1
|
Zhang H, Zheng Y, Zhang M, Wang A, Song Y, Wang C, Yang G, Ma M, He M. Breast Cancer: Habitat imaging based on intravoxel incoherent motion for predicting pathologic complete response to neoadjuvant chemotherapy. Med Phys 2025; 52:3711-3722. [PMID: 40219583 DOI: 10.1002/mp.17813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Radiomics research based on whole tumors is limited by the unclear biological significance of radiomics features, which therefore lack clinical interpretability. PURPOSE We aimed to determine whether features extracted from subregions defined by habitat imaging, reflecting tumor heterogeneity, could identify breast cancer patients who will benefit from neoadjuvant chemotherapy (NAC), to optimize treatment. METHODS 143 women with stage II-III breast cancer were divided into a training set (100 patients, 36 with pathologic complete response [pCR]) and a test set (43 patients, 16 with pCR). Patients underwent 3-T magnetic resonance imaging (MRI) before NAC. With the pathological results as the gold standard, we used the training set to build models for predicting pCR based on whole-tumor radiomics (ModelWH), intravoxel incoherent motion (IVIM)-based habitat imaging (ModelHabitats), conventional MRI features (ModelCF), and immunohistochemical findings (ModelIHC). We also built the combined models ModelHabitats+CF and ModelHabitats+CF+IHC. In the test set, we compared the performance of the combined models with that of the invasive ModelIHC by using the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA). Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive value of the model. The DeLong test was used to compare diagnostic efficiency across different parameters. RESULTS In the prediction of pCR, ModelWH, ModelHabitats, ModelCF, ModelIHC, ModelHabitats+CF, ModelCF+IHC and ModelHabitats+CF+IHC achieved AUCs of 0.895, 0.757, 0.705, 0.807, 0.800, 0.856, and 0.891 respectively, in the training set and 0.549, 0.708, 0.700, 0.788, 0.745, 0.909, and 0.891 respectively, in the test set. The DeLong test revealed no significant difference between ModelIHC versus ModelHabitats+CF (p = 0.695) and ModelHabitats+CF+IHC versus ModelCF+IHC (p = 0.382) but showed a significant difference between ModelIHC and ModelHabitats+CF+IHC (p = 0.043). CONCLUSION The habitat model we established from first-order features combined with conventional MRI features and IHC findings accurately predicted pCR before NAC. This model can facilitate decision-making during individualized treatment for breast cancer.
Collapse
Affiliation(s)
- Hui Zhang
- Shengli Clinical College of Fujian Medical University & Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Yunyan Zheng
- Shengli Clinical College of Fujian Medical University & Department of Radiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Mingzhe Zhang
- Shengli Clinical College of Fujian Medical University & Department of Radiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Ailing Wang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd., Shanghai, China
| | - Chenglong Wang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Mingping Ma
- Shengli Clinical College of Fujian Medical University & Department of Radiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Muzhen He
- Shengli Clinical College of Fujian Medical University & Department of Radiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
2
|
He L, Li F, Qin Y, Li Y, Hu Q, Liu Z, Zhang Y, Ai T. Enhanced preoperative prediction of breast lesion pathology, prognostic biomarkers, and molecular subtypes using multiple models diffusion-weighted MR imaging. Sci Rep 2025; 15:4704. [PMID: 39922806 PMCID: PMC11807203 DOI: 10.1038/s41598-024-81713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/28/2024] [Indexed: 02/10/2025] Open
Abstract
This study aims to comprehensively evaluate the clinical utility of five diffusion models, including conventional mono-exponential (Mono), intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), stretched exponential (SEM), and continuous-time random-walk (CTRW), for preoperatively predicting of breast lesion pathology, prognostic biomarkers, and molecular subtypes. We retrospectively analyzed 132 patients with pathologically verified breast lesions (41 benign and 91 malignant) who underwent a full protocol preoperative breast MRI protocol, including a diffusion-weighted imaging (DWI) sequence with nine b values (0 to 2000 s/mm2) on a 3.0T MR scanner. The diffusion parameters from each model-Mono (ADC), IVIM (D, D*, f), DKI (MD, MK), SEM (DDC, α) and CTRW (Dm, α, β)-were quantitatively calculated and compared between benign and malignant breast lesions, as well as across different prognostic biomarker statuses in breast cancer, using Mann-Whitney U-tests. For molecular subtypes comparisons, we employed the Kruskal-Wallis test followed by Bonferroni. All parameters, except IVIM-D*, significantly differentiated benign from malignant lesions. Notably, IVIM-D and DKI-MK values were significantly different between estrogen receptor (ER)-positive and ER-negative tumors. Progesterone receptor (PR)-positive cancers exhibited lower Mono-ADC, IVIM-D, DKI-MD, SEM-DDC, CTRW-Dm, and CTRW-α values, alongside higher DKI-MK value compared to PR-negative cancers (p < 0.05). Significant differences in IVIM-D, IVIM-D*, and DKI-MK values were observed between human epidermal growth factor receptor 2 (HER2)-negative and HER2-positive tumors. Furthermore, higher SEM-α and CTRW-β values, along with lower DKI-MD and SEM-DDC values, were noted in the high Ki-67 expression group compared to the low Ki-67 group (p < 0.05). All five diffusion models proved valuable for breast cancer diagnosis, with the CTRW model exhibiting the highest diagnostic performance, although the difference was not statistically significant. The diffusion parameters derived from these models can effectively assist in distinguishing prognostic factors and molecular subtypes of breast cancer.
Collapse
Affiliation(s)
- Litong He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Feng Li
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Yanjin Qin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58th the Second Zhongshan Road, Guangzhou, 510080, China
| | - Yuling Li
- Department of General Practice, Joint Service of Chinese People's Liberation Army, No. 923 Hospital, Nanning, 530021, Guangxi, China
| | - Qilan Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Zhiqiang Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Yunfei Zhang
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| |
Collapse
|
3
|
Yang D, Ren Y, Wang C. Histogram analysis of intravoxel incoherent motion imaging: Correlation with molecular prognostic factors and combined subtypes of breast cancer. Magn Reson Imaging 2024; 111:210-216. [PMID: 38777242 DOI: 10.1016/j.mri.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE To look for links between diffusion and IVIM parameters and different molecular subtypes and prognostic factors through histogram analysis. MATERIALS AND METHODS A total of 139 patients with breast cancer who had pre-operative MRI examinations were enrolled in this retrospective study. Histograms of the diffusion and IVIM parameters were analyzed for the whole tumor, and an association was investigated between the parameters and the different molecular prognostic factors and subtypes using the nonparametric test, Spearman's rank correlation, and receiver operating characteristic (ROC) curve. RESULTS The histogram metrics of the diffusion and IVIM parameters were significantly different for molecular prognostic factors such as human epidermal receptor factor-2 (HER2), progesterone receptor, estrogen receptor, and ki-67. All histogram metrics displayed a poor correlation with all groups (r = -0.28-0.29). There were significant differences in the histogram metrics for the Luminal B-HER2 (-) vs. HER2-positive (non-luminal) subtypes in the mean and 10th percentile D, with the area under the curves (AUCs) of 0.742 and 0.700, respectively, and for the Luminal A and HER2-positive (non-luminal) subtypes in the 90th percentile and entropy of D*, with AUCs of 0.769 and 0.727, respectively. CONCLUSION The histogram metrics of IVIM parameters exhibited links with breast cancer prognosis factors and combined subtypes.
Collapse
Affiliation(s)
- Dan Yang
- Department of Radiology, Xinyang Central Hospital, No. 01 Xinyang Siyi Road, Xinyang 464000, Henan, China.
| | - Yike Ren
- Department of Radiology, Xinyang Central Hospital, No. 01 Xinyang Siyi Road, Xinyang 464000, Henan, China
| | - Chunhong Wang
- Department of Radiology, Xinyang Central Hospital, No. 01 Xinyang Siyi Road, Xinyang 464000, Henan, China
| |
Collapse
|
4
|
Iima M, Kataoka M, Honda M, Le Bihan D. Diffusion-Weighted MRI for the Assessment of Molecular Prognostic Biomarkers in Breast Cancer. Korean J Radiol 2024; 25:623-633. [PMID: 38942456 PMCID: PMC11214919 DOI: 10.3348/kjr.2023.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 06/30/2024] Open
Abstract
This study systematically reviewed the role of diffusion-weighted imaging (DWI) in the assessment of molecular prognostic biomarkers in breast cancer, focusing on the correlation of apparent diffusion coefficient (ADC) with hormone receptor status and prognostic biomarkers. Our meta-analysis includes data from 52 studies examining ADC values in relation to estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), and Ki-67 status. The results indicated significant differences in ADC values among different receptor statuses, with ER-positive, PgR-positive, HER2-negative, and Ki-67-positive tumors having lower ADC values compared to their negative counterparts. This study also highlights the potential of advanced DWI techniques such as intravoxel incoherent motion and non-Gaussian DWI to provide additional insights beyond ADC. Despite these promising findings, the high heterogeneity among the studies underscores the need for standardized DWI protocols to improve their clinical utility in breast cancer management.
Collapse
Affiliation(s)
- Mami Iima
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Maya Honda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Diagnostic Radiology, Kansai Electric Power Hospital, Osaka, Japan
| | - Denis Le Bihan
- NeuroSpin, Joliot Institute, Department of Fundamental Research, Commissariat à l'Energie Atomique (CEA)-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Cheung SM, Wu WS, Senn N, Sharma R, McGoldrick T, Gagliardi T, Husain E, Masannat Y, He J. Towards detection of early response in neoadjuvant chemotherapy of breast cancer using Bayesian intravoxel incoherent motion. Front Oncol 2023; 13:1277556. [PMID: 38125950 PMCID: PMC10731248 DOI: 10.3389/fonc.2023.1277556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The early identification of good responders to neoadjuvant chemotherapy (NACT) holds a significant potential in the optimal treatment of breast cancer. A recent Bayesian approach has been postulated to improve the accuracy of the intravoxel incoherent motion (IVIM) model for clinical translation. This study examined the prediction and early sensitivity of Bayesian IVIM to NACT response. Materials and methods Seventeen female patients with breast cancer were scanned at baseline and 16 patients were scanned after Cycle 1. Tissue diffusion and perfusion from Bayesian IVIM were calculated at baseline with percentage change at Cycle 1 computed with reference to baseline. Cellular proliferative activity marker Ki-67 was obtained semi-quantitatively with percentage change at excision computed with reference to core biopsy. Results The perfusion fraction showed a significant difference (p = 0.042) in percentage change between responder groups at Cycle 1, with a decrease in good responders [-7.98% (-19.47-1.73), n = 7] and an increase in poor responders [10.04% (5.09-28.93), n = 9]. There was a significant correlation between percentage change in perfusion fraction and percentage change in Ki-67 (p = 0.042). Tissue diffusion and pseudodiffusion showed no significant difference in percentage change between groups at Cycle 1, nor was there a significant correlation against percentage change in Ki-67. Perfusion fraction, tissue diffusion, and pseudodiffusion showed no significant difference between groups at baseline, nor was there a significant correlation against Ki-67 from core biopsy. Conclusion The alteration in tumour perfusion fraction from the Bayesian IVIM model, in association with cellular proliferation, showed early sensitivity to good responders in NACT. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT03501394, identifier NCT03501394.
Collapse
Affiliation(s)
- Sai Man Cheung
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Wing-Shan Wu
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Nicholas Senn
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Ravi Sharma
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Trevor McGoldrick
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Tanja Gagliardi
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
- Department of Radiology, Royal Marsden Hospital, London, United Kingdom
| | - Ehab Husain
- Department of Pathology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Yazan Masannat
- Breast Unit, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Jiabao He
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Jing M, Xi H, Zhang M, Zhu H, Han T, Zhang Y, Deng L, Zhang B, Zhou J. Development of a nomogram based on pericoronary adipose tissue histogram parameters to differentially diagnose acute coronary syndrome. Clin Imaging 2023; 102:78-85. [PMID: 37639971 DOI: 10.1016/j.clinimag.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE To develop a nomogram based on pericoronary adipose tissue (PCAT) histogram parameters to identify patients with acute coronary syndrome (ACS). MATERIALS AND METHODS This study retrospectively enrolled 114 and 383 eligible patients with ACS and stable coronary artery disease (CAD), respectively, and divided them into training and testing cohorts in a 7:3 ratio. A blinded radiologist obtained PCAT histogram parameters from the right coronary artery's proximal segment using fully automated software and compared clinical characteristics and PCAT histogram parameters between the two patient groups. The binary logistic regression included significant parameters (P < 0.05), and a nomogram was constructed. RESULTS In both the training and testing cohorts, the mean, 10th percentile, 90th percentile, median, and minimum values of PCAT were higher, and the interquartile range, skewness, and variance values of PCAT were lower in patients with ACS than in those with stable CAD (P ≤ 0.001). The mean (OR = 4.007), median (OR = 0.576), minimum (OR = 0.893), skewness (OR = 85,158.806) and variance (OR = 1.013) values of PCAT were independent risk factors for ACS and stable CAD in the training cohort. The nomogram was constructed using the five variables mentioned above with area under the curve values of 0.903 and 0.897, respectively, while the calibration and decision curves showed the nomogram's good clinical efficacy for the training and testing cohorts. CONCLUSIONS The constructed nomogram had good discrimination and accuracy and can be a noninvasive tool to intuitively and individually distinguish between ACS and stable CAD.
Collapse
Affiliation(s)
- Mengyuan Jing
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Huaze Xi
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Meng Zhang
- Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Zhu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Tao Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Yuting Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Liangna Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| |
Collapse
|
7
|
Qin Y, Tang C, Hu Q, Yi J, Yin T, Ai T. Assessment of Prognostic Factors and Molecular Subtypes of Breast Cancer With a Continuous-Time Random-Walk MR Diffusion Model: Using Whole Tumor Histogram Analysis. J Magn Reson Imaging 2023; 58:93-105. [PMID: 36251468 DOI: 10.1002/jmri.28474] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The continuous-time random-walk (CTRW) diffusion model to evaluate breast cancer prognosis is rarely reported. PURPOSE To investigate the correlations between apparent diffusion coefficient (ADC) and CTRW-specific parameters with prognostic factors and molecular subtypes of breast cancer. STUDY TYPE Retrospective. POPULATION One hundred fifty-seven women (median age, 50 years; range, 26-81 years) with histopathology-confirmed breast cancer. FIELD STRENGTH/SEQUENCE Simultaneous multi-slice readout-segmented echo-planar imaging at 3.0T. ASSESSMENT The histogram metrics of ADC, anomalous diffusion coefficient (D), temporal diffusion heterogeneity (α), and spatial diffusion heterogeneity (β) were calculated for whole-tumor volume. Associations between histogram metrics and prognostic factors (estrogen receptor [ER], progesterone receptor [PR], human epidermal growth factor receptor 2 [HER2], and Ki-67 proliferation index), axillary lymph node metastasis (ALNM), and tumor grade were assessed. The performance of histogram metrics, both alone and in combination, for differentiating molecular subtypes (HER2-positive, Luminal or triple negative) was also assessed. STATISTICAL TESTS Comparisons were made using Mann-Whitney test between different prognostic factor statuses and molecular subtypes. Receiver operating characteristic curve analysis was used to assess the performance of mean and median histogram metrics in differentiating the molecular subtypes. A P value <0.05 was considered statistically significant. RESULTS The histogram metrics of ADC, D, and α differed significantly between ER-positive and ER-negative status, and between PR-positive and PR-negative status. The histogram metrics of ADC, D, α, and β were also significantly different between the HER2-positive and HER2-negative subgroups, and between ALNM-positive and ALNM-negative subgroups. The histogram metrics of α and β significantly differed between high and low Ki-67 proliferation subgroups, and between histological grade subgroups. The combination of αmean and βmean achieved the highest performance (AUC = 0.702) to discriminate the Luminal and HER2-positive subtypes. DATA CONCLUSION Whole-tumor histogram analysis of the CTRW model has potential to provide additional information on the prognosis and intrinsic subtyping classification of breast cancer. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yanjin Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caili Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilan Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingru Yi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yin
- MR Collaborations, Siemens Healthineers Ltd., Chengdu, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Qin Y, Wu F, Hu Q, He L, Huo M, Tang C, Yi J, Zhang H, Yin T, Ai T. Histogram analysis of multi-model high-resolution diffusion-weighted MRI in breast cancer: correlations with molecular prognostic factors and subtypes. Front Oncol 2023; 13:1139189. [PMID: 37188173 PMCID: PMC10175778 DOI: 10.3389/fonc.2023.1139189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Objective To investigate the correlations between quantitative diffusion parameters and prognostic factors and molecular subtypes of breast cancer, based on a single fast high-resolution diffusion-weighted imaging (DWI) sequence with mono-exponential (Mono), intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI) models. Materials and Methods A total of 143 patients with histopathologically verified breast cancer were included in this retrospective study. The multi-model DWI-derived parameters were quantitatively measured, including Mono-ADC, IVIM-D, IVIM-D*, IVIM-f, DKI-Dapp, and DKI-Kapp. In addition, the morphologic characteristics of the lesions (shape, margin, and internal signal characteristics) were visually assessed on DWI images. Next, Kolmogorov-Smirnov test, Mann-Whitney U test, Spearman's rank correlation, logistic regression, receiver operating characteristic (ROC) curve, and Chi-squared test were utilized for statistical evaluations. Results The histogram metrics of Mono-ADC, IVIM-D, DKI-Dapp, and DKI-Kapp were significantly different between estrogen receptor (ER)-positive vs. ER-negative groups, progesterone receptor (PR)-positive vs. PR-negative groups, Luminal vs. non-Luminal subtypes, and human epidermal receptor factor-2 (HER2)-positive vs. non-HER2-positive subtypes. The histogram metrics of Mono-ADC, DKI-Dapp, and DKI-Kapp were also significantly different between triple-negative (TN) vs. non-TN subtypes. The ROC analysis revealed that the area under the curve considerably improved when the three diffusion models were combined compared with every single model, except for distinguishing lymph node metastasis (LNM) status. For the morphologic characteristics of the tumor, the margin showed substantial differences between ER-positive and ER-negative groups. Conclusions Quantitative multi-model analysis of DWI showed improved diagnostic performance for determining the prognostic factors and molecular subtypes of breast lesions. The morphologic characteristics obtained from high-resolution DWI can be identifying ER statuses of breast cancer.
Collapse
Affiliation(s)
- Yanjin Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wu
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Qilan Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Litong He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Huo
- Department of Radiology, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
| | - Caili Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingru Yi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiting Zhang
- Magnetic Resonance (MR) Scientific Marketing, Siemens Healthineers Ltd., Wuhan, China
| | - Ting Yin
- Magnetic Resonance (MR) Collaborations, Siemens Healthineers Ltd., Chengdu, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Tao Ai,
| |
Collapse
|
9
|
Qin Y, Tang C, Hu Q, Zhang Y, Yi J, Dai Y, Ai T. Quantitative Assessment of Restriction Spectrum MR Imaging for the Diagnosis of Breast Cancer and Association With Prognostic Factors. J Magn Reson Imaging 2022; 57:1832-1841. [PMID: 36205354 DOI: 10.1002/jmri.28468] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Restriction spectrum imaging (RSI) is an advanced quantitative diffusion-weighted magnetic resonance imaging (DWI) technique to assess breast cancer. PURPOSE To investigate the ability of RSI to differentiate the benign and malignant breast lesions and the association with prognostic factors of breast cancer. STUDY TYPE Retrospective. POPULATION Seventy women (mean age, 49.6 ± 12.3 years) with 56 malignant and 19 benign breast lesions. FIELD STRENGTH/SEQUENCE 3-T; RSI-based DWI sequence with echo-planar imaging technique. ASSESSMENT The apparent diffusion coefficient (ADC) and RSI parameters (restricted diffusion f1 , hindered diffusion f2 , free diffusion f3 , and signal fractions f1 f2 ) were calculated by two readers for the whole lesion volume and compared between the benign and malignant groups and the subgroups with different statuses of prognostic factors in breast cancer. STATISTICAL TESTS Mann-Whitney U test or Student's t-test was applied to compare the quantitative parameters between the different groups. Intraclass correlation coefficient (ICC) was used to assess readers' reproducibility. Binary logistic regression was used to combine parameters. Area under the curve (AUC) of receiver operating characteristic curve analysis was used to evaluate the diagnostic performance of parameters to distinguish benign from malignant breast lesions. A P-value <0.05 was considered statistically significant. RESULTS Malignant breast lesions showed significantly lower ADC and f3 values, and significantly higher f1 and f1 f2 values than the benign lesions, with AUC of 0.951, 0.877, 0.868, and 0.860, respectively. When RSI-derived parameters and ADC were combined, the diagnostic performance was superior to either single parameter (AUC = 0.973). The f3 value was significantly differed between estrogen receptor (ER)-positive and ER-negative tumors. The ADC, f1 , f3 , and f1 f2 values were significantly different progesterone receptor (PR)-positive and PR-negative status. DATA CONCLUSION The RSI-derived parameters (f1 , f3 , and f1 f2 ) may facilitate the differential diagnosis between benign and malignant breast lesions. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yanjin Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caili Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilan Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Zhang
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jingru Yi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongming Dai
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|