1
|
Xia C, Alliey-Rodriguez N, Tamminga CA, Keshavan MS, Pearlson GD, Keedy SK, Clementz B, McDowell JE, Parker D, Lencer R, Hill SK, Bishop JR, Ivleva EI, Wen C, Dai R, Chen C, Liu C, Gershon ES. Genetic analysis of psychosis Biotypes: shared Ancestry-adjusted polygenic risk and unique genomic associations. Mol Psychiatry 2024:10.1038/s41380-024-02876-z. [PMID: 39709506 DOI: 10.1038/s41380-024-02876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
The Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut across DSM diagnoses of schizophrenia, schizoaffective disorder, and bipolar disorder with psychosis. Two recently developed post hoc ancestry adjustment methods of Polygenic Risk Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of multi-ancestry samples. Applied to schizophrenia PRS, we found the Khera AAPRS method to show superior portability and comparable prediction accuracy as compared with the Ge method. The three Biotypes of psychosis disorders had similar AAPRSs across ancestries. In genomic analysis of Biotypes, 12 genes, and isoforms showed significant genomic associations with specific Biotypes in a Transcriptome-Wide Association Study (TWAS) of genetically regulated expression (GReX) in the adult brain and fetal brain. TWAS inflation was addressed by the inclusion of genotype principal components in the association analyses. Seven of these 12 genes/isoforms satisfied Mendelian Randomization (MR) criteria for putative causality, including four genes TMEM140, ARTN, C1orf115, CYREN, and three transcripts ENSG00000272941, ENSG00000257176, ENSG00000287733. These genes are enriched in the biological pathways of Rearranged during Transfection (RET) signaling, Neural Cell Adhesion Molecule 1 (NCAM1) interactions, and NCAM signaling for neurite out-growth. The specific associations with Biotypes suggest that pharmacological clinical trials and biological investigations might benefit from analyzing Biotypes separately.
Collapse
Affiliation(s)
- Cuihua Xia
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Institute of Living, Hartford Healthcare Corp, Hartford, CT, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Brett Clementz
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - Jennifer E McDowell
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - David Parker
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebekka Lencer
- Institute for Translational Psychiatry, Münster University, Münster, Germany
- Department of Psychiatry and Psychotherapy, Lübeck University, Lübeck, Germany
| | - S Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Elena I Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Cindy Wen
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chunyu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Xia C, Alliey-Rodriguez N, Tamminga CA, Keshavan MS, Pearlson GD, Keedy SK, Clementz B, McDowell JE, Parker D, Lencer R, Hill SK, Bishop JR, Ivleva EI, Wen C, Dai R, Chen C, Liu C, Gershon ES. Genetic Analysis of Psychosis Biotypes: Shared Ancestry-Adjusted Polygenic Risk and Unique Genomic Associations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.05.24318404. [PMID: 39677452 PMCID: PMC11643284 DOI: 10.1101/2024.12.05.24318404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut across DSM diagnoses of schizophrenia, schizoaffective disorder and bipolar disorder with psychosis. Two recently developed post hoc ancestry adjustment methods of Polygenic Risk Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of multi-ancestry samples. Applied to schizophrenia PRS, we found the Khera AAPRS method to show superior portability and comparable prediction accuracy as compared with the Ge method. The three Biotypes of psychosis disorders had similar AAPRSs across ancestries. In genomic analysis of Biotypes, 12 genes and isoforms showed significant genomic associations with specific Biotypes in Transcriptome-Wide Association Study (TWAS) of genetically regulated expression (GReX) in adult brain and fetal brain. TWAS inflation was addressed by inclusion of genotype principal components in the association analyses. Seven of these 12 genes/isoforms satisfied Mendelian Randomization (MR) criteria for putative causality, including four genes TMEM140, ARTN, C1orf115, CYREN, and three transcripts ENSG00000272941, ENSG00000257176, ENSG00000287733. These genes are enriched in the biological pathways of Rearranged during Transfection (RET) signaling, Neural Cell Adhesion Molecule 1 (NCAM1) interactions, and NCAM signaling for neurite out-growth. The specific associations with Biotypes suggest that pharmacological clinical trials and biological investigations might benefit from analyzing Biotypes separately.
Collapse
Affiliation(s)
- Cuihua Xia
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, China
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley, Harlingen, TX 78550, USA
| | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Godfrey D. Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Institute of Living, Hartford Healthcare Corp, Hartford, CT 06106, USA
| | - Sarah K. Keedy
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Brett Clementz
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jennifer E. McDowell
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA 30602, USA
| | - David Parker
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rebekka Lencer
- Institute for Translational Psychiatry, Münster University, Münster 48149, Germany
- Department of Psychiatry and Psychotherapy, Lübeck University, Lübeck 23538, Germany
| | - S. Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL 60064, USA
| | - Jeffrey R. Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elena I. Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cindy Wen
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, China
- Furong Laboratory, Changsha, Hunan 410000, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan 410000, China
| | - Chunyu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Elliot S. Gershon
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Scotton E, Ziani PR, Wilges RLB, da Rosa Correa PH, Giordano LA, Goularte JF, Schons T, Almeida FB, Stein DJ, de Castro JM, de Bastiani MA, de Oliveira Soares EG, Paixão DB, da Silva CDG, Schneider PH, Colombo R, Rosa AR. Molecular signature underlying (R)-ketamine rapid antidepressant response on anhedonic-like behavior induced by sustained exposure to stress. Pharmacol Biochem Behav 2024; 245:173882. [PMID: 39488299 DOI: 10.1016/j.pbb.2024.173882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 11/04/2024]
Abstract
Anhedonia induced by sustained stress exposure is a hallmark symptom of major depressive disorder (MDD) and in rodents, it can be accessed through the sucrose preference test (SPT). (R)-ketamine is a fast-acting antidepressant with less detrimental side effects and abuse liability compared to racemic ketamine. The present study combined high-throughput proteomics and network analysis to identify molecular mechanisms involved in chronic variable stress (CVS)-induced anhedonia and promising targets underlying (R)-ketamine rapid antidepressant response. Male Wistar rats were subjected to CVS for five weeks. Based on the SPT, animals were clustered into resilient or anhedonic-like (ANH) groups. ANH rats received a single dose of saline or (R)-ketamine (20 mg/kg, i.p.), which was proceeded by treatment response evaluation. After prefrontal cortex collection, proteomic analysis was performed to uncover the differentially expressed proteins (DEPs) related to both anhedonic-like behavior and pharmacological response. The behavioral assessment showed that the ANH animals had a significant decrease in SPT, and that (R)-ketamine responders showed a reversal of anhedonic-like behavior. On a molecular level, anhedonia-like behavior was associated with the downregulation of Neuronal Pentraxin Receptor (Nptxr) and Galectin-1 (Gal-1). These data reinforce a disruption in the inflammatory response, neurotransmitter receptor activity, and glutamatergic synapses in chronic stress-induced anhedonia. (R)-ketamine response-associated DEPs included novel potential targets involved in the modulation of oxidative stress, energetic metabolism, synaptogenesis, dendritic arborization, neuroinflammation, gene expression, and telomere length, converging to biological themes extensively documented in MDD physiopathology. Our data provide valuable insights into the molecular mechanisms underlying the response to (R)-ketamine and highlight these pathways as potential therapeutic targets for anhedonia. By addressing proteins involved in oxidative stress, energy metabolism, synaptogenesis, dendritic arborization, neuroinflammation, gene expression, and telomere length, we can target multiple key factors involved in the pathophysiology of MDD. Modulating these proteins could open avenues for novel therapeutic strategies and deepen our understanding of anhedonia, offering hope for improved outcomes in individuals facing this challenging condition. However, additional studies will be essential to validate these findings and further explore their therapeutic implications.
Collapse
Affiliation(s)
- Ellen Scotton
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Paola Rampelotto Ziani
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Renata Luiza Boff Wilges
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Pedro Henrique da Rosa Correa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Lucas Azambuja Giordano
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jéferson Ferraz Goularte
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Tainá Schons
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Felipe Borges Almeida
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Dirson João Stein
- Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Josimar Macedo de Castro
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; School of Medicine and Post-Graduate Program in Medical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Marco Antônio de Bastiani
- Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Douglas Bernardo Paixão
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Caren Daniele Galeano da Silva
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paulo Henrique Schneider
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafael Colombo
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil..
| | - Adriane R Rosa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Sharma S, Gilberto VS, Rask J, Chatterjee A, Nagpal P. Inflammasome-Inhibiting Nanoligomers Are Neuroprotective against Space-Induced Pathology in Healthy and Diseased Three-Dimensional Human Motor and Prefrontal Cortex Brain Organoids. ACS Chem Neurosci 2024; 15:3009-3021. [PMID: 39084211 DOI: 10.1021/acschemneuro.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
The microgravity and space environment has been linked to deficits in neuromuscular and cognitive capabilities, hypothesized to occur due to accelerated aging and neurodegeneration in space. While the specific mechanisms are still being investigated, spaceflight-associated neuropathology is an important health risk to astronauts and space tourists and is being actively investigated for the development of appropriate countermeasures. However, such space-induced neuropathology offers an opportunity for accelerated screening of therapeutic targets and lead molecules for treating neurodegenerative diseases. Here, we show a proof-of-concept high-throughput target screening (on Earth), target validation, and mitigation of microgravity-induced neuropathology using our Nanoligomer platform, onboard the 43-day SpaceX CRS-29 mission to the International Space Station. First, comparing 3D healthy and diseased prefrontal cortex (PFC, for cognition) and motor neuron (MN, for neuromuscular function) organoids, we assessed space-induced pathology using biomarkers relevant to Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Both healthy and diseased PFC and MN organoids showed significantly enhanced neurodegeneration in space, as measured through relevant disease biomarkers, when compared to their respective Earth controls. Second, we tested the top two lead molecules, NI112 that targeted NF-κB and NI113 that targeted IL-6. We observed that these Nanoligomers significantly mitigate the AD, FTD, and ALS relevant biomarkers like amyloid beta-42 (Aβ42), phosphorylated tau (pTau), Kallikrein (KLK-6), Tar DNA-binding protein 43 (TDP-43), and others. Moreover, the 43-day Nanoligomer treatment of these brain organoids did not appear to cause any observable toxicity or safety issues in the target organoid tissue, suggesting good tolerability for these molecules in the brain at physiologically relevant doses. Together, these results show significant potential for both the development and translation of NI112 and NI113 molecules as potential neuroprotective countermeasures for safer space travel and demonstrate the usefulness of the space environment for rapid, high-throughput screening of targets and lead molecules for clinical translation. We assert that the use of microgravity in drug development and screening may ultimately benefit millions of patients suffering from debilitating neurodegenerative diseases on Earth.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Vincenzo S Gilberto
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Jon Rask
- NASA Ames Research Center, Moffett Field, California, California 94035, United States
| | - Anushree Chatterjee
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| |
Collapse
|
5
|
Radenkovic S, Budhraja R, Klein-Gunnewiek T, King AT, Bhatia TN, Ligezka AN, Driesen K, Shah R, Ghesquière B, Pandey A, Kasri NN, Sloan SA, Morava E, Kozicz T. Neural and metabolic dysregulation in PMM2-deficient human in vitro neural models. Cell Rep 2024; 43:113883. [PMID: 38430517 DOI: 10.1016/j.celrep.2024.113883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 03/04/2024] Open
Abstract
Phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG) is a rare inborn error of metabolism caused by deficiency of the PMM2 enzyme, which leads to impaired protein glycosylation. While the disorder presents with primarily neurological symptoms, there is limited knowledge about the specific brain-related changes caused by PMM2 deficiency. Here, we demonstrate aberrant neural activity in 2D neuronal networks from PMM2-CDG individuals. Utilizing multi-omics datasets from 3D human cortical organoids (hCOs) derived from PMM2-CDG individuals, we identify widespread decreases in protein glycosylation, highlighting impaired glycosylation as a key pathological feature of PMM2-CDG, as well as impaired mitochondrial structure and abnormal glucose metabolism in PMM2-deficient hCOs, indicating disturbances in energy metabolism. Correlation between PMM2 enzymatic activity in hCOs and symptom severity suggests that the level of PMM2 enzyme function directly influences neurological manifestations. These findings enhance our understanding of specific brain-related perturbations associated with PMM2-CDG, offering insights into the underlying mechanisms and potential directions for therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Teun Klein-Gunnewiek
- Department of Human Genetics, Radboud University Medical Centre, 6525 XZ Nijmegen, the Netherlands
| | - Alexia Tyler King
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Tarun N Bhatia
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Anna N Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Karen Driesen
- Metabolomics Expertise Center, VIB-KU Leuven, 3000 Leuven, Belgium
| | - Rameen Shah
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB-KU Leuven, 3000 Leuven, Belgium; Laboratory of Applied Mass Spectrometry, KU Leuven, 3000 Leuven, Belgium
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Centre, 6525 XZ Nijmegen, the Netherlands
| | - Steven A Sloan
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biophysics, University of Pécs Medical School, 7624 Pécs, Hungary; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Department of Anatomy, University of Pécs Medical School, 7624 Pécs, Hungary; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| |
Collapse
|
6
|
Collu R, Giunti E, Daley S, Chen M, Xia W. Angiotensin-converting enzyme inhibitors and statins therapies-induced changes in omics profiles in humans and transgenic tau mice. Biomed Pharmacother 2023; 168:115756. [PMID: 37865996 DOI: 10.1016/j.biopha.2023.115756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Hypertension and hyperlipidemia are considered risk factors for Alzheimer's disease (AD) and other related dementias. Clinically approved medications typically prescribed to manage these conditions have shown an association with reduced risk of developing AD and could be explored as potential repurposed therapeutics. OBJECTIVE We aimed to explore the effects of the pharmacological treatment with angiotensin-converting enzyme inhibitors (ACEI) and statins (STAT) on AD-related neuropathology and the potential benefits of their concurrent use. METHODS We investigated the effect of ACEI, STAT or combination of both by exploring the transcriptomic, proteomic and tau pathology profiles after treatment in both human patients and in P301S transgenic mice (PS19) modeling tauopathies and AD. We performed bioinformatic analysis of enriched pathways after treatment. RESULTS Proteomics and transcriptomics analysis revealed proteins and genes whose expression is significantly changed in subjects receiving treatment with ACEI, STAT or combined drugs. In mice, treatment with the ACEI lisinopril significantly decreased brain levels of total tau (Tau) and phosphorylated tau (pTau)-181, while the STAT atorvastatin significantly reduced the levels of pTau-396. The combined therapy with lisinopril and atorvastatin significantly decreased Tau. Moreover, brain levels of lisinopril were negatively correlated with Tau. Among the others, CD200, ADAM22, BCAN and NCAM1 were significantly affected by treatments in both human subjects and transgenic mice. CONCLUSIONS Our findings provide significant information that may guide future investigation of the potential use of ACEI, STAT, or the combination of the two drug classes as repurposed therapies or preventive strategies for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Roberto Collu
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States; Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Elisa Giunti
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States; Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Sarah Daley
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States; Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Mei Chen
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States; Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States; Department of Biological Sciences, University of Massachusetts Kennedy College of Science, Lowell, MA, United States.
| |
Collapse
|
7
|
Jacques CED, Guerreiro G, Lopes FF, de Souza CFM, Giugliani R, Vargas CR. Alterations of Plasmatic Biomarkers of Neurodegeneration in Mucopolysaccharidosis Type II Patients Under Enzyme Replacement Therapy. Cell Biochem Biophys 2023; 81:533-542. [PMID: 37470932 DOI: 10.1007/s12013-023-01149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
Mucopolysaccharidosis type II (MPS II) is a disorder caused by a deficient activity of iduronate-2-sulfatase, a lysosomal enzyme responsible for degrading glycosaminoglycans (GAGs). The abnormal storage of GAGs within lysosomes disrupts cellular homeostasis and leads to a severe symptomatology. Patients present neuropsychiatric impairment characterized by mental retardation and impaired cognition. The aim of this study was to quantify four neurodegeneration biomarkers in plasma: brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF-AA), neural cell adhesion molecule (NCAM) and cathepsin-D, as well as to identify possible correlations with urinary GAGs in seven patients undergoing treatment with ERT (Elaprase® 0.5 mg/kg of body weight). Patients with both severe and attenuated forms of MPS II showed signs of neurodegeneration in neuroimaging exams. Patients have a decrease in BDNF and PDGF-AA concentrations, and an increase in NCAM level compared to controls. No alterations in cathepsin-D concentration were seen. GAGs levels were higher in patients than in controls, but no significant correlations between GAGs and biomarkers were observed. These results evidence that patients have neurodegeneration and that monitoring these biomarkers might be useful for assessing this process. To this date, this is the first work to analyze these plasmatic markers of neurodegeneration in patients.
Collapse
Affiliation(s)
- Carlos Eduardo Diaz Jacques
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 90035-003, Brazil.
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90050-903, Brazil.
| | - Gilian Guerreiro
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90050-903, Brazil
- Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Franciele Fatima Lopes
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90050-903, Brazil
| | | | - Roberto Giugliani
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90050-903, Brazil
- Departamento de Genética, Instituto de Biociências, UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, RS, CEP 91501-970, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 90035-003, Brazil.
- Serviço de Genética Médica, HCPA, R. Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90050-903, Brazil.
- Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil.
| |
Collapse
|
8
|
Hammerschmidt TG, Encarnação M, Lamberty Faverzani J, de Fátima Lopes F, Poswar de Oliveira F, Fischinger Moura de Sousa C, Ribeiro I, Alves S, Giugliani R, Regla Vargas C. Molecular profile and peripheral markers of neurodegeneration in patients with Niemann-Pick type C: Decrease in Plasminogen Activator Inhibitor type 1 and Platelet-Derived Growth Factor type AA. Arch Biochem Biophys 2023; 735:109510. [PMID: 36608914 DOI: 10.1016/j.abb.2023.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Niemann-Pick type C1 (NPC1) is a fatal inherited disease, caused by pathogenic variants in NPC1 gene, which leads to intracellular accumulation of non-esterified cholesterol and glycosphingolipids. This accumulation leads to a wide range of clinical manifestations, including neurological and cognitive impairment as well as psychiatric disorders. The pathophysiology of cerebral damage involves loss of Purkinje cells, synaptic disturbance, and demyelination. Miglustat, a reversible inhibitor of glucosylceramide synthase, is an approved treatment for NPC1 and can slow neurological damage. The aim of this study was to assess the levels of peripheric neurodegeneration biomarkers of NPC1 patients, namely brain-derived neurotrophic factor (BDNF), platelet-derived growth factors (PDGF-AA and PDGF-AB/BB), neural cell adhesion molecule (NCAM), PAI-1 Total and Cathepsin-D, as well as the levels of cholestane-3β,5α,6β-triol (3β,5α,6β-triol), a biomarker for NPC1. Molecular analysis of the NPC1 patients under study was performed by next generation sequencing (NGS) in cultured fibroblasts. We observed that NPC1 patients treated with miglustat have a significant decrease in PAI-1 total and PDGF-AA concentrations, and no alteration in BDNF, NCAM, PDGF-AB/BB and Cathepsin D. We also found that NPC1 patients treated with miglustat have normalized levels of 3β,5α,6β-triol. The molecular analysis showed four described mutations, and for two patients was not possible to identify the second mutated allele. Our results indicate that the decrease of PAI-1 and PDGF-AA in NPC1 patients could be involved in the pathophysiology of this disease. This is the first work to analyze those plasmatic markers of neurodegenerative processes in NPC1 patients.
Collapse
Affiliation(s)
| | - Marisa Encarnação
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Jéssica Lamberty Faverzani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franciele de Fátima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, HCPA, Porto Alegre, Brazil
| | | | | | - Isaura Ribeiro
- Unidade de Bioquímica Genética, Centro de Genética Médica, Centro Hospitalar Universitário do Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP, Porto, Portugal; Espero Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sandra Alves
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | | | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, HCPA, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Munoz C, Jayanthi S, Ladenheim B, Cadet JL. Compulsive methamphetamine self-administration in the presence of adverse consequences is associated with increased hippocampal mRNA expression of cellular adhesion molecules. Front Mol Neurosci 2023; 15:1104657. [PMID: 36710935 PMCID: PMC9880890 DOI: 10.3389/fnmol.2022.1104657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Methamphetamine (METH) is a popular but harmful psychostimulant. METH use disorder (MUD) is characterized by compulsive and continued use despite adverse life consequences. METH users experience impairments in learning and memory functions that are thought to be secondary to METH-induced abnormalities in the hippocampus. Recent studies have reported that about 50% of METH users develop MUD, suggesting that there may be differential molecular effects of METH between the brains of individuals who met criteria for addiction and those who did not after being exposed to the drug. The present study aimed at identifying potential transcriptional differences between compulsive and non-compulsive METH self-administering male rats by measuring global gene expression changes in the hippocampus using RNA sequencing. Herein, we used a model of METH self-administration (SA) accompanied by contingent foot-shock punishment. This approach led to the separation of animals into shock-resistant rats (compulsive) that continued to take METH and shock-sensitive rats (non-compulsive) that suppressed their METH intake in the presence of punished METH taking. Rats were euthanized 2 h after the last METH SA plus foot-shock session. Their hippocampi were immediately removed, frozen, and used later for RNA sequencing and qRT-PCR analyses. RNA sequencing analyses revealed differential expression of mRNAs encoding cell adhesion molecules (CAMs) between the two rat phenotypes. qRT-PCR analyses showed significant higher levels of Cdh1, Glycam1, and Mpzl2 mRNAs in the compulsive rats in comparison to non-compulsive rats. The present results implicate altered CAM expression in the hippocampus in the behavioral manifestations of continuous compulsive METH taking in the presence of adverse consequences. Our results raise the novel possibility that altered CAM expression might play a role in compulsive METH taking and the cognitive impairments observed in MUD patients.
Collapse
|
10
|
Ubiquitous Neural Cell Adhesion Molecule (NCAM): Potential Mechanism and Valorisation in Cancer Pathophysiology, Drug Targeting and Molecular Transductions. Mol Neurobiol 2022; 59:5902-5924. [PMID: 35831555 DOI: 10.1007/s12035-022-02954-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Neural cell adhesion molecule, an integrated molecule of immunoglobulin protein superfamily involved in cell-cell adhesion, undergoes various structural modifications through numerous temporal-spatial regulations that generously alter their expressions on cell surfaces. These varied expression patterns are mostly envisioned in the morphogenesis and innervations of different human organs and systems. The considerable role of NCAM in neurite growth, brain development and etc. and its altered expression of NCAM in proliferating tumour cells and metastasis of various human melanomas clearly substantiate its appropriateness as a cell surface marker for diagnosis and potential target for several therapeutic moieties. This characteristic behaviour of NCAM is confined to its novel biochemistry, structural properties, signalling interactions and polysialylation. In particular, the characteristic expressions of NCAM are mainly attributed by its polysialylation, a post-translational modification that attaches polysialyl groups to the NCAM. The altered expression of NCAM on cell surface develops curiosity amidst pharmaceutical scientists, which drives them to understand its role of such expressions in various human melanomas and to elucidate the promising therapeutic strategies that are currently available to target NCAM appositely. Therefore, this review article is articulated with an insight on the altered expressions of NCAM, the clinical significances and the consequences of such atypical expression patterns in various human organs and systems.
Collapse
|
11
|
Washer SJ, Flynn R, Oguro‐Ando A, Hannon E, Burrage J, Jeffries A, Mill J, Dempster EL. Functional characterization of the schizophrenia associated gene AS3MT identifies a role in neuronal development. Am J Med Genet B Neuropsychiatr Genet 2022; 189:151-162. [PMID: 35719055 PMCID: PMC9546433 DOI: 10.1002/ajmg.b.32905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/05/2022] [Accepted: 05/28/2022] [Indexed: 11/06/2022]
Abstract
Genome-wide association studies (GWAS) have identified multiple genomic regions associated with schizophrenia, although many variants reside in noncoding regions characterized by high linkage disequilibrium (LD) making the elucidation of molecular mechanisms challenging. A genomic region on chromosome 10q24 has been consistently associated with schizophrenia with risk attributed to the AS3MT gene. Although AS3MT is hypothesized to play a role in neuronal development and differentiation, work to fully understand the function of this gene has been limited. In this study we explored the function of AS3MT using a neuronal cell line (SH-SY5Y). We confirm previous findings of isoform specific expression of AS3MT during SH-SY5Y differentiation toward neuronal fates. Using CRISPR-Cas9 gene editing we generated AS3MT knockout SH-SY5Y cell lines and used RNA-seq to identify significant changes in gene expression in pathways associated with neuronal development, inflammation, extracellular matrix formation, and RNA processing, including dysregulation of other genes strongly implicated in schizophrenia. We did not observe any morphological changes in cell size and neurite length following neuronal differentiation and MAP2 immunocytochemistry. These results provide novel insights into the potential role of AS3MT in brain development and identify pathways through which genetic variation in this region may confer risk for schizophrenia.
Collapse
Affiliation(s)
- Sam J. Washer
- University of Exeter College of Medicine and Health, University of ExeterExeterUK
- Cellular Operations, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUK
| | - Robert Flynn
- University of Exeter College of Medicine and Health, University of ExeterExeterUK
| | - Asami Oguro‐Ando
- University of Exeter College of Medicine and Health, University of ExeterExeterUK
| | - Eilis Hannon
- University of Exeter College of Medicine and Health, University of ExeterExeterUK
| | - Joe Burrage
- University of Exeter College of Medicine and Health, University of ExeterExeterUK
| | - Aaron Jeffries
- University of Exeter College of Medicine and Health, University of ExeterExeterUK
| | - Jonathan Mill
- University of Exeter College of Medicine and Health, University of ExeterExeterUK
| | - Emma L. Dempster
- University of Exeter College of Medicine and Health, University of ExeterExeterUK
| |
Collapse
|
12
|
John Jayakumar JAK, Panicker MM. The roles of serotonin in cell adhesion and migration, and cytoskeletal remodeling. Cell Adh Migr 2021; 15:261-271. [PMID: 34494935 PMCID: PMC8437456 DOI: 10.1080/19336918.2021.1963574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
Serotonin is well known as a neurotransmitter. Its roles in neuronal processes such as learning, memory or cognition are well established, and also in disorders such as depression, schizophrenia, bipolar disorder, and dementia. However, its effects on adhesion and cytoskeletal remodelling which are strongly affected by 5-HT receptors, are not as well studied with some exceptions for e.g. platelet aggregation. Neuronal function is strongly dependent on cell-cell contacts and adhesion-related processes. Therefore the role played by serotonin in psychiatric illness, as well as in the positive and negative effects of neuropsychiatric drugs through cell-related adhesion can be of great significance. In this review, we explore the role of serotonin in some of these aspects based on recent findings.
Collapse
Affiliation(s)
- Joe Anand Kumar John Jayakumar
- Manipal Academy of Higher Education, Manipal, India
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Mitradas M. Panicker
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
- Present Address - Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, USA
| |
Collapse
|
13
|
Busquets O, Parcerisas A, Verdaguer E, Ettcheto M, Camins A, Beas-Zarate C, Castro-Torres RD, Auladell C. c-Jun N-Terminal Kinases in Alzheimer's Disease: A Possible Target for the Modulation of the Earliest Alterations. J Alzheimers Dis 2021; 82:S127-S139. [PMID: 33216036 DOI: 10.3233/jad-201053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Given the highly multifactorial origin of Alzheimer's disease (AD) neuropathology, disentangling and orderly knowing mechanisms involved in sporadic onset are arduous. Nevertheless, when the elements involved are dissected into smaller pieces, the task becomes more accessible. This review aimed to describe the link between c-Jun N-terminal Kinases (JNKs), master regulators of many cellular functions, and the early alterations of AD: synaptic loss and dysregulation of neuronal transport. Both processes have a role in the posterior cognitive decline observed in AD. The manuscript focuses on the molecular mechanisms of glutamatergic, GABA, and cholinergic synapses altered by the presence of amyloid-β aggregates and hyperphosphorylated tau, as well as on several consequences of the disruption of cellular processes linked to neuronal transport that is controlled by the JNK-JIP (c-jun NH2-terminal kinase (JNK)-interacting proteins (JIPs) complex, including the transport of AβPP or autophagosomes.
Collapse
Affiliation(s)
- Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Medicine and Health Sciences Faculty, Universitat Rovira i Virgili, Reus, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Dominick P. Purpura Department of Neurosciences, Albert Einstein College of Medicine, New York City, NY, USA
| | - Antoni Parcerisas
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Department of Cell and Molecular Biology, Laboratory of Neural Regeneration, C.U.C.B.A., Universidad de Guadalajara, Jalisco, Mexico
| | - Rubén Darío Castro-Torres
- Department of Cell and Molecular Biology, Laboratory of Biology of Neurotransmission, C.U.C.B.A., Universidad de Guadalajara, Jalisco, Mexico
| | - Carme Auladell
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
15
|
Ziliotto N, Lamberti N, Manfredini F, Straudi S, Tisato V, Carantoni M, Melloni E, Secchiero P, Basaglia N, Bernardi F, Marchetti G. Baseline and overtime variations of soluble adhesion molecule plasma concentrations are associated with mobility recovery after rehabilitation in multiple sclerosis patients. J Neuroimmunol 2021; 352:577473. [PMID: 33422764 DOI: 10.1016/j.jneuroim.2020.577473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/05/2020] [Accepted: 12/28/2020] [Indexed: 11/19/2022]
Abstract
Rehabilitative exercise outcomes and plasma concentrations of soluble adhesion molecules (sEndoglin, sE-Selectin, sL-Selectin, sICAM-1, sNCAM, sNCAM-1, sVCAM-1, sPECAM-1, sVAP-1) were evaluated in 60 severely disabled progressive multiple sclerosis (MS) patients at 4-time points. Changes of sE-Selectin, sL-Selectin, and sPECAM-1 concentrations were observed over time, and their variations were significantly correlated with rehabilitative outcome variations. Baseline sVAP-1 concentrations were able to predict functional mobility recovery. Our data suggest that the evaluation of adhesion molecules in plasma provides useful information to interpret rehabilitative exercise processes and to identify potential predictors of the rehabilitation-induced changes in mobility outcomes in MS patients.
Collapse
Affiliation(s)
- Nicole Ziliotto
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Nicola Lamberti
- Department of Biomedical and Surgical Specialties Sciences, University of Ferrara, Ferrara, Italy
| | - Fabio Manfredini
- Department of Biomedical and Surgical Specialties Sciences, University of Ferrara, Ferrara, Italy; Department of Neurosciences/Rehabilitation, Unit of Physical and Rehabilitation Medicine, University Hospital of Ferrara, Ferrara, Italy
| | - Sofia Straudi
- Department of Neurosciences/Rehabilitation, Unit of Physical and Rehabilitation Medicine, University Hospital of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Matteo Carantoni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Nino Basaglia
- Department of Neurosciences/Rehabilitation, Unit of Physical and Rehabilitation Medicine, University Hospital of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Giovanna Marchetti
- Department of Biomedical and Surgical Specialties Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Liu W, Zheng Y, Zhang F, Zhu M, Guo Q, Xu H, Liu C, Chen H, Wang X, Hu Y, Zhang T, Lin Z, Zhang C, Li G, Jiang K, Liu X. A Preliminary Investigation on Plasma Cell Adhesion Molecules Levels by Protein Microarray Technology in Major Depressive Disorder. Front Psychiatry 2021; 12:627469. [PMID: 33912082 PMCID: PMC8071998 DOI: 10.3389/fpsyt.2021.627469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Objectives: Major depressive disorder (MDD) is a serious mental disorder, and there is a great difficulty to diagnose and treat. Hitherto, relatively few studies have explored the correlation between the levels of plasma cell adhesion molecules and MDD. Methods: Thirty outpatients with acute episodes of MDD in Shanghai Mental Health Center and 34 healthy volunteers from the community were recruited as subjects. Protein microarray technology was applied to compared the differences in plasma levels of 17 kinds of adhesion molecular proteins between the two groups. Meanwhile, the diagnostic value of different proteins in depression was discussed by using the receiver operating characteristic curve. Results: The levels of Carcinoembryonic Antigen Related Cell Adhesion Molecule-1(CEACAM-1) and Neural Cell Adhesion Molecule (NrCAM) in MDD patients were significantly higher than those in healthy controls (P < 0.05). The area under ROC curve of CEACAM-1 combined with NrCAM was 0.723, with the sensitivity 0.800 and the specificity 0.676. Conclusion: The plasma levels of CEACAM-1 and NrCAM were significantly up-regulated in MDD, and their combined application was of potential diagnostic value, deserving to expand the sample size for further verification.
Collapse
Affiliation(s)
- Wanying Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqun Zheng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuxu Zhang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mo Zhu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiping Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiying Chen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoliang Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Hu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguang Lin
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanjun Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaida Jiang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Neural Cell Adhesion Molecule (NCAM) a Serum Biomarker Indicative for the Severity of Cervical Spondylotic Myelopathy. Clin Spine Surg 2020; 33:E178-E184. [PMID: 32039991 DOI: 10.1097/bsd.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
STUDY DESIGN Peripheral blood samples were obtained from 25 patients with cervical spondylotic myelopathy (CSM) and 13 healthy volunteers. OBJECTIVES Our aim was to investigate the significance of neurodegenerative biomarkers in patients with CSM and correlate their expression with CSM severity. SUMMARY OF BACKGROUND DATA CSM is a common disorder involving chronic progressive compression of the cervical spinal resulting in progressive neurological impairment that ranges from mild tingling in the upper limbs to complete quadriplegia. However, the immunological background related to the neurodegenerative damage and its significance in CSM is still unclear. METHODS Protein expression profiles of 14 neurodegenerative biomarkers were measured by multiplex Luminex bead assay and further analyzed by group comparison statistics, correlation studies, and receiver-operating characteristic analysis. RESULTS Eleven of 14 biomarkers were significantly elevated in CSM patients as compared with healthy subjects (P<0.05). Specifically, the clinical severity of CSM on the scales of Nurick and modified Japanese Orthopedics Association scale (mJOA) was inversely related to neural cell adhesion molecule (NCAM) levels (r=-0.529, P=0.007; r=-0.519, P=0.001, respectively). CONCLUSIONS Serum level of neural cell adhesion molecule may serve as a diagnostic biomarker correlating with the severity of CSM.
Collapse
|
18
|
Soluble neural cell adhesion molecule and behavioural recovery in minimally conscious patients undergoing transcranial direct current stimulation. Clin Chim Acta 2019; 495:374-376. [DOI: 10.1016/j.cca.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022]
|
19
|
Integrating genome-wide association study with regulatory SNP annotation information identified candidate genes and pathways for schizophrenia. Aging (Albany NY) 2019; 11:3704-3715. [PMID: 31175266 PMCID: PMC6594824 DOI: 10.18632/aging.102008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Schizophrenia is a complex mental disorder. The genetic mechanism of schizophrenia remains elusive now. METHODS We conducted a large-scale integrative analysis of two genome-wide association studies of schizophrenia with functional annotation datasets of regulatory single-nucleotide polymorphism (rSNP). The significant SNPs identified by the two genome-wide association studies were first annotated to obtain schizophrenia associated rSNPs and their target genes and proteins, respectively. We then compared the integrative analysis results to identify the common rSNPs and their target regulatory genes and proteins, shared by the two genome-wide association studies of schizophrenia. Finally, DAVID tool was used to conduct gene ontology and pathway enrichment analysis of the identified targets genes and proteins. RESULTS We detected 53 schizophrenia-associated target genes for rSNP, such as FOS (P value = 2.18×10-20), ATXN1 (P value = 5.22×10-21) and HLA-DQA1 (P value = 1.98×10-10). Pathway enrichment analysis identified 24 pathways for transcription factors binding regions, chromatin interacting regions, long non-coding RNAs, topologically associated domains, circular RNAs and post-translational modifications, such as hsa05034:Alcoholism (P value = 2.57×10-7) and hsa04612:Antigen processing and presentation (P value = 6.82×10-8). CONCLUSION We detected multiple candidate genes, gene ontology terms and pathways for schizophrenia, supporting the functional importance of rSNPs, and providing novel clues for understanding the genetic architecture of schizophrenia.
Collapse
|
20
|
Shang Y, Liu M, Wang T, Wang L, He H, Zhong Y, Qian G, An J, Zhu T, Qiu X, Shang J, Chen Y. Modifications of autophagy influenced the Alzheimer-like changes in SH-SY5Y cells promoted by ultrafine black carbon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:763-771. [PMID: 30623832 DOI: 10.1016/j.envpol.2018.12.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Ambient ultrafine black carbon (uBC) can potentially cross blood-brain barrier, however, very little is currently known about the effects they may have on central nervous system. This study aimed to explore the roles of autophagy in Alzheimer-like pathogenic changes promoted by uBC in SH-SY5Y cells. We firstly found uBC could cause cytotoxicity and oxidative stress in SH-SY5Y cells. Additionally we found uBC initiated progressive development of Alzheimer's disease (AD) associated features, mainly including neuro-inflammation and phosphorylation of tau protein (p-Tau) accumulation. Meanwhile, autophagy process was activated by uBC probably through phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. RNA interference and autophagosome-lysosome fusion inhibitor were applied to block autophagy process at different stages. Autophagy dysfunction at the initial membrane expansion stage could aggravate p-Tau accumulation and other Alzheimer-like changes in SH-SY5Y cells promoted by uBC. However, autophagy inhibition at the final stage could alleviate p-Tau accumulation caused by uBC. This suggested that inhibition of the infusion of autophagosome and lysosome could possibly activate ubiquitination degradation pathway to regulate p-Tau equilibrium in SH-SY5Y cells. Our findings further raise the concerns about the effects of uBC on the risk of AD and indicate potential roles of autophagy in early Alzheimer-like pathogenic changes caused by ambient uBC.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Mingyuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Tiantian Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Lu Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Huixin He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jing Shang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
21
|
Plasma levels of soluble NCAM in multiple sclerosis. J Neurol Sci 2019; 396:36-41. [DOI: 10.1016/j.jns.2018.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/24/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
|
22
|
Ilic K, Mlinac-Jerkovic K, Jovanov-Milosevic N, Simic G, Habek N, Bogdanovic N, Kalanj-Bognar S. Hippocampal expression of cell-adhesion glycoprotein neuroplastin is altered in Alzheimer's disease. J Cell Mol Med 2018; 23:1602-1607. [PMID: 30488668 PMCID: PMC6349345 DOI: 10.1111/jcmm.13998] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/13/2018] [Indexed: 11/26/2022] Open
Abstract
Cell‐adhesion glycoprotein neuroplastin (Np) is involved in the regulation of synaptic plasticity and balancing hippocampal excitatory/inhibitory inputs which aids in the process of associative memory formation and learning. Our recent findings show that neuroplastin expression in the adult human hippocampus is specifically associated with major hippocampal excitatory pathways and is related to neuronal calcium regulation. Here, we investigated the hippocampal expression of brain‐specific neuroplastin isoform (Np65), its relationship with amyloid and tau pathology in Alzheimer's disease (AD), and potential involvement of neuroplastin in tissue response during the disease progression. Np65 expression and localization was analysed in six human hippocampi with confirmed AD neuropathology, and six age‐/gender‐matched control hippocampi by imunohistochemistry. In AD cases with shorter disease duration, the Np65 immunoreactivity was significantly increased in the dentate gyrus (DG), Cornu Ammonis 2/3 (CA2/3), and subiculum, with the highest level of Np expression being located on the dendrites of granule cells and subicular pyramidal neurons. Changes in the expression of neuroplastin in AD hippocampal areas seem to be related to the progression of disease. Our study suggests that cell‐adhesion protein neuroplastin is involved in tissue reorganization and is a potential molecular marker of plasticity response in the early neurodegeneration process of AD.
Collapse
Affiliation(s)
- Katarina Ilic
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Kristina Mlinac-Jerkovic
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Goran Simic
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Nikola Habek
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Nenad Bogdanovic
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Svjetlana Kalanj-Bognar
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
23
|
Papal S, Monti CE, Tennison ME, Swaroop A. Molecular dissection of cone photoreceptor-enriched genes encoding transmembrane and secretory proteins. J Neurosci Res 2018; 97:16-28. [PMID: 30260491 DOI: 10.1002/jnr.24329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Abstract
Cone photoreceptors mediate color perception and daylight vision through intricate synaptic circuitry. In most mammalian retina, cones are greatly outnumbered by rods and exhibit inter-dependence for functional maintenance and survival. Currently, we have limited understanding of cone-specific molecular components that mediate response to extrinsic signaling factors or are involved in communication with rods and other retinal cells. To fulfill this gap, we compared the recently-published transcriptomes of developing S-cone-like photoreceptors from the Nrl-/- mouse retina with those of rods and identified candidate genes responsible for cone cell functions and communication. We generated an in silico expression profile of 823 genes that encode candidate transmembrane and secretory proteins and are up-regulated in Nrl-/- cone photoreceptors compared to wild type cones. In situ hybridization analysis validated high expression of seven of the selected candidate genes in the Nrl-/- retina. To examine their relevance to cone function, we performed in vivo knockdown of Epha10 in the Nrl-/- retina and demonstrated aberrant morphology and mislocalization of the photoreceptor cell bodies. Thus, the receptor tyrosine kinase Ephrin type-A receptor 10 appears to influence cone morphogenesis. Our studies reveal novel cone-enriched genes involved in interaction of cones with other retinal cell types and provide a framework for examining molecular pathways associated with intercellular communication.
Collapse
Affiliation(s)
- Samantha Papal
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Christopher E Monti
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Mackenzie E Tennison
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Maretina MA, Zheleznyakova GY, Lanko KM, Egorova AA, Baranov VS, Kiselev AV. Molecular Factors Involved in Spinal Muscular Atrophy Pathways as Possible Disease-modifying Candidates. Curr Genomics 2018; 19:339-355. [PMID: 30065610 PMCID: PMC6030859 DOI: 10.2174/1389202919666180101154916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by mutations in the SMN1 gene. Being a monogenic disease, it is characterized by high clinical heterogeneity. Variations in penetrance and severity of symptoms, as well as clinical discrepancies between affected family members can result from modifier genes influence on disease manifestation. SMN2 gene copy number is known to be the main phenotype modifier and there is growing evidence of additional factors contributing to SMA severity. Potential modifiers of spinal muscular atrophy can be found among the wide variety of different factors, such as multiple proteins interacting with SMN or promoting motor neuron survival, epigenetic modifications, transcriptional or splicing factors influencing SMN2 expression. Study of these factors enables to reveal mechanisms underlying SMA pathology and can have pronounced clinical application.
Collapse
Affiliation(s)
- Marianna A. Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Galina Y. Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden
| | - Kristina M. Lanko
- Saint Petersburg State Institute of Technology, Moskovsky prospect, 26, Saint Petersburg190013, Russia
| | - Anna A. Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| | - Vladislav S. Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Anton V. Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| |
Collapse
|
25
|
Cerebrospinal fluid neural cell adhesion molecule levels and their correlation with clinical variables in patients with schizophrenia, bipolar disorder, and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:12-18. [PMID: 28238731 DOI: 10.1016/j.pnpbp.2017.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE Neural cell adhesion molecule (NCAM) plays an important role in neural plasticity, and its altered function has been implicated in psychiatric disorders. However, previous studies have yielded inconsistent results on cerebrospinal fluid (CSF) NCAM levels in psychiatric disorders. The aim of our study was to examine CSF NCAM levels in patients with schizophrenia, bipolar disorder (BD), and major depressive disorder (MDD), and their possible relationship with clinical variables. METHODS The participants comprised 85 patients with schizophrenia, 57 patients with BD, 83 patients with MDD and 111 healthy controls, all matched for age, sex, and Japanese ethnicity. The CSF samples were drawn using a lumbar puncture and NCAM levels were quantified by an enzyme-linked immunosorbent assay. RESULTS Analysis of covariance controlling for age and sex revealed that CSF NCAM levels were lower in all patients (p=0.033), and in those with BD (p=0.039), than in the controls. NCAM levels positively correlated with age in patients with BD (p<0.01), MDD (p<0.01), and the controls (p<0.01). NCAM levels negatively correlated with depressive symptom scores in patients with BD (p=0.040). In patients with schizophrenia, NCAM levels correlated negatively with negative symptom scores (p=0.029), and correlated positively with scores for cognitive functions such as category fluency (p=0.011) and letter fluency (p=0.023) scores. CONCLUSION We showed that CSF NCAM levels were lower in psychiatric patients, particularly bipolar patients than in the controls. Furthermore, we found correlations of NCAM levels with clinical symptoms in patients with BD and in those with schizophrenia, suggesting the involvement of central NCAM in the symptom formation of severe psychiatric disorders.
Collapse
|
26
|
Reuss B, Asif AR, Almamy A, Schwerk C, Schroten H, Ishikawa H, Drummer C, Behr R. Antisera against Neisseria gonorrhoeae cross-react with specific brain proteins of the common marmoset monkey and other nonhuman primate species. Brain Res 2016; 1653:23-38. [PMID: 27765579 DOI: 10.1016/j.brainres.2016.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 01/01/2023]
Abstract
Prenatal maternal infections with Neisseria gonorrhoeae (NG) correlate with an increased lifetime probability for the offspring to develop psychosis. We could previously demonstrate that in human choroid plexus papilloma cells, anti-NG antibodies (α-NG) bind to mitochondrial proteins HSP60 and ATPB, and interfere with cellular energy metabolism. To assess the in vivo relevance for this, especially during prenatal neural development, we investigated here interactions of NG-specific antisera (α-NG1, α-NG2) with brain, choroid plexus and other non-neural tissues in pre- and perinatal samples of the nonhuman primate (NHP) Callithrix jacchus (CJ), a NHP model for preclinical research. In histological sections at embryonic day E75, immunohistochemistry revealed α-NG1 and -2-staining in choroid plexus, ganglionic hill, optic cup, heart, and liver. Within the cells, organelle-like structures were labeled, which could be identified by immunohistochemical double-labeling as mitochondria. Both one- and two-dimensional Western blot analysis revealed tissue specific patterns of α-NG1 immunoreactive bands and spots, respectively, which were subsequently characterized by mass spectrometry. Thereby we could confirm the interactions of α-NG1 with human HSP60 and ATPB also in CJ choroid plexus and liver. Even more important, in the CJ brain, several new targets, including NCAM1, CRMP2, and SYT1, were identified, which by unrelated studies have been previously suggested to correlate with an increased schizophrenia risk. These findings support the idea that the marmoset monkey is a useful NHP model to investigate the role of maternal bacterial infections during prenatal brain development, and thereby might improve the understanding of this important aspect of schizophrenia pathology.
Collapse
Affiliation(s)
- Bernhard Reuss
- Neuroanatomy, University Medical Center Göttingen, Germany.
| | - Abdul R Asif
- Clinical Chemistry/UMG-Labs, University Medical Center Göttingen, Germany
| | | | - Christian Schwerk
- Pediatric Infectious Diseases Unit, University of Heidelberg at Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases Unit, University of Heidelberg at Mannheim, Germany
| | | | - Charis Drummer
- Platform Degenerative Diseases, German Primate Center, Partner Site Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Partner Site Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
27
|
Fuller HR, Gillingwater TH, Wishart TM. Commonality amid diversity: Multi-study proteomic identification of conserved disease mechanisms in spinal muscular atrophy. Neuromuscul Disord 2016; 26:560-9. [PMID: 27460344 DOI: 10.1016/j.nmd.2016.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/03/2016] [Indexed: 01/09/2023]
Abstract
The neuromuscular disease spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting from low levels of full-length survival motor neuron (SMN) protein. Despite having a good understanding of the underlying genetics of SMA, the molecular pathways downstream of SMN that regulate disease pathogenesis remain unclear. The identification of molecular perturbations downstream of SMN is required in order to fully understand the fundamental biological role(s) for SMN in cells and tissues of the body, as well as to develop a range of therapeutic targets for developing novel treatments for SMA. Recent developments in proteomic screening technologies have facilitated proteome-wide investigations of a range of SMA models and tissues, generating novel insights into disease mechanisms by highlighting conserved changes in a range of molecular pathways. Comparative analysis of distinct proteomic datasets reveals conserved changes in pathways converging on GAP43, GAPDH, NCAM, UBA1, LMNA, ANXA2 and COL6A3. Proteomic studies therefore represent a leading tool with which to dissect the molecular mechanisms of disease pathogenesis in SMA, serving to identify potentially attractive targets for the development of novel therapies.
Collapse
Affiliation(s)
- Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK; Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK.
| | - Thomas H Gillingwater
- Centre for Integrative Physiology, University of Edinburgh, UK; Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, UK
| | - Thomas M Wishart
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, UK; Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK.
| |
Collapse
|
28
|
Jaako K, Waniek A, Parik K, Klimaviciusa L, Aonurm-Helm A, Noortoots A, Anier K, Van Elzen R, Gérard M, Lambeir AM, Roßner S, Morawski M, Zharkovsky A. Prolyl endopeptidase is involved in the degradation of neural cell adhesion molecules in vitro. J Cell Sci 2016; 129:3792-3802. [PMID: 27566163 DOI: 10.1242/jcs.181891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Membrane-associated glycoprotein neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) play an important role in brain plasticity by regulating cell-cell interactions. Here, we demonstrate that the cytosolic serine protease prolyl endopeptidase (PREP) is able to regulate NCAM and PSA-NCAM. Using a SH-SY5Y neuroblastoma cell line with stable overexpression of PREP, we found a remarkable loss of PSA-NCAM, reduced levels of NCAM180 and NCAM140 protein species, and a significant increase in the NCAM immunoreactive band migrating at an apparent molecular weight of 120 kDa in PREP-overexpressing cells. Moreover, increased levels of NCAM fragments were found in the concentrated medium derived from PREP-overexpressing cells. PREP overexpression selectively induced an activation of matrix metalloproteinase-9 (MMP-9), which could be involved in the observed degradation of NCAM, as MMP-9 neutralization reduced the levels of NCAM fragments in cell culture medium. We propose that increased PREP levels promote epidermal growth factor receptor (EGFR) signaling, which in turn activates MMP-9. In conclusion, our findings provide evidence for newly-discovered roles for PREP in mechanisms regulating cellular plasticity through NCAM and PSA-NCAM.
Collapse
Affiliation(s)
- Külli Jaako
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Keiti Parik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Linda Klimaviciusa
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Anu Aonurm-Helm
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Aveli Noortoots
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Kaili Anier
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Roos Van Elzen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp B-2610, Belgium
| | - Melanie Gérard
- Interdisciplinary Research Centre KU Leuven-Kortrijk, Kortrijk B-8500, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp B-2610, Belgium
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
29
|
miRNAs Participate in MS Pathological Processes and Its Therapeutic Response. Mediators Inflamm 2016; 2016:4578230. [PMID: 27073296 PMCID: PMC4814683 DOI: 10.1155/2016/4578230] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis is the most common autoimmune disease of the central nervous system. It is believed that the increased migration of autoreactive lymphocytes across the blood-brain barrier (BBB) may be responsible for axonal demyelination of neurons. In this review, we discuss microRNAs participating in the pathological processes of MS, including periphery inflammation, blood-brain barrier disruption, and CNS lesions, and in its therapeutic response, in order to find biomarkers of disease severity and to predict the response to therapy of the diseases.
Collapse
|
30
|
Rivers C, Idris J, Scott H, Rogers M, Lee YB, Gaunt J, Phylactou L, Curk T, Campbell C, Ule J, Norman M, Uney JB. iCLIP identifies novel roles for SAFB1 in regulating RNA processing and neuronal function. BMC Biol 2015; 13:111. [PMID: 26694817 PMCID: PMC4689037 DOI: 10.1186/s12915-015-0220-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/10/2015] [Indexed: 01/07/2023] Open
Abstract
Background SAFB1 is a RNA binding protein implicated in the regulation of multiple cellular processes such as the regulation of transcription, stress response, DNA repair and RNA processing. To gain further insight into SAFB1 function we used iCLIP and mapped its interaction with RNA on a genome wide level. Results iCLIP analysis found SAFB1 binding was enriched, specifically in exons, ncRNAs, 3’ and 5’ untranslated regions. SAFB1 was found to recognise a purine-rich GAAGA motif with the highest frequency and it is therefore likely to bind core AGA, GAA, or AAG motifs. Confirmatory RT-PCR experiments showed that the expression of coding and non-coding genes with SAFB1 cross-link sites was altered by SAFB1 knockdown. For example, we found that the isoform-specific expression of neural cell adhesion molecule (NCAM1) and ASTN2 was influenced by SAFB1 and that the processing of miR-19a from the miR-17-92 cluster was regulated by SAFB1. These data suggest SAFB1 may influence alternative splicing and, using an NCAM1 minigene, we showed that SAFB1 knockdown altered the expression of two of the three NCAM1 alternative spliced isoforms. However, when the AGA, GAA, and AAG motifs were mutated, SAFB1 knockdown no longer mediated a decrease in the NCAM1 9–10 alternative spliced form. To further investigate the association of SAFB1 with splicing we used exon array analysis and found SAFB1 knockdown mediated the statistically significant up- and downregulation of alternative exons. Further analysis using RNAmotifs to investigate the frequency of association between the motif pairs (AGA followed by AGA, GAA or AAG) and alternative spliced exons found there was a highly significant correlation with downregulated exons. Together, our data suggest SAFB1 will play an important physiological role in the central nervous system regulating synaptic function. We found that SAFB1 regulates dendritic spine density in hippocampal neurons and hence provide empirical evidence supporting this conclusion. Conclusions iCLIP showed that SAFB1 has previously uncharacterised specific RNA binding properties that help coordinate the isoform-specific expression of coding and non-coding genes. These genes regulate splicing, axonal and synaptic function, and are associated with neuropsychiatric disease, suggesting that SAFB1 is an important regulator of key neuronal processes. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0220-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caroline Rivers
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | - Jalilah Idris
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK. .,Institute of Medical Sciences & Technology, University of Kuala Lumpur, Kuala Lumpur, 43000, Malaysia.
| | - Helen Scott
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | - Mark Rogers
- Intelligent Systems Laboratory, Department of Engineering & Mathematics, Merchant Venturers Building, University of Bristol, Bristol, BS8 1UB, UK.
| | - Youn-Bok Lee
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, UK.
| | - Jessica Gaunt
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | - Leonidas Phylactou
- Faculty of Computer and Information Science, University of Ljubljana, Trzaska cesta 25, SI-1001, Ljubljana, Slovenia.
| | - Tomaz Curk
- The Cyprus Institute of Neurology & Genetics, PO Box 23462, 1683, Nicosia, Cyprus.
| | - Colin Campbell
- Institute of Medical Sciences & Technology, University of Kuala Lumpur, Kuala Lumpur, 43000, Malaysia.
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Michael Norman
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | - James B Uney
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
31
|
Chen CJ, Chen CM, Pai TW, Chang HT, Hwang CS. A genome-wide association study on amyotrophic lateral sclerosis in the Taiwanese Han population. Biomark Med 2015; 10:597-611. [PMID: 26580837 DOI: 10.2217/bmm.15.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Identification of mutations in patients with amyotrophic lateral sclerosis (ALS) in a genome-wide association study can reveal possible biomarkers of such a rapidly progressive and fatal neurodegenerative disease. It was observed that significant single nucleotide polymorphisms vary when the tested population changes from one ethnic group to another. To identify new loci associated with ALS susceptibility in the Taiwanese Han population, we performed a genome-wide association study on 94 patients with sporadic ALS and 376 matched controls. We uncovered two new susceptibility loci at 13q14.3 (rs2785946) and 11q25 (rs11224052). In addition, we analyzed the functions of all the associated genes among 54 significant single nucleotide polymorphisms using Gene Ontology annotations, and the results showed several statistically significant neural- and muscle-related Gene Ontology terms and the associated diseases.
Collapse
Affiliation(s)
- Chi-Jim Chen
- Department of Computer Science & Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Chien-Ming Chen
- Department of Computer Science & Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Tun-Wen Pai
- Department of Computer Science & Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Hao-Teng Chang
- Graduate Institute of Basic Medical Sciences, China Medical University, Taichung, Taiwan.,Department of Computer Science & Information Engineering, Asia University, Taichung, Taiwan
| | - Chi-Shin Hwang
- Department of Neurology, Taipei City Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
32
|
Mancuso R, Hernis A, Agostini S, Rovaris M, Caputo D, Clerici M. MicroRNA-572 expression in multiple sclerosis patients with different patterns of clinical progression. J Transl Med 2015; 13:148. [PMID: 25947625 PMCID: PMC4429409 DOI: 10.1186/s12967-015-0504-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/24/2015] [Indexed: 12/14/2022] Open
Abstract
Background Demyelination and failure of remyelination are core mechanisms in the pathogenesis of multiple sclerosis (MS); the factor(s) modulating these processes are still mostly unknown. MicroRNA 572 (miR-572) is deregulated in MS and is suggested to targets neural cell adhesion molecule (NCAM), a glycoprotein involved in CNS reparative mechanisms. The aim of this study is to analyze miR-572 in patients with different clinical phenotypes of MS. Methods qPCR quantification of miR-572 isolated from serum was performed in 16 primary progressive (PP), 15 secondary progressive (SP), 31 relapsing remitting (RR) MS patients and 15 sex-and age-matched healthy controls. Results miR-572 expression was reduced overall in MS patients (p < 0.05) compared to HC; this miRNA was significantly upregulated in SPMS and in RRMS during disease relapse, whereas it was downregulated in PPMS and in quiescent phases of RRMS. miR-572 expression correlated with EDSS scores (RSp = 0.491; p < 0.05) independently of the clinical phenotype. The results suggest that this miRNA might be a tool that helps distinguishing between PPMS and SPMS and between relapsing and remitting phases in RRMS. Conclusions Evaluation of miR-572 may serve as a non-invasive biomarker for remyelination. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0504-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roberta Mancuso
- Don C. Gnocchi Foundation - ONLUS, P.zza Morandi, 3, 20100, Milano, Italy.
| | - Ambra Hernis
- Don C. Gnocchi Foundation - ONLUS, P.zza Morandi, 3, 20100, Milano, Italy.
| | - Simone Agostini
- Don C. Gnocchi Foundation - ONLUS, P.zza Morandi, 3, 20100, Milano, Italy.
| | - Marco Rovaris
- Don C. Gnocchi Foundation - ONLUS, P.zza Morandi, 3, 20100, Milano, Italy.
| | - Domenico Caputo
- Don C. Gnocchi Foundation - ONLUS, P.zza Morandi, 3, 20100, Milano, Italy.
| | - Mario Clerici
- Don C. Gnocchi Foundation - ONLUS, P.zza Morandi, 3, 20100, Milano, Italy. .,Department of Physiopathology and Transplantation, University of Milano, Milano, Italy.
| |
Collapse
|