts by using DWI data acquired in different experimental conditions. To this end, we conducted three types of training experiments involving 350 healthy subjects and 11 white matter tracts, including the anterior, posterior, and hippocampal commissure, fornix, and uncinated fasciculus. In the first experiment, the model was exclusively trained with high-quality data of the Human Connectome Project (HCP) dataset. The second experiment focused on images of healthy subjects acquired from a local hospital dataset, representing a typical clinical routine acquisition. In the third experiment, a hybrid training approach was employed, combining data of the HCP and local hospital datasets. Then, the best model was also tested in unseen DWIs of 10 epilepsy patients of the local hospital and 10 healthy subjects acquired on a scanner from another company. The outcomes of the third experiment demonstrated a notable enhancement in performance when contrasted with the preceding trials. Specifically, the short tracts within the local hospital dataset achieved Dice scores ranging between 0.60 and 0.65. Similar intervals were obtained with HCP data in the first experiment, and a substantial improvement compared to the scores between 0.37 and 0.50 obtained with the local hospital dataset at the same experiment. This improvement persisted when the method was applied to diverse scenarios, including different scanner acquisitions and epilepsy patients. These results indicate that combining datasets from different sources, coupled with resolution standardization strengthens the neural network ability to generalize predictions across a spectrum of datasets. Nevertheless, short tract segmentation performance is intricately linked to the training composition, to validation, and to testing data. Moreover, curved tracts have intricate structural nature, which adds complexities to their segmenting. Although the network training approach tested herein has provided promising results, caution must be taken when extrapolating its application to datasets acquired under distinct experimental conditions, even in the case of higher-quality data or analysis of long or short tracts.
Collapse
Affiliation(s)
- Hohana Gabriela Konell
- Inbrain Lab, Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Otávio Murta Junior
- Medical Signals and Imaging Computing Lab, Department of Computing and Mathematics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antônio Carlos Dos Santos
- Department of Medical Imaging, Hematology and Clinical Oncology, Faculty of Medicine of Ribeirão Preto, SP, Brazil
| | - Carlos Ernesto Garrido Salmon
- Inbrain Lab, Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Medical Imaging, Hematology and Clinical Oncology, Faculty of Medicine of Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
Karimi D, Calixto C, Snoussi H, Cortes-Albornoz MC, Velasco-Annis C, Rollins C, Jaimes C, Gholipour A, Warfield SK. Detailed delineation of the fetal brain in diffusion MRI via multi-task learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.609697. [PMID: 39257731 PMCID: PMC11383702 DOI: 10.1101/2024.08.29.609697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Diffusion-weighted MRI is increasingly used to study the normal and abnormal development of fetal brain inutero. Recent studies have shown that dMRI can offer invaluable insights into the neurodevelopmental processes in the fetal stage. However, because of the low data quality and rapid brain development, reliable analysis of fetal dMRI data requires dedicated computational methods that are currently unavailable. The lack of automated methods for fast, accurate, and reproducible data analysis has seriously limited our ability to tap the potential of fetal brain dMRI for medical and scientific applications. In this work, we developed and validated a unified computational framework to (1) segment the brain tissue into white matter, cortical/subcortical gray matter, and cerebrospinal fluid, (2) segment 31 distinct white matter tracts, and (3) parcellate the brain's cortex and delineate the deep gray nuclei and white matter structures into 96 anatomically meaningful regions. We utilized a set of manual, semi-automatic, and automatic approaches to annotate 97 fetal brains. Using these labels, we developed and validated a multi-task deep learning method to perform the three computations. Our evaluations show that the new method can accurately carry out all three tasks, achieving a mean Dice similarity coefficient of 0.865 on tissue segmentation, 0.825 on white matter tract segmentation, and 0.819 on parcellation. The proposed method can greatly advance the field of fetal neuroimaging as it can lead to substantial improvements in fetal brain tractography, tract-specific analysis, and structural connectivity assessment.
Collapse
Affiliation(s)
- Davood Karimi
- Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Camilo Calixto
- Boston Children's Hospital and Harvard Medical School, Boston, MA
- Elmhurst Hospital Center and Icahn School of Medicine at Mount Sinai, New York, NY
| | - Haykel Snoussi
- Boston Children's Hospital and Harvard Medical School, Boston, MA
| | | | | | - Caitlin Rollins
- Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Camilo Jaimes
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ali Gholipour
- Boston Children's Hospital and Harvard Medical School, Boston, MA
- Department of Radiological Sciences, University of California Irvine, Irvine, CA
| | - Simon K Warfield
- Boston Children's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Teghipco A, Newman-Norlund R, Gibson M, Bonilha L, Absher J, Fridriksson J, Rorden C. Stable multivariate lesion symptom mapping. APERTURE NEURO 2024; 4:10.52294/001c.117311. [PMID: 39364269 PMCID: PMC11449259 DOI: 10.52294/001c.117311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Multivariate lesion-symptom mapping (MLSM) considers lesion information across the entire brain to predict impairments. The strength of this approach is also its weakness-considering many brain features together synergistically can uncover complex brain-behavior relationships but exposes a high-dimensional feature space that a model is expected to learn. Successfully distinguishing between features in this landscape can be difficult for models, particularly in the presence of irrelevant or redundant features. Here, we propose stable multivariate lesion-symptom mapping (sMLSM), which integrates the identification of reliable features with stability selection into conventional MLSM and describe our open-source MATLAB implementation. Usage is showcased with our publicly available dataset of chronic stroke survivors (N=167) and further validated in our independent public acute stroke dataset (N = 1106). We demonstrate that sMLSM eliminates inconsistent features highlighted by MLSM, reduces variation in feature weights, enables the model to learn more complex patterns of brain damage, and improves model accuracy for predicting aphasia severity in a way that tends to be robust regarding the choice of parameters for identifying reliable features. Critically, sMLSM more consistently outperforms predictions based on lesion size alone. This advantage is evident starting at modest sample sizes (N>75). Spatial distribution of feature importance is different in sMLSM, which highlights the features identified by univariate lesion symptom mapping while also implicating select regions emphasized by MLSM. Beyond improved prediction accuracy, sMLSM can offer deeper insight into reliable biomarkers of impairment, informing our understanding of neurobiology.
Collapse
Affiliation(s)
- Alex Teghipco
- Communication Sciences & Disorders, University of South Carolina
| | | | | | - Leonardo Bonilha
- Communication Sciences & Disorders, University of South Carolina
- Neurology, University of South Carolina School of Medicine
| | - John Absher
- Neurology, University of South Carolina School of Medicine
- School of Health Research, Clemson University
- Medicine, Neurosurgery and Radiology, Prisma Health
| | | | | |
Collapse
|
12
|
Joshi A, Li H, Parikh NA, He L. A systematic review of automated methods to perform white matter tract segmentation. Front Neurosci 2024; 18:1376570. [PMID: 38567281 PMCID: PMC10985163 DOI: 10.3389/fnins.2024.1376570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
White matter tract segmentation is a pivotal research area that leverages diffusion-weighted magnetic resonance imaging (dMRI) for the identification and mapping of individual white matter tracts and their trajectories. This study aims to provide a comprehensive systematic literature review on automated methods for white matter tract segmentation in brain dMRI scans. Articles on PubMed, ScienceDirect [NeuroImage, NeuroImage (Clinical), Medical Image Analysis], Scopus and IEEEXplore databases and Conference proceedings of Medical Imaging Computing and Computer Assisted Intervention Society (MICCAI) and International Symposium on Biomedical Imaging (ISBI), were searched in the range from January 2013 until September 2023. This systematic search and review identified 619 articles. Adhering to the specified search criteria using the query, "white matter tract segmentation OR fiber tract identification OR fiber bundle segmentation OR tractography dissection OR white matter parcellation OR tract segmentation," 59 published studies were selected. Among these, 27% employed direct voxel-based methods, 25% applied streamline-based clustering methods, 20% used streamline-based classification methods, 14% implemented atlas-based methods, and 14% utilized hybrid approaches. The paper delves into the research gaps and challenges associated with each of these categories. Additionally, this review paper illuminates the most frequently utilized public datasets for tract segmentation along with their specific characteristics. Furthermore, it presents evaluation strategies and their key attributes. The review concludes with a detailed discussion of the challenges and future directions in this field.
Collapse
Affiliation(s)
- Ankita Joshi
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Hailong Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Nehal A. Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lili He
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Computer Science, Biomedical Informatics, and Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
13
|
Young F, Aquilina K, Seunarine KK, Mancini L, Clark CA, Clayden JD. Fibre orientation atlas guided rapid segmentation of white matter tracts. Hum Brain Mapp 2024; 45:e26578. [PMID: 38339907 PMCID: PMC10826637 DOI: 10.1002/hbm.26578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 02/12/2024] Open
Abstract
Fibre tract delineation from diffusion magnetic resonance imaging (MRI) is a valuable clinical tool for neurosurgical planning and navigation, as well as in research neuroimaging pipelines. Several popular methods are used for this task, each with different strengths and weaknesses making them more or less suited to different contexts. For neurosurgical imaging, priorities include ease of use, computational efficiency, robustness to pathology and ability to generalise to new tracts of interest. Many existing methods use streamline tractography, which may require expert neuroimaging operators for setting parameters and delineating anatomical regions of interest, or suffer from as a lack of generalisability to clinical scans involving deforming tumours and other pathologies. More recently, data-driven approaches including deep-learning segmentation models and streamline clustering methods have improved reproducibility and automation, although they can require large amounts of training data and/or computationally intensive image processing at the point of application. We describe an atlas-based direct tract mapping technique called 'tractfinder', utilising tract-specific location and orientation priors. Our aim was to develop a clinically practical method avoiding streamline tractography at the point of application while utilising prior anatomical knowledge derived from only 10-20 training samples. Requiring few training samples allows emphasis to be placed on producing high quality, neuro-anatomically accurate training data, and enables rapid adaptation to new tracts of interest. Avoiding streamline tractography at the point of application reduces computational time, false positives and vulnerabilities to pathology such as tumour deformations or oedema. Carefully filtered training streamlines and track orientation distribution mapping are used to construct tract specific orientation and spatial probability atlases in standard space. Atlases are then transformed to target subject space using affine registration and compared with the subject's voxel-wise fibre orientation distribution data using a mathematical measure of distribution overlap, resulting in a map of the tract's likely spatial distribution. This work includes extensive performance evaluation and comparison with benchmark techniques, including streamline tractography and the deep-learning method TractSeg, in two publicly available healthy diffusion MRI datasets (from TractoInferno and the Human Connectome Project) in addition to a clinical dataset comprising paediatric and adult brain tumour scans. Tract segmentation results display high agreement with established techniques while requiring less than 3 min on average when applied to a new subject. Results also display higher robustness than compared methods when faced with clinical scans featuring brain tumours and resections. As well as describing and evaluating a novel proposed tract delineation technique, this work continues the discussion on the challenges surrounding the white matter segmentation task, including issues of anatomical definitions and the use of quantitative segmentation comparison metrics.
Collapse
Affiliation(s)
- Fiona Young
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Kristian Aquilina
- Department of NeurosurgeryGreat Ormond Street Hospital for ChildrenLondonUK
| | - Kiran K. Seunarine
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of RadiologyGreat Ormond Street Hospital for ChildrenLondonUK
| | - Laura Mancini
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Chris A. Clark
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Jonathan D. Clayden
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| |
Collapse
|
14
|
Yao T, Rheault F, Cai LY, Nath V, Asad Z, Newlin N, Cui C, Deng R, Ramadass K, Shafer A, Resnick S, Schilling K, Landman BA, Huo Y. Robust fiber orientation distribution function estimation using deep constrained spherical deconvolution for diffusion-weighted magnetic resonance imaging. J Med Imaging (Bellingham) 2024; 11:014005. [PMID: 38188934 PMCID: PMC10768686 DOI: 10.1117/1.jmi.11.1.014005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose Diffusion-weighted magnetic resonance imaging (DW-MRI) is a critical imaging method for capturing and modeling tissue microarchitecture at a millimeter scale. A common practice to model the measured DW-MRI signal is via fiber orientation distribution function (fODF). This function is the essential first step for the downstream tractography and connectivity analyses. With recent advantages in data sharing, large-scale multisite DW-MRI datasets are being made available for multisite studies. However, measurement variabilities (e.g., inter- and intrasite variability, hardware performance, and sequence design) are inevitable during the acquisition of DW-MRI. Most existing model-based methods [e.g., constrained spherical deconvolution (CSD)] and learning-based methods (e.g., deep learning) do not explicitly consider such variabilities in fODF modeling, which consequently leads to inferior performance on multisite and/or longitudinal diffusion studies. Approach In this paper, we propose a data-driven deep CSD method to explicitly constrain the scan-rescan variabilities for a more reproducible and robust estimation of brain microstructure from repeated DW-MRI scans. Specifically, the proposed method introduces a three-dimensional volumetric scanner-invariant regularization scheme during the fODF estimation. We study the Human Connectome Project (HCP) young adults test-retest group as well as the MASiVar dataset (with inter- and intrasite scan/rescan data). The Baltimore Longitudinal Study of Aging dataset is employed for external validation. Results From the experimental results, the proposed data-driven framework outperforms the existing benchmarks in repeated fODF estimation. By introducing the contrastive loss with scan/rescan data, the proposed method achieved a higher consistency while maintaining higher angular correlation coefficients with the CSD modeling. The proposed method is assessing the downstream connectivity analysis and shows increased performance in distinguishing subjects with different biomarkers. Conclusion We propose a deep CSD method to explicitly reduce the scan-rescan variabilities, so as to model a more reproducible and robust brain microstructure from repeated DW-MRI scans. The plug-and-play design of the proposed approach is potentially applicable to a wider range of data harmonization problems in neuroimaging.
Collapse
Affiliation(s)
- Tianyuan Yao
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | - Francois Rheault
- Université de Sherbrooke, Department of Computer Science, Sherbrooke, Québec, Canada
| | - Leon Y. Cai
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Vishwesh Nath
- NVIDIA Corporation, Bethesda, Maryland, United States
| | - Zuhayr Asad
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | - Nancy Newlin
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | - Can Cui
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | - Ruining Deng
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | - Karthik Ramadass
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | - Andrea Shafer
- National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, Maryland, United States
| | - Susan Resnick
- National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, Maryland, United States
| | - Kurt Schilling
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Bennett A. Landman
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| | - Yuankai Huo
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| |
Collapse
|
15
|
Kapoor S, Narayanan A. Leakage and the reproducibility crisis in machine-learning-based science. PATTERNS (NEW YORK, N.Y.) 2023; 4:100804. [PMID: 37720327 PMCID: PMC10499856 DOI: 10.1016/j.patter.2023.100804] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 09/19/2023]
Abstract
Machine-learning (ML) methods have gained prominence in the quantitative sciences. However, there are many known methodological pitfalls, including data leakage, in ML-based science. We systematically investigate reproducibility issues in ML-based science. Through a survey of literature in fields that have adopted ML methods, we find 17 fields where leakage has been found, collectively affecting 294 papers and, in some cases, leading to wildly overoptimistic conclusions. Based on our survey, we introduce a detailed taxonomy of eight types of leakage, ranging from textbook errors to open research problems. We propose that researchers test for each type of leakage by filling out model info sheets, which we introduce. Finally, we conduct a reproducibility study of civil war prediction, where complex ML models are believed to vastly outperform traditional statistical models such as logistic regression (LR). When the errors are corrected, complex ML models do not perform substantively better than decades-old LR models.
Collapse
Affiliation(s)
- Sayash Kapoor
- Department of Computer Science and Center for Information Technology Policy, Princeton University, Princeton, NJ 08540, USA
| | - Arvind Narayanan
- Department of Computer Science and Center for Information Technology Policy, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
16
|
Ghazi N, Aarabi MH, Soltanian-Zadeh H. Deep Learning Methods for Identification of White Matter Fiber Tracts: Review of State-of-the-Art and Future Prospective. Neuroinformatics 2023; 21:517-548. [PMID: 37328715 DOI: 10.1007/s12021-023-09636-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2023] [Indexed: 06/18/2023]
Abstract
Quantitative analysis of white matter fiber tracts from diffusion Magnetic Resonance Imaging (dMRI) data is of great significance in health and disease. For example, analysis of fiber tracts related to anatomically meaningful fiber bundles is highly demanded in pre-surgical and treatment planning, and the surgery outcome depends on accurate segmentation of the desired tracts. Currently, this process is mainly done through time-consuming manual identification performed by neuro-anatomical experts. However, there is a broad interest in automating the pipeline such that it is fast, accurate, and easy to apply in clinical settings and also eliminates the intra-reader variabilities. Following the advancements in medical image analysis using deep learning techniques, there has been a growing interest in using these techniques for the task of tract identification as well. Recent reports on this application show that deep learning-based tract identification approaches outperform existing state-of-the-art methods. This paper presents a review of current tract identification approaches based on deep neural networks. First, we review the recent deep learning methods for tract identification. Next, we compare them with respect to their performance, training process, and network properties. Finally, we end with a critical discussion of open challenges and possible directions for future works.
Collapse
Affiliation(s)
- Nayereh Ghazi
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14399, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Hamid Soltanian-Zadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14399, Iran.
- Medical Image Analysis Laboratory, Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, 48202, USA.
| |
Collapse
|
17
|
Cai LY, Lee HH, Newlin NR, Kim ME, Moyer D, Rheault F, Schilling KG, Landman BA. Implementation considerations for deep learning with diffusion MRI streamline tractography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535465. [PMID: 37066284 PMCID: PMC10104046 DOI: 10.1101/2023.04.03.535465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
One area of medical imaging that has recently experienced innovative deep learning advances is diffusion MRI (dMRI) streamline tractography with recurrent neural networks (RNNs). Unlike traditional imaging studies which utilize voxel-based learning, these studies model dMRI features at points in continuous space off the voxel grid in order to propagate streamlines, or virtual estimates of axons. However, implementing such models is non-trivial, and an open-source implementation is not yet widely available. Here, we describe a series of considerations for implementing tractography with RNNs and demonstrate they allow one to approximate a deterministic streamline propagator with comparable performance to existing algorithms. We release this trained model and the associated implementations leveraging popular deep learning libraries. We hope the availability of these resources will lower the barrier of entry into this field, spurring further innovation.
Collapse
Affiliation(s)
- Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ho Hin Lee
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Nancy R Newlin
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Michael E Kim
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Daniel Moyer
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - François Rheault
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
18
|
Generative Sampling in Bundle Tractography using Autoencoders (GESTA). Med Image Anal 2023; 85:102761. [PMID: 36773366 DOI: 10.1016/j.media.2023.102761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Current tractography methods use the local orientation information to propagate streamlines from seed locations. Many such seeds provide streamlines that stop prematurely or fail to map the true white matter pathways because some bundles are "harder-to-track" than others. This results in tractography reconstructions with poor white and gray matter spatial coverage. In this work, we propose a generative, autoencoder-based method, named GESTA (Generative Sampling in Bundle Tractography using Autoencoders), that produces streamlines achieving better spatial coverage. Compared to other deep learning methods, our autoencoder-based framework uses a single model to generate streamlines in a bundle-wise fashion, and does not require to propagate local orientations. GESTA produces new and complete streamlines for any given white matter bundle, including hard-to-track bundles. Applied on top of a given tractogram, GESTA is shown to be effective in improving the white matter volume coverage in poorly populated bundles, both on synthetic and human brain in vivo data. Our streamline evaluation framework ensures that the streamlines produced by GESTA are anatomically plausible and fit well to the local diffusion signal. The streamline evaluation criteria assess anatomy (white matter coverage), local orientation alignment (direction), and geometry features of streamlines, and optionally, gray matter connectivity. The GESTA framework offers considerable gains in bundle overlap using a reduced set of seeding streamlines with a 1.5x improvement for the "Fiber Cup", and 6x for the ISMRM 2015 Tractography Challenge datasets. Similarly, it provides a 4x white matter volume increase on the BIL&GIN callosal homotopic dataset, and successfully populates bundles on the multi-subject, multi-site, whole-brain in vivo TractoInferno dataset. GESTA is thus a novel deep generative bundle tractography method that can be used to improve the tractography reconstruction of the white matter.
Collapse
|
19
|
Gruen J, Groeschel S, Schultz T. Spatially regularized low-rank tensor approximation for accurate and fast tractography. Neuroimage 2023; 271:120004. [PMID: 36898487 DOI: 10.1016/j.neuroimage.2023.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Tractography based on diffusion Magnetic Resonance Imaging (dMRI) is the prevalent approach to the in vivo delineation of white matter tracts in the human brain. Many tractography methods rely on models of multiple fiber compartments, but the local dMRI information is not always sufficient to reliably estimate the directions of secondary fibers. Therefore, we introduce two novel approaches that use spatial regularization to make multi-fiber tractography more stable. Both represent the fiber Orientation Distribution Function (fODF) as a symmetric fourth-order tensor, and recover multiple fiber orientations via low-rank approximation. Our first approach computes a joint approximation over suitably weighted local neighborhoods with an efficient alternating optimization. The second approach integrates the low-rank approximation into a current state-of-the-art tractography algorithm based on the unscented Kalman filter (UKF). These methods were applied in three different scenarios. First, we demonstrate that they improve tractography even in high-quality data from the Human Connectome Project, and that they maintain useful results with a small fraction of the measurements. Second, on the 2015 ISMRM tractography challenge, they increase overlap, while reducing overreach, compared to low-rank approximation without joint optimization or the traditional UKF, respectively. Finally, our methods permit a more comprehensive reconstruction of tracts surrounding a tumor in a clinical dataset. Overall, both approaches improve reconstruction quality. At the same time, our modified UKF significantly reduces the computational effort compared to its traditional counterpart, and to our joint approximation. However, when used with ROI-based seeding, joint approximation more fully recovers fiber spread.
Collapse
Affiliation(s)
- Johannes Gruen
- Institute for Computer Science, University of Bonn, Friedrich-Hirzebruch-Allee 8, Bonn, 53115, Germany; Bonn-Aachen International Center for Information Technology, University of Bonn, Friedrich-Hirzebruch-Allee 6, Bonn, 53115, Germany
| | - Samuel Groeschel
- Experimental Pediatric Neuroimaging and Department of Pediatric Neurology & Developmental Medicine, University Children's Hospital, Hoppe-Seyler-Straße 1, Tuebingen, 72076, Germany
| | - Thomas Schultz
- Bonn-Aachen International Center for Information Technology, University of Bonn, Friedrich-Hirzebruch-Allee 6, Bonn, 53115, Germany; Institute for Computer Science, University of Bonn, Friedrich-Hirzebruch-Allee 8, Bonn, 53115, Germany.
| |
Collapse
|
20
|
Cai LY, Lee HH, Newlin NR, Kerley CI, Kanakaraj P, Yang Q, Johnson GW, Moyer D, Schilling KG, Rheault FC, Landman BA. Convolutional-recurrent neural networks approximate diffusion tractography from T1-weighted MRI and associated anatomical context. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530046. [PMID: 36909466 PMCID: PMC10002661 DOI: 10.1101/2023.02.25.530046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Diffusion MRI (dMRI) streamline tractography is the gold-standard for in vivo estimation of white matter (WM) pathways in the brain. However, the high angular resolution dMRI acquisitions capable of fitting the microstructural models needed for tractography are often time-consuming and not routinely collected clinically, restricting the scope of tractography analyses. To address this limitation, we build on recent advances in deep learning which have demonstrated that streamline propagation can be learned from dMRI directly without traditional model fitting. Specifically, we propose learning the streamline propagator from T1w MRI to facilitate arbitrary tractography analyses when dMRI is unavailable. To do so, we present a novel convolutional-recurrent neural network (CoRNN) trained in a teacher-student framework that leverages T1w MRI, associated anatomical context, and streamline memory from data acquired for the Human Connectome Project. We characterize our approach under two common tractography paradigms, WM bundle analysis and structural connectomics, and find approximately a 5-15% difference between measures computed from streamlines generated with our approach and those generated using traditional dMRI tractography. When placed in the literature, these results suggest that the accuracy of WM measures computed from T1w MRI with our method is on the level of scan-rescan dMRI variability and raise an important question: is tractography truly a microstructural phenomenon, or has dMRI merely facilitated its discovery and implementation?
Collapse
Affiliation(s)
- Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ho Hin Lee
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Nancy R Newlin
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Cailey I Kerley
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Qi Yang
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Daniel Moyer
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Fran Cois Rheault
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Bennett A Landman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
21
|
Prediction of the Topography of the Corticospinal Tract on T1-Weighted MR Images Using Deep-Learning-Based Segmentation. Diagnostics (Basel) 2023; 13:diagnostics13050911. [PMID: 36900055 PMCID: PMC10000710 DOI: 10.3390/diagnostics13050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
INTRODUCTION Tractography is an invaluable tool in the planning of tumor surgery in the vicinity of functionally eloquent areas of the brain as well as in the research of normal development or of various diseases. The aim of our study was to compare the performance of a deep-learning-based image segmentation for the prediction of the topography of white matter tracts on T1-weighted MR images to the performance of a manual segmentation. METHODS T1-weighted MR images of 190 healthy subjects from 6 different datasets were utilized in this study. Using deterministic diffusion tensor imaging, we first reconstructed the corticospinal tract on both sides. After training a segmentation model on 90 subjects of the PIOP2 dataset using the nnU-Net in a cloud-based environment with graphical processing unit (Google Colab), we evaluated its performance using 100 subjects from 6 different datasets. RESULTS Our algorithm created a segmentation model that predicted the topography of the corticospinal pathway on T1-weighted images in healthy subjects. The average dice score was 0.5479 (0.3513-0.7184) on the validation dataset. CONCLUSIONS Deep-learning-based segmentation could be applicable in the future to predict the location of white matter pathways in T1-weighted scans.
Collapse
|
22
|
Yao T, Rheault F, Cai LY, Nath V, Asad Z, Newlin N, Cui C, Deng R, Ramadass K, Schilling K, Landman BA, Huo Y. Deep Constrained Spherical Deconvolution for Robust Harmonization. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12464:124640W. [PMID: 37228707 PMCID: PMC10208219 DOI: 10.1117/12.2654398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Diffusion weighted magnetic resonance imaging (DW-MRI) captures tissue microarchitecture at millimeter scale. With recent advantages in data sharing, large-scale multi-site DW-MRI datasets are being made available for multi-site studies. However, DW-MRI suffers from measurement variability (e.g., inter- and intra-site variability, hardware performance, and sequence design), which consequently yields inferior performance on multi-site and/or longitudinal diffusion studies. In this study, we propose a novel, deep learning-based method to harmonize DW-MRI signals for a more reproducible and robust estimation of microstructure. Our method introduces a data-driven scanner-invariant regularization scheme to model a more robust fiber orientation distribution function (FODF) estimation. We study the Human Connectome Project (HCP) young adults test-retest group as well as the MASiVar dataset (with inter- and intra-site scan/rescan data). The 8th order spherical harmonics coefficients are employed as data representation. The results show that the proposed harmonization approach maintains higher angular correlation coefficients (ACC) with the ground truth signals (0.954 versus 0.942), while achieves higher consistency of FODF signals for intra-scanner data (0.891 versus 0.826), as compared with the baseline supervised deep learning scheme. Furthermore, the proposed data-driven framework is flexible and potentially applicable to a wider range of data harmonization problems in neuroimaging.
Collapse
Affiliation(s)
- Tianyuan Yao
- Department of Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Francois Rheault
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Zuhayr Asad
- Department of Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Nancy Newlin
- Department of Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Can Cui
- Department of Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ruining Deng
- Department of Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Karthik Ramadass
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kurt Schilling
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Bennett A. Landman
- Department of Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Yuankai Huo
- Department of Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
23
|
Poulin P, Theaud G, Rheault F, St-Onge E, Bore A, Renauld E, de Beaumont L, Guay S, Jodoin PM, Descoteaux M. TractoInferno - A large-scale, open-source, multi-site database for machine learning dMRI tractography. Sci Data 2022; 9:725. [PMID: 36433966 PMCID: PMC9700736 DOI: 10.1038/s41597-022-01833-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
TractoInferno is the world's largest open-source multi-site tractography database, including both research- and clinical-like human acquisitions, aimed specifically at machine learning tractography approaches and related ML algorithms. It provides 284 samples acquired from 3 T scanners across 6 different sites. Available data includes T1-weighted images, single-shell diffusion MRI (dMRI) acquisitions, spherical harmonics fitted to the dMRI signal, fiber ODFs, and reference streamlines for 30 delineated bundles generated using 4 tractography algorithms, as well as masks needed to run tractography algorithms. Manual quality control was additionally performed at multiple steps of the pipeline. We showcase TractoInferno by benchmarking the learn2track algorithm and 5 variations of the same recurrent neural network architecture. Creating the TractoInferno database required approximately 20,000 CPU-hours of processing power, 200 man-hours of manual QC, 3,000 GPU-hours of training baseline models, and 4 Tb of storage, to produce a final database of 350 Gb. By providing a standardized training dataset and evaluation protocol, TractoInferno is an excellent tool to address common issues in machine learning tractography.
Collapse
Affiliation(s)
- Philippe Poulin
- University of Sherbrooke, Computer Science Department, Sherbrooke, J1K 2R1, Canada.
| | - Guillaume Theaud
- University of Sherbrooke, Computer Science Department, Sherbrooke, J1K 2R1, Canada
| | - Francois Rheault
- University of Sherbrooke, Computer Science Department, Sherbrooke, J1K 2R1, Canada
| | - Etienne St-Onge
- University of Sherbrooke, Computer Science Department, Sherbrooke, J1K 2R1, Canada
| | - Arnaud Bore
- University of Sherbrooke, Computer Science Department, Sherbrooke, J1K 2R1, Canada
| | - Emmanuelle Renauld
- University of Sherbrooke, Computer Science Department, Sherbrooke, J1K 2R1, Canada
| | - Louis de Beaumont
- Montreal Sacred-Heart Hospital Research Centre, Montreal, H4J 1C5, Canada
- University of Montreal, Department of Surgery, Montreal, H3C 3J7, Canada
| | - Samuel Guay
- Montreal Sacred-Heart Hospital Research Centre, Montreal, H4J 1C5, Canada
- University of Montreal, Department of Surgery, Montreal, H3C 3J7, Canada
| | - Pierre-Marc Jodoin
- University of Sherbrooke, Computer Science Department, Sherbrooke, J1K 2R1, Canada
- Imeka, Sherbrooke, J1H 4A7, Canada
| | - Maxime Descoteaux
- University of Sherbrooke, Computer Science Department, Sherbrooke, J1K 2R1, Canada
- Imeka, Sherbrooke, J1H 4A7, Canada
| |
Collapse
|
24
|
Shi Y, Zhao Z, Tang H, Huang S. Intellectual Structure and Emerging Trends of White Matter Hyperintensity Studies: A Bibliometric Analysis From 2012 to 2021. Front Neurosci 2022; 16:866312. [PMID: 35478843 PMCID: PMC9036105 DOI: 10.3389/fnins.2022.866312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 11/26/2022] Open
Abstract
White matter hyperintensities (WMHs), which have a significant effect on human health, have received increasing attention since their number of publications has increased in the past 10 years. We aimed to explore the intellectual structure, hotspots, and emerging trends of publications on WMHs using bibliometric analysis from 2012 to 2021. Publications on WMHs from 2012 to 2021 were retrieved from the Web of Science Core Collection. CiteSpace 5.8.R3, VOSviewer 1.6.17, and an online bibliometric analysis platform (Bibliometric. com) were used to quantitatively analyze the trends of publications from multiple perspectives. A total of 29,707 publications on WMHs were obtained, and the number of annual publications generally increased from 2012 to 2021. Neurology had the most publications on WMHs. The top country and institution were the United States and Harvard University, respectively. Massimo Filippi and Stephen M. Smith were the most productive and co-cited authors, respectively. Thematic concentrations primarily included cerebral small vessel disease, diffusion magnetic resonance imaging (dMRI), schizophrenia, Alzheimer’s disease, multiple sclerosis, microglia, and oligodendrocyte. The hotspots were clustered into five groups: white matter and diffusion tensor imaging, inflammation and demyelination, small vessel disease and cognitive impairment, MRI and multiple sclerosis, and Alzheimer’s disease. Emerging trends mainly include deep learning, machine learning, perivascular space, convolutional neural network, neurovascular unit, and neurite orientation dispersion and density imaging. This study presents an overview of publications on WMHs and provides insights into the intellectual structure of WMH studies. Our study provides information to help researchers and clinicians quickly and comprehensively understand the hotspots and emerging trends within WMH studies as well as providing direction for future basic and clinical studies on WMHs.
Collapse
Affiliation(s)
- Yanan Shi
- Research and Development Center of Traditional Chinese Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zehua Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Huan Tang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shijing Huang
- Research and Development Center of Traditional Chinese Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Shijing Huang,
| |
Collapse
|
25
|
Zhang F, Daducci A, He Y, Schiavi S, Seguin C, Smith RE, Yeh CH, Zhao T, O'Donnell LJ. Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography: A review. Neuroimage 2022; 249:118870. [PMID: 34979249 PMCID: PMC9257891 DOI: 10.1016/j.neuroimage.2021.118870] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is an advanced imaging technique that enables in vivo reconstruction of the brain's white matter connections at macro scale. It provides an important tool for quantitative mapping of the brain's structural connectivity using measures of connectivity or tissue microstructure. Over the last two decades, the study of brain connectivity using dMRI tractography has played a prominent role in the neuroimaging research landscape. In this paper, we provide a high-level overview of how tractography is used to enable quantitative analysis of the brain's structural connectivity in health and disease. We focus on two types of quantitative analyses of tractography, including: 1) tract-specific analysis that refers to research that is typically hypothesis-driven and studies particular anatomical fiber tracts, and 2) connectome-based analysis that refers to research that is more data-driven and generally studies the structural connectivity of the entire brain. We first provide a review of methodology involved in three main processing steps that are common across most approaches for quantitative analysis of tractography, including methods for tractography correction, segmentation and quantification. For each step, we aim to describe methodological choices, their popularity, and potential pros and cons. We then review studies that have used quantitative tractography approaches to study the brain's white matter, focusing on applications in neurodevelopment, aging, neurological disorders, mental disorders, and neurosurgery. We conclude that, while there have been considerable advancements in methodological technologies and breadth of applications, there nevertheless remains no consensus about the "best" methodology in quantitative analysis of tractography, and researchers should remain cautious when interpreting results in research and clinical applications.
Collapse
Affiliation(s)
- Fan Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | | | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia; The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | | |
Collapse
|
26
|
Lu Q, Liu W, Zhuo Z, Li Y, Duan Y, Yu P, Qu L, Ye C, Liu Y. A Transfer Learning Approach to Few-shot Segmentation of Novel White Matter Tracts. Med Image Anal 2022; 79:102454. [DOI: 10.1016/j.media.2022.102454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2022]
|
27
|
Schilling KG, Tax CMW, Rheault F, Landman BA, Anderson AW, Descoteaux M, Petit L. Prevalence of white matter pathways coming into a single white matter voxel orientation: The bottleneck issue in tractography. Hum Brain Mapp 2022; 43:1196-1213. [PMID: 34921473 PMCID: PMC8837578 DOI: 10.1002/hbm.25697] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/12/2022] Open
Abstract
Characterizing and understanding the limitations of diffusion MRI fiber tractography is a prerequisite for methodological advances and innovations which will allow these techniques to accurately map the connections of the human brain. The so-called "crossing fiber problem" has received tremendous attention and has continuously triggered the community to develop novel approaches for disentangling distinctly oriented fiber populations. Perhaps an even greater challenge occurs when multiple white matter bundles converge within a single voxel, or throughout a single brain region, and share the same parallel orientation, before diverging and continuing towards their final cortical or sub-cortical terminations. These so-called "bottleneck" regions contribute to the ill-posed nature of the tractography process, and lead to both false positive and false negative estimated connections. Yet, as opposed to the extent of crossing fibers, a thorough characterization of bottleneck regions has not been performed. The aim of this study is to quantify the prevalence of bottleneck regions. To do this, we use diffusion tractography to segment known white matter bundles of the brain, and assign each bundle to voxels they pass through and to specific orientations within those voxels (i.e. fixels). We demonstrate that bottlenecks occur in greater than 50-70% of fixels in the white matter of the human brain. We find that all projection, association, and commissural fibers contribute to, and are affected by, this phenomenon, and show that even regions traditionally considered "single fiber voxels" often contain multiple fiber populations. Together, this study shows that a majority of white matter presents bottlenecks for tractography which may lead to incorrect or erroneous estimates of brain connectivity or quantitative tractography (i.e., tractometry), and underscores the need for a paradigm shift in the process of tractography and bundle segmentation for studying the fiber pathways of the human brain.
Collapse
Affiliation(s)
- Kurt G. Schilling
- Department of Radiology & Radiological ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United KingdomCardiffUK
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Francois Rheault
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Bennett A. Landman
- Department of Radiology & Radiological ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Adam W. Anderson
- Department of Radiology & Radiological ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science DepartmentUniversité de SherbrookeSherbrookeQuebecCanada
| | - Laurent Petit
- Groupe d'Imagerie NeurofonctionnelleInstitut Des Maladies Neurodégénératives, CNRS, CEA University of BordeauxBordeauxFrance
| |
Collapse
|
28
|
Im SJ, Suh JY, Shim JH, Baek HM. Deterministic Tractography Analysis of Rat Brain Using SIGMA Atlas in 9.4T MRI. Brain Sci 2021; 11:brainsci11121656. [PMID: 34942958 PMCID: PMC8699268 DOI: 10.3390/brainsci11121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022] Open
Abstract
Preclinical studies using rodents have been the choice for many neuroscience researchers due totheir close reflection of human biology. In particular, research involving rodents has utilized MRI to accurately identify brain regions and characteristics by acquiring high resolution cavity images with different contrasts non-invasively, and this has resulted in high reproducibility and throughput. In addition, tractographic analysis using diffusion tensor imaging to obtain information on the neural structure of white matter has emerged as a major methodology in the field of neuroscience due to its contribution in discovering significant correlations between altered neural connections and various neurological and psychiatric diseases. However, unlike image analysis studies with human subjects where a myriad of human image analysis programs and procedures have been thoroughly developed and validated, methods for analyzing rat image data using MRI in preclinical research settings have seen significantly less developed. Therefore, in this study, we present a deterministic tractographic analysis pipeline using the SIGMA atlas for a detailed structural segmentation and structural connectivity analysis of the rat brain’s structural connectivity. In addition, the structural connectivity analysis pipeline presented in this study was preliminarily tested on normal and stroke rat models for initial observation.
Collapse
Affiliation(s)
- Sang-Jin Im
- Department of Core Facility for Cell to In-Vivo Imaging, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.-J.I.); (J.-Y.S.)
| | - Ji-Yeon Suh
- Department of Core Facility for Cell to In-Vivo Imaging, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.-J.I.); (J.-Y.S.)
| | - Jae-Hyuk Shim
- Department of BioMedical Science, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
| | - Hyeon-Man Baek
- Department of Core Facility for Cell to In-Vivo Imaging, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.-J.I.); (J.-Y.S.)
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-32-899-6678
| |
Collapse
|
29
|
Duggento A, Guerrisi M, Toschi N. Echo state network models for nonlinear Granger causality. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200256. [PMID: 34689621 DOI: 10.1098/rsta.2020.0256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
While Granger causality (GC) has been often employed in network neuroscience, most GC applications are based on linear multivariate autoregressive (MVAR) models. However, real-life systems like biological networks exhibit notable nonlinear behaviour, hence undermining the validity of MVAR-based GC (MVAR-GC). Most nonlinear GC estimators only cater for additive nonlinearities or, alternatively, are based on recurrent neural networks or long short-term memory networks, which present considerable training difficulties and tailoring needs. We reformulate the GC framework in terms of echo-state networks-based models for arbitrarily complex networks, and characterize its ability to capture nonlinear causal relations in a network of noisy Duffing oscillators, showing a net advantage of echo state GC (ES-GC) in detecting nonlinear, causal links. We then explore the structure of ES-GC networks in the human brain employing functional MRI data from 1003 healthy subjects drawn from the human connectome project, demonstrating the existence of previously unknown directed within-brain interactions. In addition, we examine joint brain-heart signals in 15 subjects where we explore directed interaction between brain networks and central vagal cardiac control in order to investigate the so-called central autonomic network in a causal manner. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.
Collapse
Affiliation(s)
- Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Maria Guerrisi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA
| |
Collapse
|
30
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
31
|
MRI-based machine learning for determining quantitative and qualitative characteristics affecting the survival of glioblastoma multiforme. Magn Reson Imaging 2021; 85:222-227. [PMID: 34687850 DOI: 10.1016/j.mri.2021.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/16/2021] [Accepted: 10/17/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Our current study aims to consider the image biomarkers extracted from the MRI images for exploring their effects on glioblastoma multiforme (GBM) patients' survival. Determining its biomarker helps better manage the disease and evaluate treatments. It has been proven that imaging features could be used as a biomarker. The purpose of this study is to investigate the features in MRI and clinical features as the biomarker association of survival of GBM. METHODS 55 patients were considered with five clinical features, 10 qualities pre-operative MRI image features, and six quantitative features obtained using BraTumIA software. It was run ANN, C5, Bayesian, and Cox models in two phases for determining important variables. In the first phase, we selected the quality features that occur at least in three models and quantitative in two models. In the second phase, models were run with the extracted features, and then the probability value of variables in each model was calculated. RESULTS The mean of accuracy, sensitivity, specificity, and area under curve (AUC) after running four machine learning techniques were 80.47, 82.54, 79.78, and 0.85, respectively. In the second step, the mean of accuracy, sensitivity, specificity, and AUC were 79.55, 78.71, 79.83, and 0.87, respectively. CONCLUSION We found the largest size of the width, the largest size of length, radiotherapy, volume of enhancement, volume of nCET, satellites, enhancing margin, and age feature are important features.
Collapse
|
32
|
De Luca A, Ianus A, Leemans A, Palombo M, Shemesh N, Zhang H, Alexander DC, Nilsson M, Froeling M, Biessels GJ, Zucchelli M, Frigo M, Albay E, Sedlar S, Alimi A, Deslauriers-Gauthier S, Deriche R, Fick R, Afzali M, Pieciak T, Bogusz F, Aja-Fernández S, Özarslan E, Jones DK, Chen H, Jin M, Zhang Z, Wang F, Nath V, Parvathaneni P, Morez J, Sijbers J, Jeurissen B, Fadnavis S, Endres S, Rokem A, Garyfallidis E, Sanchez I, Prchkovska V, Rodrigues P, Landman BA, Schilling KG. On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge. Neuroimage 2021; 240:118367. [PMID: 34237442 PMCID: PMC7615259 DOI: 10.1016/j.neuroimage.2021.118367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022] Open
Abstract
Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.
Collapse
Affiliation(s)
- Alberto De Luca
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Andrada Ianus
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alexander Leemans
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marco Palombo
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Hui Zhang
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Markus Nilsson
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Geert-Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mauro Zucchelli
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | - Matteo Frigo
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | - Enes Albay
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France; Istanbul Technical University, Istanbul, Turkey
| | - Sara Sedlar
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | - Abib Alimi
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | | | - Rachid Deriche
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | | | - Maryam Afzali
- Cardiff University Brain Research, Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Fabian Bogusz
- AGH University of Science and Technology, Kraków, Poland
| | | | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Derek K Jones
- Cardiff University Brain Research, Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Haoze Chen
- School of Instruments and Electronics, North University of China, Taiyuan, China
| | - Mingwu Jin
- Department of Physics, University of Texas at Arlington, Arlington, USA
| | - Zhijie Zhang
- School of Instruments and Electronics, North University of China, Taiyuan, China
| | - Fengxiang Wang
- School of Instruments and Electronics, North University of China, Taiyuan, China
| | | | | | - Jan Morez
- Imec-Vision lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Jan Sijbers
- Imec-Vision lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Ben Jeurissen
- Imec-Vision lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Shreyas Fadnavis
- Intelligent Systems Engineering, Indiana University Bloomington, Indiana, USA
| | - Stefan Endres
- Leibniz Institute for Materials Engineering - IWT, Faculty of Production Engineering, University of Bremen, Bremen, Germany
| | - Ariel Rokem
- Department of Psychology and the eScience Institute, University of Washington, Seattle, WA USA
| | | | | | | | | | - Bennet A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, USA
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, USA; Department of Radiology and Radiological Science, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
33
|
Karimi D, Vasung L, Jaimes C, Machado-Rivas F, Warfield SK, Gholipour A. Learning to estimate the fiber orientation distribution function from diffusion-weighted MRI. Neuroimage 2021; 239:118316. [PMID: 34182101 PMCID: PMC8385546 DOI: 10.1016/j.neuroimage.2021.118316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/20/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Estimation of white matter fiber orientation distribution function (fODF) is the essential first step for reliable brain tractography and connectivity analysis. Most of the existing fODF estimation methods rely on sub-optimal physical models of the diffusion signal or mathematical simplifications, which can impact the estimation accuracy. In this paper, we propose a data-driven method that avoids some of these pitfalls. Our proposed method is based on a multilayer perceptron that learns to map the diffusion-weighted measurements, interpolated onto a fixed spherical grid in the q space, to the target fODF. Importantly, we also propose methods for synthesizing reliable simulated training data. We show that the model can be effectively trained with simulated or real training data. Our phantom experiments show that the proposed method results in more accurate fODF estimation and tractography than several competing methods including the multi-tensor model, Bayesian estimation, spherical deconvolution, and two other machine learning techniques. On real data, we compare our method with other techniques in terms of accuracy of estimating the ground-truth fODF. The results show that our method is more accurate than other methods, and that it performs better than the competing methods when applied to under-sampled diffusion measurements. We also compare our method with the Sparse Fascicle Model in terms of expert ratings of the accuracy of reconstruction of several commissural, projection, association, and cerebellar tracts. The results show that the tracts reconstructed with the proposed method are rated significantly higher by three independent experts. Our study demonstrates the potential of data-driven methods for improving the accuracy and robustness of fODF estimation.
Collapse
Affiliation(s)
- Davood Karimi
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, USA.
| | - Lana Vasung
- Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Camilo Jaimes
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, USA
| | - Fedel Machado-Rivas
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, USA
| | - Simon K Warfield
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, USA
| | - Ali Gholipour
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, USA
| |
Collapse
|
34
|
Karimi D, Vasung L, Jaimes C, Machado-Rivas F, Khan S, Warfield SK, Gholipour A. A machine learning-based method for estimating the number and orientations of major fascicles in diffusion-weighted magnetic resonance imaging. Med Image Anal 2021; 72:102129. [PMID: 34182203 PMCID: PMC8320341 DOI: 10.1016/j.media.2021.102129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022]
Abstract
Accurate modeling of diffusion-weighted magnetic resonance imaging measurements is necessary for accurate brain connectivity analysis. Existing methods for estimating the number and orientations of fascicles in an imaging voxel either depend on non-convex optimization techniques that are sensitive to initialization and measurement noise, or are prone to predicting spurious fascicles. In this paper, we propose a machine learning-based technique that can accurately estimate the number and orientations of fascicles in a voxel. Our method can be trained with either simulated or real diffusion-weighted imaging data. Our method estimates the angle to the closest fascicle for each direction in a set of discrete directions uniformly spread on the unit sphere. This information is then processed to extract the number and orientations of fascicles in a voxel. On realistic simulated phantom data with known ground truth, our method predicts the number and orientations of crossing fascicles more accurately than several classical and machine learning methods. It also leads to more accurate tractography. On real data, our method is better than or compares favorably with other methods in terms of robustness to measurement down-sampling and also in terms of expert quality assessment of tractography results.
Collapse
Affiliation(s)
- Davood Karimi
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lana Vasung
- Department of Pediatrics at Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Camilo Jaimes
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fedel Machado-Rivas
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shadab Khan
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Théberge A, Desrosiers C, Descoteaux M, Jodoin PM. Track-to-Learn: A general framework for tractography with deep reinforcement learning. Med Image Anal 2021; 72:102093. [PMID: 34023562 DOI: 10.1016/j.media.2021.102093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022]
Abstract
Diffusion MRI tractography is currently the only non-invasive tool able to assess the white-matter structural connectivity of a brain. Since its inception, it has been widely documented that tractography is prone to producing erroneous tracks while missing true positive connections. Recently, supervised learning algorithms have been proposed to learn the tracking procedure implicitly from data, without relying on anatomical priors. However, these methods rely on curated streamlines that are very hard to obtain. To remove the need for such data but still leverage the expressiveness of neural networks, we introduce Track-To-Learn: A general framework to pose tractography as a deep reinforcement learning problem. Deep reinforcement learning is a type of machine learning that does not depend on ground-truth data but rather on the concept of "reward". We implement and train algorithms to maximize returns from a reward function based on the alignment of streamlines with principal directions extracted from diffusion data. We show competitive results on known data and little loss of performance when generalizing to new, unseen data, compared to prior machine learning-based tractography algorithms. To the best of our knowledge, this is the first successful use of deep reinforcement learning for tractography.
Collapse
Affiliation(s)
- Antoine Théberge
- Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, CA, J1K 2R1.
| | - Christian Desrosiers
- Département de génie logiciel et des TI, École de technologie supérieure, Montréal, QC, CA, H3C 1K3
| | - Maxime Descoteaux
- Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, CA, J1K 2R1
| | - Pierre-Marc Jodoin
- Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, CA, J1K 2R1
| |
Collapse
|
36
|
Reymbaut A, Critchley J, Durighel G, Sprenger T, Sughrue M, Bryskhe K, Topgaard D. Toward nonparametric diffusion- T1 characterization of crossing fibers in the human brain. Magn Reson Med 2021; 85:2815-2827. [PMID: 33301195 PMCID: PMC7898694 DOI: 10.1002/mrm.28604] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To estimate T 1 for each distinct fiber population within voxels containing multiple brain tissue types. METHODS A diffusion- T 1 correlation experiment was carried out in an in vivo human brain using tensor-valued diffusion encoding and multiple repetition times. The acquired data were inverted using a Monte Carlo algorithm that retrieves nonparametric distributions P ( D , R 1 ) of diffusion tensors and longitudinal relaxation rates R 1 = 1 / T 1 . Orientation distribution functions (ODFs) of the highly anisotropic components of P ( D , R 1 ) were defined to visualize orientation-specific diffusion-relaxation properties. Finally, Monte Carlo density-peak clustering (MC-DPC) was performed to quantify fiber-specific features and investigate microstructural differences between white matter fiber bundles. RESULTS Parameter maps corresponding to P ( D , R 1 ) 's statistical descriptors were obtained, exhibiting the expected R 1 contrast between brain tissue types. Our ODFs recovered local orientations consistent with the known anatomy and indicated differences in R 1 between major crossing fiber bundles. These differences, confirmed by MC-DPC, were in qualitative agreement with previous model-based works but seem biased by the limitations of our current experimental setup. CONCLUSIONS Our Monte Carlo framework enables the nonparametric estimation of fiber-specific diffusion- T 1 features, thereby showing potential for characterizing developmental or pathological changes in T 1 within a given fiber bundle, and for investigating interbundle T 1 differences.
Collapse
Affiliation(s)
- Alexis Reymbaut
- Department of Physical ChemistryLund UniversityLundSweden
- Random Walk Imaging ABLundSweden
| | | | | | - Tim Sprenger
- Karolinska InstituteStockholmSweden
- GE HealthcareStockholmSweden
| | | | | | - Daniel Topgaard
- Department of Physical ChemistryLund UniversityLundSweden
- Random Walk Imaging ABLundSweden
| |
Collapse
|
37
|
Abstract
Tractography is an important technique that allows the in vivo reconstruction of structural connections in the brain using diffusion MRI. Although tracking algorithms have improved during the last two decades, results of validation studies and international challenges warn about the reliability of tractography and point out the need for improved algorithms. In propagation-based tracking, connections have traditionally been modeled as piece-wise linear segments. In this work, we propose a novel propagation-based tracker that is capable of generating geometrically smooth ( C1 ) curves using parallel transport frames. Notably, our approach does not increase the complexity of the propagation problem that remains two-dimensional. Moreover, our tracker has a novel mechanism to reduce noise related propagation errors by incorporating topographic regularity of connections, a neuroanatomic property of many brain pathways. We ran extensive experiments and compared our approach against deterministic and other probabilistic algorithms. Our experiments on FiberCup and ISMRM 2015 challenge datasets as well as on 56 subjects of the Human Connectome Project show highly promising results both visually and quantitatively. Open-source implementations of the algorithm are shared publicly.
Collapse
|
38
|
Klontzas ME, Papadakis GZ, Marias K, Karantanas AH. Musculoskeletal trauma imaging in the era of novel molecular methods and artificial intelligence. Injury 2020; 51:2748-2756. [PMID: 32972725 DOI: 10.1016/j.injury.2020.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
Over the past decade rapid advancements in molecular imaging (MI) and artificial intelligence (AI) have revolutionized traditional musculoskeletal radiology. Molecular imaging refers to the ability of various methods to in vivo characterize and quantify biological processes, at a molecular level. The extracted information provides the tools to understand the pathophysiology of diseases and thus to early detect, to accurately evaluate the extend and to apply and evaluate targeted treatments. At present, molecular imaging mainly involves CT, MRI, radionuclide, US, and optical imaging and has been reported in many clinical and preclinical studies. Although originally MI techniques targeted at central nervous system disorders, later on their value on musculoskeletal disorders was also studied in depth. Meaningful exploitation of the large volume of imaging data generated by molecular and conventional imaging techniques, requires state-of-the-art computational methods that enable rapid handling of large volumes of information. AI allows end-to-end training of computer algorithms to perform tasks encountered in everyday clinical practice including diagnosis, disease severity classification and image optimization. Notably, the development of deep learning algorithms has offered novel methods that enable intelligent processing of large imaging datasets in an attempt to automate decision-making in a wide variety of settings related to musculoskeletal trauma. Current applications of AI include the diagnosis of bone and soft tissue injuries, monitoring of the healing process and prediction of injuries in the professional sports setting. This review presents the current applications of novel MI techniques and methods and the emerging role of AI regarding the diagnosis and evaluation of musculoskeletal trauma.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, Heraklion University Hospital, Crete, 70110, Greece; Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton 70013, Heraklion, Crete, Greece.
| | - Georgios Z Papadakis
- Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton 70013, Heraklion, Crete, Greece; Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Crete, Greece; Department of Radiology, School of Medicine, University of Crete, 70110 Greece.
| | - Kostas Marias
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Crete, Greece; Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410, Heraklion, Crete, Greece.
| | - Apostolos H Karantanas
- Department of Medical Imaging, Heraklion University Hospital, Crete, 70110, Greece; Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton 70013, Heraklion, Crete, Greece; Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Crete, Greece; Department of Radiology, School of Medicine, University of Crete, 70110 Greece.
| |
Collapse
|
39
|
Wegmayr V, Buhmann JM. Entrack: Probabilistic Spherical Regression with Entropy Regularization for Fiber Tractography. Int J Comput Vis 2020. [DOI: 10.1007/s11263-020-01384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractWhite matter tractography, based on diffusion-weighted magnetic resonance images, is currently the only available in vivo method to gather information on the structural brain connectivity. The low resolution of diffusion MRI data suggests to employ probabilistic methods for streamline reconstruction, i.e., for fiber crossings. We propose a general probabilistic model for spherical regression based on the Fisher-von-Mises distribution, which efficiently estimates maximum entropy posteriors of local streamline directions with machine learning methods. The optimal precision of posteriors for streamlines is determined by an information-theoretic technique, the expected log-posterior agreement concept. It relies on the requirement that the posterior distributions of streamlines, inferred on retest measurements of the same subject, should yield stable results within the precision determined by the noise level of the data source.
Collapse
|
40
|
Zhang F, Cetin Karayumak S, Hoffmann N, Rathi Y, Golby AJ, O'Donnell LJ. Deep white matter analysis (DeepWMA): Fast and consistent tractography segmentation. Med Image Anal 2020; 65:101761. [PMID: 32622304 PMCID: PMC7483951 DOI: 10.1016/j.media.2020.101761] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
White matter tract segmentation, i.e. identifying tractography fibers (streamline trajectories) belonging to anatomically meaningful fiber tracts, is an essential step to enable tract quantification and visualization. In this study, we present a deep learning tractography segmentation method (DeepWMA) that allows fast and consistent identification of 54 major deep white matter fiber tracts from the whole brain. We create a large-scale training tractography dataset of 1 million labeled fiber samples, and we propose a novel 2D multi-channel feature descriptor (FiberMap) that encodes spatial coordinates of points along each fiber. We learn a convolutional neural network (CNN) fiber classification model based on FiberMap and obtain a high fiber classification accuracy of 90.99% on the training tractography data with ground truth fiber labels. Then, the method is evaluated on a test dataset of 597 diffusion MRI scans from six independently acquired populations across genders, the lifespan (1 day - 82 years), and different health conditions (healthy control, neuropsychiatric disorders, and brain tumor patients). We perform comparisons with two state-of-the-art tract segmentation methods. Experimental results show that our method obtains a highly consistent tract segmentation result, where on average over 99% of the fiber tracts are successfully identified across all subjects under study, most importantly, including neonates and patients with space-occupying brain tumors. We also demonstrate good generalization of the method to tractography data from multiple different fiber tracking methods. The proposed method leverages deep learning techniques and provides a fast and efficient tool for brain white matter segmentation in large diffusion MRI tractography datasets.
Collapse
Affiliation(s)
- Fan Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | - Nico Hoffmann
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
41
|
Brain connections derived from diffusion MRI tractography can be highly anatomically accurate-if we know where white matter pathways start, where they end, and where they do not go. Brain Struct Funct 2020; 225:2387-2402. [PMID: 32816112 DOI: 10.1007/s00429-020-02129-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false-positive and false-negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a worse-case scenario for bundle-segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle segmentation, where streamline filtering using inclusion and exclusion regions-of-interest is common. With this in mind, the aim of the current study is to investigate and quantify the upper bounds of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections.
Collapse
|
42
|
Schilling KG, Landman BA. AI in MRI: A case for grassroots deep learning. Magn Reson Imaging 2019; 64:1-3. [PMID: 31283972 PMCID: PMC8278255 DOI: 10.1016/j.mri.2019.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|