1
|
Diao H, Xue WQ, Wang TM, Yang DW, Deng CM, Li DH, Zhang WL, Liao Y, Wu YX, Chen XY, Zhou T, Li XZ, Zhang PF, Zheng XH, Zhang SD, Hu YZ, Cao SM, Liu Q, Ye WM, He YQ, Jia WH. The interaction and mediation effects between the host genetic factors and Epstein-Barr virus VCA-IgA in the risk of nasopharyngeal carcinoma. J Med Virol 2023; 95:e29224. [PMID: 37970759 DOI: 10.1002/jmv.29224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023]
Abstract
Previous studies have demonstrated strong associations between host genetic factors and Epstein-Barr virus (EBV) VCA-IgA with the risk of nasopharyngeal carcinoma (NPC). However, the specific interplay between host genetics and EBV VCA-IgA on NPC risk is not well understood. In this two-stage case-control study (N = 4804), we utilized interaction and mediation analysis to investigate the interplay between host genetics (genome-wide association study-derived polygenic risk score [PRS]) and EBV VCA-IgA antibody level in the NPC risk. We employed a four-way decomposition analysis to assess the extent to which the genetic effect on NPC risk is mediated by or interacts with EBV VCA-IgA. We consistently found a significant interaction between the PRS and EBV VCA-IgA on NPC risk (discovery population: synergy index [SI] = 2.39, 95% confidence interval [CI] = 1.85-3.10; replication population: SI = 3.10, 95% CI = 2.17-4.44; all pinteraction < 0.001). Moreover, the genetic variants included in the PRS demonstrated similar interactions with EBV VCA-IgA antibody. We also observed an obvious dose-response relationship between the PRS and EBV VCA-IgA antibody on NPC risk (all ptrend < 0.001). Furthermore, our decomposition analysis revealed that a substantial proportion (approximately 90%) of the genetic effects on NPC risk could be attributed to host genetic-EBV interaction, while the risk effects mediated by EBV VCA-IgA antibody were weak and statistically insignificant. Our study provides compelling evidence for an interaction between host genetics and EBV VCA-IgA antibody in the development of NPC. These findings emphasize the importance of implementing measures to control EBV infection as a crucial strategy for effectively preventing NPC, particularly in individuals at high genetic risk.
Collapse
Affiliation(s)
- Hua Diao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Da-Wei Yang
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xue-Yin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Su-Mei Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qing Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei-Min Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology and Health Statistics and Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Daei Sorkhabi A, Sarkesh A, Saeedi H, Marofi F, Ghaebi M, Silvestris N, Baradaran B, Brunetti O. The Basis and Advances in Clinical Application of Cytomegalovirus-Specific Cytotoxic T Cell Immunotherapy for Glioblastoma Multiforme. Front Oncol 2022; 12:818447. [PMID: 35515137 PMCID: PMC9062077 DOI: 10.3389/fonc.2022.818447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/24/2022] [Indexed: 01/28/2023] Open
Abstract
A high percentage of malignant gliomas are infected by human cytomegalovirus (HCMV), and the endogenous expression of HCMV genes and their products are found in these tumors. HCMV antigen expression and its implications in gliomagenesis have emerged as a promising target for adoptive cellular immunotherapy (ACT) strategies in glioblastoma multiforme (GB) patients. Since antigen-specific T cells in the tumor microenvironments lack efficient anti-tumor immune response due to the immunosuppressive nature of glioblastoma, CMV-specific ACT relies on in vitro expansion of CMV-specific CD8+ T cells employing immunodominant HCMV antigens. Given the fact that several hurdles remain to be conquered, recent clinical trials have outlined the feasibility of CMV-specific ACT prior to tumor recurrence with minimal adverse effects and a substantial improvement in median overall survival and progression-free survival. This review discusses the role of HCMV in gliomagenesis, disease prognosis, and recent breakthroughs in harnessing HCMV-induced immunogenicity in the GB tumor microenvironment to develop effective CMV-specific ACT.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| |
Collapse
|
3
|
Abstract
Two decades of research have established that Nuclear Factor-κB (NF-κB) signaling plays a critical role in reprogramming the fat cell transcriptome towards inflammation in response to overnutrition and metabolic stress. Several groups have suggested that inhibition of NF-κB signaling could have metabolic benefits for obesity-associated adipose tissue inflammation. However, two significant problems arise with this approach. The first is how to deliver general NF-κB inhibitors into adipocytes without allowing these compounds to disrupt normal functioning in cells of the immune system. The second issue is that general inhibition of canonical NF-κB signaling in adipocytes will likely lead to a massive increase in adipocyte apoptosis under conditions of metabolic stress, leading full circle into a secondary inflammation (However, this problem may not be true for non-canonical NF-κB signaling.). This review will focus on the research that has examined canonical and non-canonical NF-κB signaling in adipocytes, focusing on genetic studies that examine loss-of-function of NF-κB specifically in fat cells. Although the development of general inhibitors of canonical NF-κB signaling seems unlikely to succeed in alleviating adipose tissue inflammation in humans, the door remains open for more targeted therapeutics. In principle, these would include compounds that interrogate NF-κB DNA binding, protein-protein interactions, or post-translational modifications that partition NF-κB activity towards some genes and away from others in adipocytes. I also discuss the possibility for inhibitors of non-canonical NF-κB signaling to realize success in mitigating fat cell dysfunction in obesity. To plant the seeds for such approaches, much biochemical “digging” in adipocytes remains; this includes identifying—in an unbiased manner–NF-κB direct and indirect targets, genomic DNA binding sites for all five NF-κB subunits, NF-κB protein-protein interactions, and post-translational modifications of NF-κB in fat cells.
Collapse
|
4
|
Xu R, Zhang K, Liang J, Gao F, Li J, Guan F. Hyaluronic acid/polyethyleneimine nanoparticles loaded with copper ion and disulfiram for esophageal cancer. Carbohydr Polym 2021; 261:117846. [PMID: 33766342 DOI: 10.1016/j.carbpol.2021.117846] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
In the clinical treatment of cancer, improving the effectiveness and targeting of drugs has always been a bottleneck problem that needs to be solved. In this contribution, inspired by the targeted inhibition on cancer from combination application of disulfiram and divalent copper ion (Cu2+), we optimized the concentration of disulfiram and Cu2+ ion for inhibiting esophageal cancer cells, and loaded them in hyaluronic acid (HA)/polyethyleneimine (PEI) nanoparticles with specific scales, in order to improve the effectiveness and targeting of drugs. The in vitro cell experiments demonstrated that more drug loaded HA/PEI nanoparticles accumulated to the esophageal squamous cell carcinoma (Eca109) and promoted higher apoptosis ratio of Eca109. Both in vitro and in vivo biological assessment verified that the disulfiram/Cu2+ loaded HA/PEI nanoparticles promoted the apoptosis of cancer cells and inhibited the tumor proliferation, but had no toxicity on other normal organs.
Collapse
Affiliation(s)
- Ru Xu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Feng Gao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jingan Li
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| |
Collapse
|
5
|
Moser BA, Steinhardt RC, Escalante-Buendia Y, Boltz DA, Barker KM, Cassaidy BJ, Rosenberger MG, Yoo S, McGonnigal BG, Esser-Kahn AP. Increased vaccine tolerability and protection via NF-κB modulation. SCIENCE ADVANCES 2020; 6:eaaz8700. [PMID: 32917696 PMCID: PMC11206472 DOI: 10.1126/sciadv.aaz8700] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/24/2020] [Indexed: 05/20/2023]
Abstract
Improving adjuvant responses is a promising pathway to develop vaccines against some pathogens (e.g., HIV or dengue). One challenge in adjuvant development is modulating the inflammatory response, which can cause excess side effects, while maintaining immune activation and protection. No approved adjuvants yet have the capability to independently modulate inflammation and protection. Here, we demonstrate a method to limit inflammation while retaining and often increasing the protective responses. To accomplish this goal, we combined a partial selective nuclear factor kappa B (NF-kB) inhibitor with several current adjuvants. The resulting vaccines reduce systemic inflammation and boost protective responses. In an influenza challenge model, we demonstrate that this approach enhances protection. This method was tested across a broad range of adjuvants and antigens. We anticipate these studies will lead to an alternative approach to vaccine formulation design that may prove broadly applicable to a wide range of adjuvants and vaccines.
Collapse
Affiliation(s)
- B A Moser
- Pritzker School for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
| | - R C Steinhardt
- Pritzker School for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
| | - Y Escalante-Buendia
- Pritzker School for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
| | - D A Boltz
- Division of Microbiology and Molecular Biology, IIT Research Institute, Illinois Institute of Technology, 10W. 35th Street, Chicago, IL 60616, USA
| | - K M Barker
- Division of Microbiology and Molecular Biology, IIT Research Institute, Illinois Institute of Technology, 10W. 35th Street, Chicago, IL 60616, USA
| | - B J Cassaidy
- Pritzker School for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
| | - M G Rosenberger
- Pritzker School for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
| | - S Yoo
- Department of Chemistry, Chemical Engineering & Materials Science, Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - B G McGonnigal
- Department of Chemistry, Chemical Engineering & Materials Science, Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - A P Esser-Kahn
- Pritzker School for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
7
|
Krenzlin H, Behera P, Lorenz V, Passaro C, Zdioruk M, Nowicki MO, Grauwet K, Zhang H, Skubal M, Ito H, Zane R, Gutknecht M, Griessl MB, Ricklefs F, Ding L, Peled S, Rooj A, James CD, Cobbs CS, Cook CH, Chiocca EA, Lawler SE. Cytomegalovirus promotes murine glioblastoma growth via pericyte recruitment and angiogenesis. J Clin Invest 2019; 129:1671-1683. [PMID: 30855281 DOI: 10.1172/jci123375] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
Cytomegalovirus (CMV) has been implicated in glioblastoma (GBM); however, a mechanistic connection in vivo has not been established. The purpose of this study is to characterize the effects of murine CMV (MCMV) on GBM growth in murine models. Syngeneic GBM models were established in mice perinatally infected with MCMV. We found that tumor growth was markedly enhanced in MCMV+ mice, with a significant reduction in overall survival compared with that of controls (P < 0.001). We observed increased angiogenesis and tumor blood flow in MCMV+ mice. MCMV reactivation was observed in intratumoral perivascular pericytes and tumor cells in mouse and human GBM specimens, and pericyte coverage of tumor vasculature was strikingly augmented in MCMV+ mice. We identified PDGF-D as a CMV-induced factor essential for pericyte recruitment, angiogenesis, and tumor growth. The antiviral drug cidofovir improved survival in MCMV+ mice, inhibiting MCMV reactivation, PDGF-D expression, pericyte recruitment, and tumor angiogenesis. These data show that MCMV potentiates GBM growth in vivo by increased pericyte recruitment and angiogenesis due to alterations in the secretome of CMV-infected cells. Our model provides evidence for a role of CMV in GBM growth and supports the application of antiviral approaches for GBM therapy.
Collapse
Affiliation(s)
| | - Prajna Behera
- Department of Neurosurgery, Brigham and Women's Hospital
| | - Viola Lorenz
- Division of Newborn Medicine, Boston Children's Hospital, and
| | | | - Mykola Zdioruk
- Department of Neurosurgery, Brigham and Women's Hospital
| | | | | | - Hong Zhang
- Department of Neurosurgery, Brigham and Women's Hospital
| | | | - Hirotaka Ito
- Department of Neurosurgery, Brigham and Women's Hospital
| | - Rachel Zane
- Department of Neurosurgery, Brigham and Women's Hospital
| | - Michael Gutknecht
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marion B Griessl
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Ding
- Program for Interdisciplinary Neuroscience, NeuroTechnology Studio, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sharon Peled
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arun Rooj
- Department of Neurosurgery, Brigham and Women's Hospital
| | - C David James
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Charles S Cobbs
- Swedish Neuroscience Institute, Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Seattle, Washington, USA
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Sean E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital
| |
Collapse
|
8
|
MiR-149 suppresses the inflammatory response of chondrocytes in osteoarthritis by down-regulating the activation of TAK1/NF-κB. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.133] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
9
|
Wang Z, Potoyan DA, Wolynes PG. Modeling the therapeutic efficacy of NFκB synthetic decoy oligodeoxynucleotides (ODNs). BMC SYSTEMS BIOLOGY 2018; 12:4. [PMID: 29382384 PMCID: PMC5791368 DOI: 10.1186/s12918-018-0525-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/04/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Transfection of NF κB synthetic decoy Oligodeoxynucleotides (ODNs) has been proposed as a promising therapeutic strategy for a variety of diseases arising from constitutive activation of the eukaryotic transcription factor NF κB. The decoy approach faces some limitations under physiological conditions notably nuclease-induced degradation. RESULTS In this work, we show how a systems pharmacology model of NF κB regulatory networks displaying oscillatory temporal dynamics, can be used to predict quantitatively the dependence of therapeutic efficacy of NF κB synthetic decoy ODNs on dose, unbinding kinetic rates and nuclease-induced degradation rates. Both deterministic mass action simulations and stochastic simulations of the systems biology model show that the therapeutic efficacy of synthetic decoy ODNs is inversely correlated with unbinding kinetic rates, nuclease-induced degradation rates and molecular stripping rates, but is positively correlated with dose. We show that the temporal coherence of the stochastic dynamics of NF κB regulatory networks is most sensitive to adding NF κB synthetic decoy ODNs having unbinding time-scales that are in-resonance with the time-scale of the limit cycle of the network. CONCLUSIONS The pharmacokinetics/pharmacodynamics (PK/PD) predicted by the systems-level model should provide quantitative guidance for in-depth translational research of optimizing the thermodynamics/kinetic properties of synthetic decoy ODNs.
Collapse
Affiliation(s)
- Zhipeng Wang
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA.,Department of Chemistry, Rice University, Houston, 77005, TX, USA.,Present Address: Genentech Inc. 350 DNA Way, South San Francisco, 94080, CA, USA
| | - Davit A Potoyan
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA.,Department of Chemistry, Rice University, Houston, 77005, TX, USA.,Present Address: Department of Chemistry, Iowa State University, Ames, 50011, IA, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA. .,Department of Chemistry, Rice University, Houston, 77005, TX, USA. .,Department of Physics and Astronomy, Rice University, Houston, 77005, TX, USA.
| |
Collapse
|
10
|
Zhang H, Zhou L, Yuen J, Birkner N, Leppert V, O'Day PA, Forman HJ. Delayed Nrf2-regulated antioxidant gene induction in response to silica nanoparticles. Free Radic Biol Med 2017; 108:311-319. [PMID: 28389405 PMCID: PMC5480609 DOI: 10.1016/j.freeradbiomed.2017.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/14/2022]
Abstract
Silica nanoparticles with iron on their surface cause the production of oxidants and stimulate an inflammatory response in macrophages. Nuclear factor erythroid-derived 2 - like factor 2 (Nrf2) signaling and its regulated antioxidant genes play critical roles in maintaining redox homeostasis. In this study we investigated the regulation of four representative Nrf2-regulated antioxidant genes; i.e., glutamate cysteine ligase (GCL) catalytic subunit (GCLC), GCL modifier subunit (GCLM), heme oxygenase 1 (HO-1), and NAD(P)H:quinone oxidoreductase-1 (NQO-1), by iron-coated silica nanoparticles (SiO2-Fe) in human THP-1 macrophages. We found that the expression of these four antioxidant genes was modified by SiO2-Fe in a time-dependent manner. At 6h, their expression was unchanged except for GCLC, which was reduced compared with controls. At 18h, the expression of these antioxidant genes was significantly increased compared with controls. In contrast, the Nrf2 activator sulforaphane induced all antioxidant genes at as early as 3h. The nuclear translocation of Nrf2 occurred later than that for NF-κB p65 protein and the induction of proinflammatory cytokines (TNFα and IL-1β). NF-κB inhibitor SN50 prevented the reduction of GCLC at 6h and abolished the induction of antioxidant genes at 18h by SiO2-Fe, but did not affect the basal and sulforaphane-induced expression of antioxidant genes, suggesting that NF-κB signaling plays a key role in the induction of Nrf2-mediated genes in response to SiO2-Fe. Consistently, SN50 inhibited the nuclear translocation of Nrf2 caused by SiO2-Fe. In addition, Nrf2 silencing decreased the basal and SiO2-induced expression of the four reprehensive antioxidant genes. Taken together, these data indicated that SiO2-Fe induced a delayed response of Nrf2-regulated antioxidant genes, likely through NF-κB-Nrf2 interactions.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Leonard Davies School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States.
| | - Lulu Zhou
- Leonard Davies School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Jenay Yuen
- Leonard Davies School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Nancy Birkner
- School of Natural Sciences and Sierra Nevada Research Institute, University of California at Merced, Merced, CA 95343, United States
| | - Valerie Leppert
- School of Engineering, University of California at Merced, Merced, CA 95343, United States
| | - Peggy A O'Day
- School of Natural Sciences and Sierra Nevada Research Institute, University of California at Merced, Merced, CA 95343, United States
| | - Henry Jay Forman
- Leonard Davies School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
11
|
Genes directly regulated by NF-κB in human hepatocellular carcinoma HepG2. Int J Biochem Cell Biol 2017; 89:157-170. [PMID: 28579529 DOI: 10.1016/j.biocel.2017.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
It has been well-known that over activation of NF-κB has close relationship with hepatitis and hepatocellular carcinoma (HCC). However, the complete and exact underlying molecular pathways and mechanisms still remain not fully understood. By manipulating NF-κB activity with its recognized activator TNFα and using ChIP-seq and RNA-seq techniques, this study identified 699 NF-κB direct target genes (DTGs) in a widely used HCC cell line, HepG2, including 399 activated and 300 repressed genes. In these NF-κB DTGs, 216 genes (126 activated and 90 repressed genes) are among the current HCC gene signature. In comparison with NF-κB target genes identified in LPS-induced THP-1 and TNFα-induced HeLa cells, only limited numbers (24-46) of genes were shared by the two cell lines, indicating the HCC specificity of identified genes. Functional annotation revealed that NF-κB DTGs in HepG2 cell are mainly related with many typical NF-κB-related biological processes including immune system process, response to stress, response to stimulus, defense response, and cell death, and signaling pathways of MAPK, TNF, TGF-beta, Chemokine, NF-kappa B, and Toll-like receptor. Some NF-κB DTGs are also involved in Hepatitis C and B pathways. It was found that 82 NF-κB DTGs code secretory proteins, which include CCL2 and DKK1 that have already been used as HCC markers. Finally, the NF-κB DTGs were further confirmed by detecting the NF-κB binding and expression of 14 genes with ChIP-PCR and RT-PCR. This study thus provides a useful NF-κB DTG list for future studies of NF-κB-related molecular mechanisms and theranostic biomarkers of HCC.
Collapse
|
12
|
Zhou F, Xu X, Wang D, Wu J, Wang J. Identification of novel NF-κB transcriptional targets in TNFα-treated HeLa and HepG2 cells. Cell Biol Int 2017; 41:555-569. [PMID: 28276104 DOI: 10.1002/cbin.10762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/04/2017] [Indexed: 12/21/2022]
Abstract
Identification of target genes of NF-κB is critical for deeply understanding its biological functions. Here, we identified five novel NF-κB target genes. Firstly, we found that 20 NF-κB potential target genes (PTGs) identified by ChIP-Seq and Genechip assay were enriched into the KEGG term of Pathways in cancer, 16 of them were enriched into the KEGG pathways of small cell lung cancer, chronic myeloid leukemia, basal cell carcinoma, pancreatic cancer, and colorectal cancer. Among these PTGs, there are many documented NF-κB target genes. Therefore, NF-κB may play important role in cancer progression by transcriptionally regulating these genes. Apart from the known target genes, we also found some novel PTGs including CYCS, MITF, FZD1, FZD8, and PIAS1. We subsequently demonstrated whether NF-κB transcriptionally control the five PTGs. The ChIP-Seq assay revealed that NF-κB/p65 bound to these genes in TNFα-treated HeLa. The bioinformatic analysis indicated that the NF-κB binding regions (i.e., ChIP-Seq peaks) contained κB sites and NF-κB/RelA DNA-binding motif. The ChIP-qPCR assay also confirmed that NF-κB bound to these regions in both TNFα-treated HeLa and HepG2 cells. The reporter construct showed that NF-κB could regulate luciferase expression via its binding region. Finally, qPCR and Western blot assay demonstrated that NF-κB indeed regulated the expression of these genes in the TNFα-treated HeLa and HepG2 cells. In a word, CYCS, MITF, FZD1, FZD8, and PIAS1 were identified as bona fide NF-κB target genes. These findings provide more insights into the role of NF-κB in cancers.
Collapse
Affiliation(s)
- Fei Zhou
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China.,School of Life Sciences and Food Technology, Hanshan Normal University, Chaozhou, 521041, China
| | - Xinhui Xu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Danyang Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| |
Collapse
|
13
|
Kolahkaj B, Zargar F. Effect of Mindfulness-Based Stress Reduction on Anxiety, Depression and Stress in Women With Multiple Sclerosis. Nurs Midwifery Stud 2015; 4:e29655. [PMID: 26835467 PMCID: PMC4733502 DOI: 10.17795/nmsjournal29655] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 11/28/2022] Open
Abstract
Background: Studies suggest that mindfulness-based interventions can improve anxiety, depression and stress in patients with multiple sclerosis (MS). However, no study investigated the effectiveness of this method in patients with a combination of problems such as depression, anxiety and stress simultaneously. However, comorbidities of depression and anxiety in MS are prevalent. Objectives: This study aimed to assess the effects of mindfulness-based stress reduction (MBRS) on anxiety, depression and stress in women with multiple sclerosis. Patients and Methods: This randomized controlled clinical trial was performed in 2013 in Ahvaz MS Society. Forty eight patients were selected by convenient sampling and randomly assigned in experimental and control groups. The patients in the two groups filled out depression, anxiety and stress scale (DASS-21) at initiation of study, 8 weeks later and 1 month after the end of intervention. The experimental group received 8 sessions of MBRS, while the control group treated as usual. Finally, data of 40 patients analyzed using t-test, chi square and repeated measures analysis of variance. Results: In the MBSR group, the mean depression, anxiety and stress were reduced significantly (P < 0.001). The mean depression score was 8.35 ± 1.78 before the intervention and reduced to 4.80 ± 0.83 and 4.45 ± 0.60 after the intervention and follow-up (P < 0.001). Also the mean anxiety score was 8.90 ± 1.97 before the intervention, which was significantly reduced to 4.70 ± 1.38 and 4.55 ± 0.99 after the intervention and follow-up (P < 0.001). The mean stress score was also 8.80 ± 2.35 before treatment and 4.80 ± 1.67 and 4.70 ± 1.34 after the intervention and follow-up (P < 0.001). Conclusions: This study showed that MBSR training can reduce mean depression, anxiety and stress scores in patients with MS. These findings suggest that MBSR is useful for psychological problems such as depression, anxiety and stress in patients with MS.
Collapse
Affiliation(s)
- Bentolhoda Kolahkaj
- Department of Clinical Psychology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, IR Iran
| | - Fatemeh Zargar
- Department of Psychiatry, Isfahan University of Medical Sciences, Isfahan, IR Iran
| |
Collapse
|
14
|
Satoh JI, Takitani M, Miyoshi J, Kino Y. RNA-Seq data analysis identifies the comprehensive profile ofin vivointerferon-β-stimulated genes in multiple sclerosis. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/cen3.12268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology; Meiji Pharmaceutical University; Tokyo Japan
| | - Mika Takitani
- Department of Bioinformatics and Molecular Neuropathology; Meiji Pharmaceutical University; Tokyo Japan
| | - Junko Miyoshi
- Department of Bioinformatics and Molecular Neuropathology; Meiji Pharmaceutical University; Tokyo Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology; Meiji Pharmaceutical University; Tokyo Japan
| |
Collapse
|
15
|
Cookson VJ, Waite SL, Heath PR, Hurd PJ, Gandhi SV, Chapman NR. Binding loci of RelA-containing nuclear factor-kappaB dimers in promoter regions of PHM1-31 myometrial smooth muscle cells. Mol Hum Reprod 2015; 21:865-83. [DOI: 10.1093/molehr/gav051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022] Open
|
16
|
Ryu J, Woo J, Shin J, Ryoo H, Kim Y, Lee C. Profile of differential promoter activity by nucleotide substitution at GWAS signals for multiple sclerosis. Medicine (Baltimore) 2014; 93:e281. [PMID: 25526461 PMCID: PMC4603103 DOI: 10.1097/md.0000000000000281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This experimental study was conducted with completely randomized design. Genome-wide association studies (GWAS) have revealed a large number of genetic associations of nucleotide sequence variants with susceptibility to multiple sclerosis (MS). Nevertheless, studies to identify the functional relevance of these variants lag far behind identification of the GWAS signals. Expression quantitative trait loci (eQTLs) analysis and promoter activity analysis with the variants filtered by GWAS were conducted to identify their functional alleles and haplotypes. The promoter activity was assayed with reporter constructs containing variants at 8 MS GWAS signals resulted from 18 GWAS. The promoter activity differed by alternative sequence variants at upstream regions of the CYP24A1, CYP27B1, SYK, RAD21L1, PVR, ODF3B, and RGS14 genes (P<0.05). The transcriptional regulations of sequence variants were also found by identifications of eQTLs for their corresponding genes with lymphoblastoid cells in the current study (SYK, ODF3B, RGS14, and PVR, P<8.33×10⁻³) and with dendritic cells in a previous study (CYP27B1, P=1.84×10⁻⁶). This study identified regulatory nucleotide sequences in the promoters of the CYP24A1, CYP27B1, SYK, RAD21L1, PVR, ODF3B, and RGS14 genes, and their variants differentially affected gene expression. This might result in their associations with MS susceptibility in previous GWAS. Further functional studies are required to understand the process of transcriptional regulation of the variants identified in the current study and the mechanisms underlying susceptibility to MS.
Collapse
Affiliation(s)
- Jihye Ryu
- From the School of Systems Biomedical Science, Soongsil University, 511 Sangdo-dong, Dongjak-gu, Seoul 156-743, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Choi SS, Lee HJ, Lim I, Satoh JI, Kim SU. Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One 2014; 9:e92325. [PMID: 24691121 PMCID: PMC3972155 DOI: 10.1371/journal.pone.0092325] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/20/2014] [Indexed: 12/21/2022] Open
Abstract
Astrocytes play a key role in maintenance of neuronal functions in the central nervous system by producing various cytokines, chemokines, and growth factors, which act as a molecular coordinator of neuron-glia communication. At the site of neuroinflammation, astrocyte-derived cytokines and chemokines play both neuroprotective and neurotoxic roles in brain lesions of human neurological diseases. At present, the comprehensive profile of human astrocyte-derived cytokines and chemokines during inflammation remains to be fully characterized. We investigated the cytokine secretome profile of highly purified human astrocytes by using a protein microarray. Non-stimulated human astrocytes in culture expressed eight cytokines, including G-CSF, GM-CSF, GROα (CXCL1), IL-6, IL-8 (CXCL8), MCP-1 (CCL2), MIF and Serpin E1. Following stimulation with IL-1β and TNF-α, activated astrocytes newly produced IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10), MIP-1α (CCL3) and RANTES (CCL5), in addition to the induction of sICAM-1 and complement component 5. Database search indicated that most of cytokines and chemokines produced by non-stimulated and activated astrocytes are direct targets of the transcription factor NF-kB. These results indicated that cultured human astrocytes express a distinct set of NF-kB-target cytokines and chemokines in resting and activated conditions, suggesting that the NF-kB signaling pathway differentially regulates gene expression of cytokines and chemokines in human astrocytes under physiological and inflammatory conditions.
Collapse
Affiliation(s)
- Sung S. Choi
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hong J. Lee
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Inja Lim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Japan
| | - Seung U. Kim
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|