1
|
Fumagalli V, Ravà M, Marotta D, Di Lucia P, Bono EB, Giustini L, De Leo F, Casalgrandi M, Monteleone E, Mouro V, Malpighi C, Perucchini C, Grillo M, De Palma S, Donnici L, Marchese S, Conti M, Muramatsu H, Perlman S, Pardi N, Kuka M, De Francesco R, Bianchi ME, Guidotti LG, Iannacone M. Antibody-independent protection against heterologous SARS-CoV-2 challenge conferred by prior infection or vaccination. Nat Immunol 2024; 25:633-643. [PMID: 38486021 PMCID: PMC11003867 DOI: 10.1038/s41590-024-01787-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024]
Abstract
Vaccines have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality, yet emerging variants challenge their effectiveness. The prevailing approach to updating vaccines targets the antibody response, operating under the presumption that it is the primary defense mechanism following vaccination or infection. This perspective, however, can overlook the role of T cells, particularly when antibody levels are low or absent. Here we show, through studies in mouse models lacking antibodies but maintaining functional B cells and lymphoid organs, that immunity conferred by prior infection or mRNA vaccination can protect against SARS-CoV-2 challenge independently of antibodies. Our findings, using three distinct models inclusive of a novel human/mouse ACE2 hybrid, highlight that CD8+ T cells are essential for combating severe infections, whereas CD4+ T cells contribute to managing milder cases, with interferon-γ having an important function in this antibody-independent defense. These findings highlight the importance of T cell responses in vaccine development, urging a broader perspective on protective immunity beyond just antibodies.
Collapse
Affiliation(s)
- Valeria Fumagalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Davide Marotta
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa B Bono
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica De Leo
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Violette Mouro
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Malpighi
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Perucchini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Grillo
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Sara De Palma
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Charles River Laboratories, Calco, Italy
| | - Lorena Donnici
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Silvia Marchese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Matteo Conti
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mirela Kuka
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele De Francesco
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco E Bianchi
- Vita-Salute San Raffaele University, Milan, Italy.
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Luca G Guidotti
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Marantos T, Kyriazopoulou E, Lekakis V, Voumvourakis KI, Tsiodras S. Immunogenicity and safety of vaccines in multiple sclerosis: A systematic review and meta-analysis. J Neurol Sci 2024; 456:122852. [PMID: 38142541 DOI: 10.1016/j.jns.2023.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Seroconversion rate of vaccines varies and requires further elucidation in patients with multiple sclerosis (MS) under treatment with disease-modifying therapies (DMTs). We aimed to investigate this in a systematic review and meta-analysis. METHODS MEDLINE(PubMed) and Cochrane databases were searched based on a pre-specified protocol (PROSPERO: CRD42020202018). Studies reporting on patients with MS, diagnosed with McDonald criteria getting vaccinated with any type of vaccine were included in the analysis. The primary endpoint was the incidence of patients being seropositive and experience adverse events after vaccination. Outcomes were expressed as proportions with respective 95% confidence interval (CI). Two reviewers independently screened and reviewed existing literature and assessed study quality with the Methodological index for non-randomized studies. RESULTS Of 295 articles, 45 studies were analyzed. Seroconversion after COVID-19 vaccines was 76% (95% CI, 70-80; I2 = 95%; 20 studies including 5601 patients. Protection was lower in patients treated with anti-CD20 antibodies and sphingosine-1-phosphate receptor (S1PR) modulators compared to untreated patients or treatment with other DMTs. Relapse occurred in 2% (95% CI, 1-3; I2 = 86%; 16 studies including 7235 patients). Seroconversion after seasonal influenza vaccines was 82% (95% CI, 65-91; I2 = 90%; 6 studies including 490 patients). Relapse rate was similar to this after COVID-19 vaccination. CONCLUSION The majority of MS patients vaccinated for COVID-19 or seasonal influenza mount an adequate immune response without safety concerns. Data on other vaccines are limited.
Collapse
Affiliation(s)
- Theodoros Marantos
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Evdoxia Kyriazopoulou
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| | - Vasileios Lekakis
- Department of Gastroenterology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Sotirios Tsiodras
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| |
Collapse
|
3
|
Algu P, Hameed N, DeAngelis T, Stern J, Harel A. Post-vaccination SARS-Cov-2 T-cell receptor repertoires in patients with multiple sclerosis and related disorders. Mult Scler Relat Disord 2023; 79:104965. [PMID: 37657307 DOI: 10.1016/j.msard.2023.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Attenuation in post-vaccination SARS-CoV-2 humoral responses has been demonstrated in people treated with either anti-CD20 therapies or sphingosine-1-phosphate (S1P) receptor modulators. In the setting of disease modifying therapy (DMT) use, humoral response may not correlate with effective immunity, and analysis of vaccine-mediated SARS-CoV-2-specific memory T-cell responses is crucial. While vaccination in patients treated with anti-CD20 agents leads to deficient antibody production, emerging data from live cell assays suggests intact T-cell responses to vaccination. We evaluated post-vaccination SARS-CoV-2 T-cell receptor (TCR) repertoires in DMT-treated patients using the ImmunoSeqR assay, an assay that does not require live cells. METHODS Adults 18-80 years old without prior COVID-19, with neuroimmune conditions, who had been vaccinated with two doses of Pfizer-BioNTech or Moderna mRNA vaccines at least 3 weeks and up to 6 months prior, were recruited. Whole blood was obtained for immunosequencing, and matched serum was obtained for humoral analysis. Immunosequencing of the CDR3 regions of human TCRβ chains was completed using the immunoSEQR Assay (Adaptive Biotechnologies). TCR sequences were mapped across a set of TCR sequences reactive to SARS-CoV-2. Clonal diversity (breadth) and frequency (depth) of TCRs specific to SARS-CoV-2 spike protein were calculated and relationships with clinical variables were assessed. RESULTS Forty patients were recruited into the study, aged 25-77, and 27 female. 37 had MS, 2 had neuromyelitis optica spectrum disorder (NMOSD), and 1 had hypophysitis. Subjects treated with anti-CD20 agents and S1P receptor modulators had severely attenuated humoral responses, but SARS-CoV-2-spike-specific TCR clonal depth and breadth were robust across all treatment classes except S1P modulators. No spike-specific or non-spike-specific SARS-CoV-2-associated TCRs were found in those treated with S1P modulators (p = 0.002 for both breadth and depth). Subjects treated with fumarates exhibited somewhat lower spike TCR breadth than subjects treated with other or no DMTs (median 2.27 × 10^-5 for fumarates and 4.96 × 10^-5 for all others, p = 0.008), but no statistically significant difference was demonstrated with spike TCR depth. No other significant associations with DMT type were found. We found no significant correlations between depth or breadth and age, duration of treatment, type of vaccination, or time interval since vaccination. CONCLUSION This is the first study to characterize post-vaccination SARS-CoV-2 TCR repertoires in DMT-treated individuals. We demonstrated a dichotomous response to SARS-CoV-2 vaccination in anti-CD20-treated patients, with severely attenuated humoral response but intact TCR depth and breadth. It is unclear to what degree each arm of the adaptive immune system impacts post-vaccine immunity, both from the standpoint of incidence of post-vaccine infections and that of infection severity, and further clinical studies are necessary. S1P modulator-treated subjects exhibited both severely attenuated humoral responses and absent spike-specific TCR depth and breadth, information which is crucial for counseling of patients on these agents. Our methodology can be used in larger studies to determine the benefit of repeated vaccination doses, including those that are modified to better target modern or seasonal variants, without the use of live cell assays.
Collapse
Affiliation(s)
- Priyanka Algu
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, United States
| | - Natasha Hameed
- Northwell Multiple Sclerosis Center, 611 Northern Blvd, Great Neck, NY 11021, United States
| | - Tracy DeAngelis
- Neurological Associates of Long Island, 1991 Marcus Ave, New Hyde Park, NY 11042, United States
| | - Joel Stern
- Northwell Multiple Sclerosis Center, 350 Community Drive, Manhasset NY 11030, United States
| | - Asaff Harel
- Northwell Multiple Sclerosis Center, 130 East 77th Street, 8 Black Hall, NY 10075, United States.
| |
Collapse
|
4
|
Bakirtzis C, Konstantinidou N, Stavropoulou De Lorenzo S, Moysiadis T, Boziki MK, Grigoriadou E, Kesidou E, Theotokis P, Thireos E, Mitrou P, Grigoriadis N. COVID-19 Vaccination and Disease Course in People with Multiple Sclerosis in Greece. J Clin Med 2023; 12:5460. [PMID: 37685528 PMCID: PMC10488265 DOI: 10.3390/jcm12175460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Over the past three years, humanity faced the abrupt spread of COVID-19, responsible for a worldwide health crisis. Initially, it was believed that individuals with chronic disorders, including multiple sclerosis, were more likely to be infected and suffer a worse degree of COVID-19 disease. Therefore, data with regard to COVID-19 disease outcomes in these populations may provide additional insight with regard to the management of chronic diseases during viral pandemics. The objective of this study is to evaluate COVID-19 disease course in people with multiple sclerosis (PwMS) during the COVID-19 pandemic in Greece and explore the impact of vaccination in the outcome of SARS-CoV-2 infection in this population. Anonymized data, extracted from nationwide administrative records between February 2020 and December 2021, were retrospectively analyzed in order to identify PwMS with SARS-CoV-2 infection. Demographic data, as well as data regarding COVID-19 infection and vaccination, were additionally collected. The study sample included 2351 PwMS (65.1% females, 51.2% unvaccinated at the time of infection). A total of 260 PwMS were hospitalized, while 25 PwMS died from COVID-19 disease and its complications. Older age, male sex and the presence of comorbidities were independently associated with a higher probability of hospitalization. The risk of hospitalization was decreased in PwMS receiving some disease-modifying treatments. Anti-CD20s demonstrated high odds ratios without reaching statistical significance. Regarding fatal outcome, only age reached statistical significance. Vaccination provided a significant protective effect against hospitalization but did not exhibit a statistically significant effect on mortality.
Collapse
Affiliation(s)
- Christos Bakirtzis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Natalia Konstantinidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Sotiria Stavropoulou De Lorenzo
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Theodoros Moysiadis
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus;
| | - Marina-Kleopatra Boziki
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Eleni Grigoriadou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Paschalis Theotokis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Eleftherios Thireos
- Primary Health Center of Vari, National Health System of Greece, 16672 Athens, Greece;
| | - Panagiota Mitrou
- Independent Department of Therapeutic Protocols and Patient Registers, Hellenic Ministry of Health, 10433 Athens, Greece;
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| |
Collapse
|
5
|
Abdelaziz MO, Raftery MJ, Weihs J, Bielawski O, Edel R, Köppke J, Vladimirova D, Adler JM, Firsching T, Voß A, Gruber AD, Hummel LV, Fernandez Munoz I, Müller-Marquardt F, Willimsky G, Elleboudy NS, Trimpert J, Schönrich G. Early protective effect of a ("pan") coronavirus vaccine (PanCoVac) in Roborovski dwarf hamsters after single-low dose intranasal administration. Front Immunol 2023; 14:1166765. [PMID: 37520530 PMCID: PMC10372429 DOI: 10.3389/fimmu.2023.1166765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the danger posed by human coronaviruses. Rapid emergence of immunoevasive variants and waning antiviral immunity decrease the effect of the currently available vaccines, which aim at induction of neutralizing antibodies. In contrast, T cells are marginally affected by antigen evolution although they represent the major mediators of virus control and vaccine protection against virus-induced disease. Materials and methods We generated a multi-epitope vaccine (PanCoVac) that encodes the conserved T cell epitopes from all structural proteins of coronaviruses. PanCoVac contains elements that facilitate efficient processing and presentation of PanCoVac-encoded T cell epitopes and can be uploaded to any available vaccine platform. For proof of principle, we cloned PanCoVac into a non-integrating lentivirus vector (NILV-PanCoVac). We chose Roborovski dwarf hamsters for a first step in evaluating PanCoVac in vivo. Unlike mice, they are naturally susceptible to SARS-CoV-2 infection. Moreover, Roborovski dwarf hamsters develop COVID-19-like disease after infection with SARS-CoV-2 enabling us to look at pathology and clinical symptoms. Results Using HLA-A*0201-restricted reporter T cells and U251 cells expressing a tagged version of PanCoVac, we confirmed in vitro that PanCoVac is processed and presented by HLA-A*0201. As mucosal immunity in the respiratory tract is crucial for protection against respiratory viruses such as SARS-CoV-2, we tested the protective effect of single-low dose of NILV-PanCoVac administered via the intranasal (i.n.) route in the Roborovski dwarf hamster model of COVID-19. After infection with ancestral SARS-CoV-2, animals immunized with a single-low dose of NILV-PanCoVac i.n. did not show symptoms and had significantly decreased viral loads in the lung tissue. This protective effect was observed in the early phase (2 days post infection) after challenge and was not dependent on neutralizing antibodies. Conclusion PanCoVac, a multi-epitope vaccine covering conserved T cell epitopes from all structural proteins of coronaviruses, might protect from severe disease caused by SARS-CoV-2 variants and future pathogenic coronaviruses. The use of (HLA-) humanized animal models will allow for further efficacy studies of PanCoVac-based vaccines in vivo.
Collapse
Affiliation(s)
- Mohammed O. Abdelaziz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Weihs
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, Division of Gastroenterology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olivia Bielawski
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Edel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Köppke
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Julia M. Adler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Theresa Firsching
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anne Voß
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Luca V. Hummel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivan Fernandez Munoz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francesca Müller-Marquardt
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Nooran S. Elleboudy
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Otero-Romero S, Lebrun-Frénay C, Reyes S, Amato MP, Campins M, Farez M, Filippi M, Hacohen Y, Hemmer B, Juuti R, Magyari M, Oreja-Guevara C, Siva A, Vukusic S, Tintoré M. ECTRIMS/EAN consensus on vaccination in people with multiple sclerosis: Improving immunization strategies in the era of highly active immunotherapeutic drugs. Mult Scler 2023; 29:904-925. [PMID: 37293841 PMCID: PMC10338708 DOI: 10.1177/13524585231168043] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/30/2023] [Accepted: 03/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND With the new highly active drugs available for people with multiple sclerosis (pwMS), vaccination becomes an essential part of the risk management strategy. OBJECTIVE To develop a European evidence-based consensus for the vaccination strategy of pwMS who are candidates for disease-modifying therapies (DMTs). METHODS This work was conducted by a multidisciplinary working group using formal consensus methodology. Clinical questions (defined as population, interventions, and outcomes) considered all authorized DMTs and vaccines. A systematic literature search was conducted and quality of evidence was defined according to the Oxford Centre for Evidence-Based Medicine Levels of Evidence. The recommendations were formulated based on the quality of evidence and the risk-benefit balance. RESULTS Seven questions, encompassing vaccine safety, vaccine effectiveness, global vaccination strategy and vaccination in sub-populations (pediatric, pregnant women, elderly and international travelers) were considered. A narrative description of the evidence considering published studies, guidelines, and position statements is presented. A total of 53 recommendations were agreed by the working group after three rounds of consensus. CONCLUSION This first European consensus on vaccination in pwMS proposes the best vaccination strategy according to current evidence and expert knowledge, with the goal of homogenizing the immunization practices in pwMS.
Collapse
Affiliation(s)
- Susana Otero-Romero
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Barcelona Hospital, Barcelona, Spain Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | | | - Saúl Reyes
- Fundación Santa Fe de Bogotá, Bogotá, Colombia School of Medicine, Universidad de los Andes, Bogotá, Colombia Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence, Italy IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Magda Campins
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | - Mauricio Farez
- Centro para la Investigación de Enfermedades Neuroinmunológicas (CIEN), FLENI, Buenos Aires, Argentina
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy Neurology Unit, Neurorehabilitation Unit, and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy Vita-Salute San Raffaele University, Milan, Italy
| | - Yael Hacohen
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Bernhard Hemmer
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rosa Juuti
- Multiple Sclerosis International Federation, London, UK
| | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis Center and the Danish Multiple Sclerosis Registry, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, IdISSC, Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Aksel Siva
- Department of Neurology, School of Medicine, Istanbul University Cerrahpasa, Cerrahpasa, Istanbul, Turkey
| | - Sandra Vukusic
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
- Centre des Neurosciences de Lyon, Observatoire Français de la Sclérose en Plaques, INSERM 1028 et CNRS UMR5292, Lyon, France Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| |
Collapse
|
7
|
Zaloum SA, Wood CH, Tank P, Upcott M, Vickaryous N, Anderson V, Baker D, Chance R, Evangelou N, George K, Giovannoni G, Harding KE, Hibbert A, Ingram G, Jolles S, Kang AS, Loveless S, Moat SJ, Richards A, Robertson NP, Rios F, Schmierer K, Willis M, Dobson R, Tallantyre EC. Risk of COVID-19 in people with multiple sclerosis who are seronegative following vaccination. Mult Scler 2023; 29:979-989. [PMID: 37431627 PMCID: PMC10333979 DOI: 10.1177/13524585231185247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/05/2023] [Accepted: 04/22/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND People with multiple sclerosis (pwMS) treated with certain disease-modifying therapies (DMTs) have attenuated IgG response following COVID-19 vaccination; however, the clinical consequences remain unclear. OBJECTIVE To report COVID-19 rates in pwMS according to vaccine serology. METHODS PwMS with available (1) serology 2-12 weeks following COVID-19 vaccine 2 and/or vaccine 3 and (2) clinical data on COVID-19 infection/hospitalisation were included. Logistic regression was performed to examine whether seroconversion following vaccination predicted risk of subsequent COVID-19 infection after adjusting for potential confounders. Rates of severe COVID-19 (requiring hospitalisation) were also calculated. RESULTS A total of 647 pwMS were included (mean age 48 years, 500 (77%) female, median Expanded Disability Status Scale (EDSS) 3.5% and 524 (81%) exposed to DMT at the time of vaccine 1). Overall, 472 out of 588 (73%) were seropositive after vaccines 1 and 2 and 222 out of 305 (73%) after vaccine 3. Seronegative status after vaccine 2 was associated with significantly higher odds of subsequent COVID-19 infection (odds ratio (OR): 2.35, 95% confidence interval (CI): 1.34-4.12, p = 0.0029), whereas seronegative status after vaccine 3 was not (OR: 1.05, 95% CI: 0.57-1.91). Five people (0.8%) experienced severe COVID-19, all of whom were seronegative after most recent vaccination. CONCLUSION Attenuated humoral response to initial COVID-19 vaccination predicts increased risk of COVID-19 in pwMS, but overall low rates of severe COVID-19 were seen.
Collapse
Affiliation(s)
- Safiya A Zaloum
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Callum H Wood
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Pooja Tank
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Matthew Upcott
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Nicola Vickaryous
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Valerie Anderson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - David Baker
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Randy Chance
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK/Centre for Oral Immunobiology and Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nikos Evangelou
- Clinical Neurology, Academic Unit of Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, UK
| | - Katila George
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK/Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK/Department of Neurology, Barts Health NHS Trust, London, UK
| | | | - Aimee Hibbert
- Clinical Neurology, Academic Unit of Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, UK
| | - Gillian Ingram
- Department of Neurology, Morriston Hospital, Swansea, UK
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK/School of Medicine, Cardiff University, Cardiff, UK
| | - Angray S Kang
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK/Centre for Oral Immunobiology and Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Samantha Loveless
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Stuart J Moat
- Wales Newborn Screening Laboratory, Department of Medical Biochemistry, Immunology and Toxicology, University Hospital of Wales, Cardiff, UK/School of Medicine, Cardiff University, Cardiff, UK
| | - Aidan Richards
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK/Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Francesca Rios
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Klaus Schmierer
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK/Department of Neurology, Barts Health NHS Trust, London, UK
| | - Mark Willis
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK/Department of Neurology, Barts Health NHS Trust, London, UK
| | - Emma C Tallantyre
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK/Department of Neurology, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
8
|
Bazylewicz M, Gudowska-Sawczuk M, Mroczko B, Kochanowicz J, Kułakowska A. COVID-19: The Course, Vaccination and Immune Response in People with Multiple Sclerosis: Systematic Review. Int J Mol Sci 2023; 24:9231. [PMID: 37298185 PMCID: PMC10253145 DOI: 10.3390/ijms24119231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
When the Coronavirus Disease 2019 (COVID-19) appeared, it was unknown what impact it would have on the condition of patients with autoimmunological disorders. Attention was focused on the course of infection in patients suffering from multiple sclerosis (MS), specially treated with disease-modifying therapies (DMTs) or glucocorticoids. The impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection on the occurrence of MS relapses or pseudo-relapses was important. This review focuses on the risk, symptoms, course, and mortality of COVID-19 as well as immune response to vaccinations against COVID-19 in patients with MS (PwMS). We searched the PubMed database according to specific criteria. PwMS have the risk of infection, hospitalization, symptoms, and mortality due to COVID-19, mostly similar to the general population. The presence of comorbidities, male sex, a higher degree of disability, and older age increase the frequency and severity of the COVID-19 course in PwMS. For example, it was reported that anti-CD20 therapy is probably associated with an increased risk of severe COVID-19 outcomes. After SARS-CoV-2 infection or vaccination, MS patients acquire humoral and cellular immunity, but the degree of immune response depends on applied DMTs. Additional studies are necessary to corroborate these findings. However, indisputably, some PwMS need special attention within the context of COVID-19.
Collapse
Affiliation(s)
- Marcin Bazylewicz
- Department of Neurology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Bialystok, Poland
| | - Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Bialystok, Poland
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Bialystok, Poland
| |
Collapse
|
9
|
Conway S, Saxena S, Baecher-Allan C, Krishnan R, Houtchens M, Glanz B, Saraceno TJ, Polgar-Turcsanyi M, Bose G, Bakshi R, Bhattacharyya S, Galetta K, Kaplan T, Severson C, Singhal T, Stazzone L, Zurawski J, Paul A, Weiner HL, Healy BC, Chitnis T. Preserved T cell but attenuated antibody response in MS patients on fingolimod and ocrelizumab following 2nd and 3rd SARS-CoV-2 mRNA vaccine. Mult Scler J Exp Transl Clin 2023; 9:20552173231165196. [PMID: 37057191 PMCID: PMC10086198 DOI: 10.1177/20552173231165196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2023] [Indexed: 04/15/2023] Open
Abstract
Background There is limited knowledge about T cell responses in patients with multiple sclerosis (MS) after 3 doses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine. Objectives Assess the SARS-CoV-2 spike antibody and T cell responses in MS patients and healthy controls (HCs) after 2 doses (2-vax) and 3 doses (3-vax) of SARS-CoV-2 mRNA vaccination. Methods We studied seroconversion rates and T cell responses by flow cytometry in HC and MS patients on fingolimod or ocrelizumab. Results After 2-vax, 8/33 (24.2%) patients in ocrelizumab group, 5/7 (71.4%) in fingolimod group, and 29/29 (100%) in HC group (P = 5.7 × 10-11) seroconverted. After 3-vax, 9/22 (40.9%) patients in ocrelizumab group, 19/21 (90.5%) in fingolimod group, and 7/7 (100%) in HC group seroconverted (P = 0.0003). The percentage of SARS-CoV-2 peptide reactive total CD4+ T cells increased in HC and ocrelizumab group but not in fingolimod group after 2-vax and 3-vax (P < 0.0001). The percentage of IFNγ and TNFα producing total CD4+ and CD8+ T cells increased in fingolimod group as compared to HC and ocrelizumab group after 2-vax and 3-vax (P < 0.0001). Conclusions MS patients on ocrelizumab and fingolimod had attenuated humoral responses, but preserved cytokine producing T cell responses compared to HCs after SARS-CoV-2 mRNA vaccination. Clinical Trials Registration NCT05060354.
Collapse
Affiliation(s)
- Sarah Conway
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shrishti Saxena
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Clare Baecher-Allan
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rajesh Krishnan
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Maria Houtchens
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bonnie Glanz
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Taylor J Saraceno
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Mariann Polgar-Turcsanyi
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Gauruv Bose
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shamik Bhattacharyya
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kristin Galetta
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tamara Kaplan
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher Severson
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tarun Singhal
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lynn Stazzone
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Jonathan Zurawski
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anu Paul
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Howard L Weiner
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian C Healy
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tanuja Chitnis
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Jaber A, Patel M, Sylvester A, Yarussi M, Kalina JT, Mendoza JP, Avila RL, Tremblay MA. COVID-19 Vaccine Response in People with Multiple Sclerosis Treated with Dimethyl Fumarate, Diroximel Fumarate, Natalizumab, Ocrelizumab, or Interferon Beta Therapy. Neurol Ther 2023; 12:687-700. [PMID: 36792812 PMCID: PMC9931564 DOI: 10.1007/s40120-023-00448-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Some multiple sclerosis (MS) disease-modifying therapies (DMTs) impair responses to vaccines, emphasizing the importance of understanding COVID-19 vaccine immune responses in people with MS (PwMS) receiving different DMTs. METHODS This prospective, open-label observational study enrolled 45 participants treated with natalizumab (n = 12), ocrelizumab (n = 16), fumarates (dimethyl fumarate or diroximel fumarate, n = 11), or interferon beta (n = 6); ages 18-65 years inclusive; stable on DMT for at least 6 months. Responder rates, anti-SARS-CoV-2 spike receptor-binding domain IgG (anti-RBD) geometric mean titers (GMTs), antigen-specific T cells, and vaccination-related adverse events were evaluated at baseline and 8, 24, 36, and 48 weeks after first mRNA-1273 (Moderna) dose. RESULTS At 8 weeks post vaccination, all natalizumab-, fumarate-, and interferon beta-treated participants generated detectable anti-RBD IgG titers, compared to only 25% of the ocrelizumab cohort. At 24 and 36 weeks post vaccination, natalizumab-, fumarate-, and interferon beta-treated participants continued to demonstrate detectable anti-RBD IgG titers, whereas participants receiving ocrelizumab did not. Anti-RBD GMTs decreased 81.5% between 8 and 24 weeks post vaccination for the non-ocrelizumab-treated participants, with no significant difference between groups. At 36 weeks post vaccination, ocrelizumab-treated participants had higher proportions of spike-specific T cells compared to other treatment groups. Vaccine-associated side effects were highest in the ocrelizumab arm for most symptoms. CONCLUSIONS These results suggest that humoral response to mRNA-1273 COVID-19 vaccine is preserved and similar in PwMS treated with natalizumab, fumarate, and interferon beta, but muted with ocrelizumab. All DMTs had preserved T cell response, including the ocrelizumab cohort, which also had a greater risk of vaccine-related side effects.
Collapse
Affiliation(s)
- Aliya Jaber
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA
| | - Meera Patel
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA
| | - Andrew Sylvester
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA
| | - Mary Yarussi
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA
| | | | | | | | - Matthew A Tremblay
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA.
| |
Collapse
|
11
|
Stoll S, Desai S, Levit E. A retrospective evaluation of seroconversion after COVID-19 during the early Omicron wave in fully vaccinated multiple sclerosis patients receiving anti-CD20 therapies. Mult Scler Relat Disord 2023; 71:104574. [PMID: 36827874 PMCID: PMC9928678 DOI: 10.1016/j.msard.2023.104574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Patients with multiple sclerosis (MS) are commonly treated with anti-CD20 therapies. Reduced seroconversion following COVID-19 vaccination in patients receiving certain anti-CD20 therapies has been reported; however, the immune response following natural infection is poorly characterised. This study aimed to retrospectively evaluate COVID-19 antibody responses after vaccination and natural infection in patients treated with anti-CD20 therapies. METHODS We performed a retrospective review evaluating COVID-19 seroconversion and anti-spike glycoprotein antibody titres in double-vaccinated patients with MS, or related neuroinflammatory conditions, treated with anti-CD20 therapies (N = 30) with a confirmed history of natural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (n = 14) or without infection (control; n = 16). This single-centre study was performed at the Yale Multiple Sclerosis Center, where patients treated with anti-CD20 therapies (ocrelizumab, n = 21; rituximab, n = 5; ofatumumab, n = 4) were systematically checked for SARS-CoV-2 anti-spike antibody levels throughout the pandemic. Data were collected from March 2020 to March 2022. All patients had received at least two doses of a Food and Drug Administration (FDA)-approved COVID-19 vaccine. Qualitative anti-spike antibody seropositivity was determined based on test-specific laboratory reference ranges. For a subset of patients (n = 18), quantitative anti-spike antibody levels were assessed via DiaSorin LIAISON® chemiluminescence immunoassay (positive titre was defined as ≥ 13). Vaccination and infection dates were also recorded, and patients were monitored for adverse COVID-19-related health effects. RESULTS Overall, 15/30 (50.0%) patients seroconverted following double vaccination. After infection, 13/14 (92.9%) seroconverted, while 6/16 (37.5%) uninfected patients seroconverted after vaccination. For the 18 patients with quantitative anti-spike antibody titres, mean titre post-vaccination was 37.4. Mean antibody titres were significantly higher after infection: 540.3 versus 20.1 in the control group (p < 0.05). Of the 14 infected patients, 13 had mild COVID-19 symptoms and one was asymptomatic. No hospitalisations or deaths were reported. CONCLUSIONS This study reports that SARS-CoV-2 anti-spike antibody titres in double-vaccinated MS patients treated with anti-CD20 therapies were significantly increased post-infection compared with the control group. Patients treated with anti-CD20 therapy who had confirmed infections displayed mild or asymptomatic infection. These results provide reassurance that anti-CD20 therapies in double-vaccinated patients do not preclude an appropriate SARS-CoV-2 antibody response post-infection.
Collapse
Affiliation(s)
- Sharon Stoll
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Shree Desai
- Yale University and Yale New Haven Hospital, New Haven, CT, USA
| | - Elle Levit
- Yale University and Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
12
|
Mathias A, Pantazou V, Perriot S, Canales M, Jones S, Oberholster L, Moulin M, Fenwick C, Bernard-Valnet R, Théaudin M, Pot C, Du Pasquier RA. Ocrelizumab Impairs the Phenotype and Function of Memory CD8 + T Cells: A 1-Year Longitudinal Study in Patients With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/2/e200084. [PMID: 36717268 PMCID: PMC9887539 DOI: 10.1212/nxi.0000000000200084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/22/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Depleting CD20+ B cells is the primary mechanism by which ocrelizumab (OCRE) is efficient in persons with multiple sclerosis (pwMS). However, the exact role of OCRE on other immune cell subsets directly or indirectly remains elusive. The purpose of this study is to characterize the dynamics of peripheral immune cells of pwMS on OCRE. METHODS We collected blood samples from 38 pwMS before OCRE onset (T0) and at 6 and 12 months (T6, T12) after initiation. To cover the immune cell diversity, using mass cytometry time of flight, we designed a 38-parameter panel to analyze B, T, and innate immune cell markers and CNS migratory markers. In parallel, viral-specific CD8+ T-cell responses were assessed by the quantification of interferon-γ secretion using the enzyme-linked immunospot assay on cytomegalovirus, Epstein-Barr virus, and influenza stimulations. RESULTS Beside B-cell depletion, we observed a loss in memory CD8+CD20+ and central memory CD8+ T cells but not in CD4+CD20+ T cells already at T6 and T12 (p < 0.001). The loss of memory CD8+ T cells correlated with a lower CXCR3 expression (p < 0.001) and CNS-related LFA-1 integrin expression (p < 0.001) as well as a reduced antiviral cellular immune response observed at both time points (p < 0.001). Of note, we did not observe major changes in the phenotype of the other cell types studied. Seven of 38 (18.4%) patients in our cohort presented with infections while on OCRE; 4 of which were switched from dimethyl fumarate. Finally, using a mixed linear model on mass cytometry data, we demonstrated that the immunomodulation induced by previous disease-modifying therapies (DMTs) was prolonged over the period of the study. DISCUSSION In addition to its well-known role on B cells, our data suggest that OCRE also acts on CD8+ T cells by depleting the memory compartment. These changes in CD8+ T cells may be an asset in the action of OCRE on MS course but might also contribute to explain the increased occurrence of infections in these patients. Finally, although more data are needed to confirm this observation, it suggests that clinicians should pay a special attention to an increased infection risk in pwMS switched from other DMTs to OCRE.
Collapse
Affiliation(s)
- Amandine Mathias
- From the Laboratories of Neuroimmunology (A.M., V.P., S.P., M.C., S.J., L.O., C.P., R.A.D), Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland; Service of Neurology (V.P., R.B.-V., M.T., C.P., R.A.D.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland; Paris Brain Institute (V.P.), Lubetzki-Stankoff group of Myelination, France; Service of Immunology and Allergy (M.M., C.F.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mazziotti V, Crescenzo F, Tamanti A, Dapor C, Ziccardi S, Guandalini M, Colombi A, Camera V, Peloso A, Pezzini F, Turano E, Marastoni D, Calabrese M. Immune Response after COVID-19 mRNA Vaccination in Multiple Sclerosis Patients Treated with DMTs. Biomedicines 2022; 10:biomedicines10123034. [PMID: 36551795 PMCID: PMC9775192 DOI: 10.3390/biomedicines10123034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
The impact of disease-modifying therapies (DMTs) on the immune response to coronavirus disease-2019 (COVID-19) vaccines in persons with multiple sclerosis (pwMS) needs further elucidation. We investigated BNT162b2 mRNA COVID-19 vaccine effects concerning antibody seroconversion, inflammatory mediators' level and immunophenotype assessment in pwMS treated with cladribine (c-pwMS, n = 29), fingolimod (f-pwMS, n = 15) and ocrelizumab (o-pwMS, n = 54). Anti-spike immunoglobulin (Ig)-G detection was performed by an enzyme immunoassay; molecular mediators (GrB, IFN-γ and TNF-α) were quantified using the ELLA platform, and immunophenotype was assessed by flow cytometry. ANCOVA, Student's t-test and Pearson correlation analyses were applied. Only one o-pwMS showed a mild COVID-19 infection despite most o-pwMS lacking seroconversion and showing lower anti-spike IgG titers than c-pwMS and f-pwMS. No significant difference in cytokine production and lymphocyte count was observed in c-pwMS and f-pwMS. In contrast, in o-pwMS, a significant increase in GrB levels was detected after vaccination. Considering non-seroconverted o-pwMS, a significant increase in GrB serum levels and CD4+ T lymphocyte count was found after vaccination, and a negative correlation was observed between anti-spike IgG production and CD4+ T cells count. Differences in inflammatory mediators' production after BNT162b2 vaccination in o-pwMS, specifically in those lacking anti-spike IgG, suggest a protective cellular immune response.
Collapse
Affiliation(s)
- Valentina Mazziotti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Francesco Crescenzo
- Neurology Unit, “Mater Salutis” Hospital, ULSS 9 Scaligera, 37045 Legnago, Italy
| | - Agnese Tamanti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Caterina Dapor
- Department of General Psychology, University of Padova, 35131 Padua, Italy
| | - Stefano Ziccardi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Maddalena Guandalini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Annalisa Colombi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Valentina Camera
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Angela Peloso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37134 Verona, Italy
| | - Ermanna Turano
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Massimiliano Calabrese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
14
|
Muñoz-Jurado A, Escribano BM, Agüera E, Caballero-Villarraso J, Galván A, Túnez I. SARS-CoV-2 infection in multiple sclerosis patients: interaction with treatments, adjuvant therapies, and vaccines against COVID-19. J Neurol 2022; 269:4581-4603. [PMID: 35788744 PMCID: PMC9253265 DOI: 10.1007/s00415-022-11237-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
The SARS-CoV-2 pandemic has raised particular concern for people with Multiple Sclerosis, as these people are believed to be at increased risk of infection, especially those being treated with disease-modifying therapies. Therefore, the objective of this review was to describe how COVID-19 affects people who suffer from Multiple Sclerosis, evaluating the risk they have of suffering an infection by this virus, according to the therapy to which they are subjected as well as the immune response of these patients both to infection and vaccines and the neurological consequences that the virus can have in the long term. The results regarding the increased risk of infection due to treatment are contradictory. B-cell depletion therapies may cause patients to have a lower probability of generating a detectable neutralizing antibody titer. However, more studies are needed to help understand how this virus works, paying special attention to long COVID and the neurological symptoms that it causes.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain
| | - Begoña M. Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
| | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
- Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Javier Caballero-Villarraso
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Av. Menendez Pidal, 14004 Cordoba, Spain
- Clinical Analysis Service, Reina Sofía University Hospital, Cordoba, Spain
| | - Alberto Galván
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Av. Menendez Pidal, 14004 Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Av. Menendez Pidal, 14004 Cordoba, Spain
- Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Madrid, Spain
| |
Collapse
|
15
|
Inchingolo AD, Malcangi G, Ceci S, Patano A, Corriero A, Vimercati L, Azzollini D, Marinelli G, Coloccia G, Piras F, Barile G, Settanni V, Mancini A, De Leonardis N, Garofoli G, Palmieri G, Isacco CG, Rapone B, Scardapane A, Curatoli L, Quaranta N, Ribezzi M, Massaro M, Jones M, Bordea IR, Tartaglia GM, Scarano A, Lorusso F, Macchia L, Larocca AMV, Aityan SK, Tafuri S, Stefanizzi P, Migliore G, Brienza N, Dipalma G, Favia G, Inchingolo F. Effectiveness of SARS-CoV-2 Vaccines for Short- and Long-Term Immunity: A General Overview for the Pandemic Contrast. Int J Mol Sci 2022; 23:8485. [PMID: 35955621 PMCID: PMC9369331 DOI: 10.3390/ijms23158485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The recent COVID-19 pandemic produced a significant increase in cases and an emergency state was induced worldwide. The current knowledge about the COVID-19 disease concerning diagnoses, patient tracking, the treatment protocol, and vaccines provides a consistent contribution for the primary prevention of the viral infection and decreasing the severity of the SARS-CoV-2 disease. The aim of the present investigation was to produce a general overview about the current findings for the COVID-19 disease, SARS-CoV-2 interaction mechanisms with the host, therapies and vaccines' immunization findings. METHODS A literature overview was produced in order to evaluate the state-of-art in SARS-CoV-2 diagnoses, prognoses, therapies, and prevention. RESULTS Concerning to the interaction mechanisms with the host, the virus binds to target with its Spike proteins on its surface and uses it as an anchor. The Spike protein targets the ACE2 cell receptor and enters into the cells by using a special enzyme (TMPRSS2). Once the virion is quietly accommodated, it releases its RNA. Proteins and RNA are used in the Golgi apparatus to produce more viruses that are released. Concerning the therapies, different protocols have been developed in observance of the disease severity and comorbidity with a consistent reduction in the mortality rate. Currently, different vaccines are currently in phase IV but a remarkable difference in efficiency has been detected concerning the more recent SARS-CoV-2 variants. CONCLUSIONS Among the many questions in this pandemic state, the one that recurs most is knowing why some people become more seriously ill than others who instead contract the infection as if it was a trivial flu. More studies are necessary to investigate the efficiency of the treatment protocols and vaccines for the more recent detected SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Arnaldo Scardapane
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Luigi Curatoli
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Nicola Quaranta
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Mario Ribezzi
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Maria Massaro
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| | - Megan Jones
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Angela Maria Vittoria Larocca
- Hygiene Complex Operating Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Place Giulio Cesare 11 BARI CAP, 70124 Bari, Italy;
| | | | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Pasquale Stefanizzi
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Giovanni Migliore
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Gianfranco Favia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| |
Collapse
|
16
|
Guerrera G, Mandelli A, Finardi A, Orrico M, D'Orso S, Picozza M, Noviello M, Beretta V, Bonetti B, Calabrese M, Marastoni D, De Rossi N, Capra R, Salvetti M, Buscarinu MC, Inglese M, Uccelli A, Moiola L, Raposo C, Muros-Le Rouzic E, Pedotti R, Filippi M, Bonini C, Battistini L, Borsellino G, Furlan R. Anti-SARS-CoV-2 T-stem cell memory persists in ocrelizumab-treated MS patients. Mult Scler 2022; 28:1937-1943. [PMID: 35723265 DOI: 10.1177/13524585221102158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Development of long-lasting anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) T-cell responses in persons with multiple sclerosis (pwMS) treated with ocrelizumab is questioned. OBJECTIVE Investigate antiviral T-cell responses after infection with SARS-CoV-2 in ocrelizumab-treated pwMS. Control groups included ocrelizumab-treated pwMS without SARS-CoV-2 infection, and non-MS individuals with and without SARS-CoV-2 infection. METHODS Peripheral blood mononuclear cells were stimulated with SARS-CoV-2 peptide pools and T-cell reactivity was assessed by ELISPOT for interferon (IFN)-γ detection, and by multiparametric fluorescence-activated cell sorting (FACS) analyses for assessment and characterization of T-cell activation. RESULTS ELISPOT assay against the spike and the N protein of SARS-CoV-2 displayed specific T-cell reactivity in 28/29 (96%) pwMS treated with ocrelizumab and infected by SARS-CoV-2, similar to infected persons without MS. This reactivity was present 1 year after infection and independent from the time of ocrelizumab infusion. FACS analysis following stimulation with SARS-CoV-2 peptide pools showed the presence of activation-induced markers (AIMs) in both CD4+ and CD8+ T-cell subsets in 96% and 92% of these individuals, respectively. Within naïve AIM+ CD4+ and CD8+ T-cells, we detected T memory stem cells, suggesting the acquisition of long-term memory. CONCLUSIONS B-cell depletion using ocrelizumab does not impair the development of long-lasting anti-SARS-CoV-2 T-cell responses.
Collapse
Affiliation(s)
| | - Alessandra Mandelli
- Division of Neuroscience, Clinical Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Division of Neuroscience, Clinical Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Orrico
- Neurology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Silvia D'Orso
- Neuroimmunology Unit, Fondazione Santa Lucia, Rome, Italy
| | - Mario Picozza
- Neuroimmunology Unit, Fondazione Santa Lucia, Rome, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Beretta
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bruno Bonetti
- Dipartimento di Scienze Neurologiche e della Visione, Istituto di Neurologia Policlinico Borgo Roma, Universita di Verona, Verona, Italy
| | - Massimiliano Calabrese
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Neurology B, Regional Multiple Sclerosis Center, Università degli Studi di Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Neurology B, Regional Multiple Sclerosis Center, Università degli Studi di Verona, Verona, Italy
| | - Nicola De Rossi
- Multiple Sclerosis Centre, Spedali Civili di Brescia, Brescia, Italy
| | - Ruggero Capra
- Multiple Sclerosis Centre, Spedali Civili di Brescia, Brescia, Italy
| | | | | | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genova, Italy/IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genova, Italy
| | - Lucia Moiola
- Neurology, IRCCS Ospedale San Raffaele, Milano, Italy
| | | | | | | | - Massimo Filippi
- Vita-Salute San Raffaele University, Milano, Italy/Neuroimaging Research Unit, Division of Neuroscience/Neurology Unit/Neurorehabilitation Unit/Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milano, Italy
| | | | | | - Roberto Furlan
- Division of Neuroscience, Clinical Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
17
|
Multiple sclerosis in the era of COVID-19: disease course, DMTs and SARS-CoV2 vaccinations. Curr Opin Neurol 2022; 35:319-327. [PMID: 35674075 DOI: 10.1097/wco.0000000000001066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW As of January 21st 2022, over 340 million are confirmed cases of coronavirus disease 2019 (COVID-19), including nearly 5.6 million deaths. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is neurotropic and affects the neural parenchyma through direct viral invasion from the nasal mucosa and postinfectious cytokine storm. Further challenges of SARS-CoV-2 infection are nowadays linked to variants of concern. Multiple sclerosis is an inflammatory and progressive degenerative disorder of the central nervous system commonly affecting young adults and potentially generating irreversible disability. Since the beginning of the SARS-CoV-2 pandemic, people with multiple sclerosis (pwMS) have been considered 'extra' vulnerable because of the immune-mediated nature of the disease, the disability status, and the immunomodulatory therapies potentially increasing the risk for viral infection. Today multiple sclerosis neurologists are faced with several challenges in the management of pwMS to both prevent SARS-CoV-2 infection and protection from disease worsening. We aimed to highlight today's most relevant facts about the complex management of pwMS in the COVID-19 era. RECENT FINDINGS The incidence of COVID-19 among pwMS does not differ from the general population. The prognosis of COVID-19 among pwMS is driven by older age, male sex, nonambulatory status, comorbidity as in the general population, as well as by corticosteroid treatment and B-cell depleting agents which decrease seropositivity from SARS-CoV-2 infection and immune responses to SARS-CoV-2 vaccination. SUMMARY Disease modifying treatments (DMTs) should be regularly continued in relation to SARS-CoV-2 vaccination, but an ad hoc timing is required with B-cell depleting agents. SARS-CoV-2 vaccination is recommended in pwMS with willingness improving through health education programs. Multiple sclerosis does not seem to worsen after SARS-Cov2 vaccination but COVID-19 may enhance disease activity.
Collapse
|
18
|
Baker D, MacDougall A, Kang AS, Schmierer K, Giovannoni G, Dobson R. Seroconversion following COVID-19 vaccination: can we optimize protective response in CD20-treated individuals? Clin Exp Immunol 2022; 207:263-271. [PMID: 35553629 PMCID: PMC9113152 DOI: 10.1093/cei/uxab015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Although there is an ever-increasing number of disease-modifying treatments for relapsing multiple sclerosis (MS), few appear to influence coronavirus disease 2019 (COVID-19) severity. There is concern about the use of anti-CD20-depleting monoclonal antibodies, due to the apparent increased risk of severe disease following severe acute respiratory syndrome corona virus two (SARS-CoV-2) infection and inhibition of protective anti-COVID-19 vaccine responses. These antibodies are given as maintenance infusions/injections and cause persistent depletion of CD20+ B cells, notably memory B-cell populations that may be instrumental in the control of relapsing MS. However, they also continuously deplete immature and mature/naïve B cells that form the precursors for infection-protective antibody responses, thus blunting vaccine responses. Seroconversion and maintained SARS-CoV-2 neutralizing antibody levels provide protection from COVID-19. However, it is evident that poor seroconversion occurs in the majority of individuals following initial and booster COVID-19 vaccinations, based on standard 6 monthly dosing intervals. Seroconversion may be optimized in the anti-CD20-treated population by vaccinating prior to treatment onset or using extended/delayed interval dosing (3-6 month extension to dosing interval) in those established on therapy, with B-cell monitoring until (1-3%) B-cell repopulation occurs prior to vaccination. Some people will take more than a year to replete and therefore protection may depend on either the vaccine-induced T-cell responses that typically occur or may require prophylactic, or rapid post-infection therapeutic, antibody or small-molecule antiviral treatment to optimize protection against COVID-19. Further studies are warranted to demonstrate the safety and efficacy of such approaches and whether or not immunity wanes prematurely as has been observed in the other populations.
Collapse
Affiliation(s)
- David Baker
- The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Amy MacDougall
- Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Angray S Kang
- The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Centre for Oral Immunobiology and Regenerative Medicine, Dental Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Klaus Schmierer
- The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Gavin Giovannoni
- The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Ruth Dobson
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, Barts and The London School of Medicine & Dentistry, London, UK
| |
Collapse
|
19
|
Kister I, Patskovsky Y, Curtin R, Pei J, Perdomo K, Rimler Z, Voloshyna I, Samanovic MI, Cornelius AR, Velmurugu Y, Nyovanie S, Kim J, Tardio E, Bacon TE, Zhovtis Ryerson L, Raut P, Rosetta P, Hawker K, Raposo C, Priest J, Cabatingan M, Winger RC, Mulligan MJ, Krogsgaard M, Silverman GJ. Cellular and humoral immunity to SARS-CoV-2 infection in multiple sclerosis patients on ocrelizumab and other disease-modifying therapies: a multi-ethnic observational study. Ann Neurol 2022; 91:782-795. [PMID: 35289960 PMCID: PMC9082484 DOI: 10.1002/ana.26346] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To determine the impact of MS disease-modifying therapies (DMTs) on the development of cellular and humoral immunity to SARS-CoV-2 infection. METHODS MS patients aged 18-60 were evaluated for anti-nucleocapsid and anti-Spike RBD antibody with electro-chemiluminescence immunoassay; antibody responses to Spike protein, RBD, N-terminal domain with multiepitope bead-based immunoassays (MBI); live virus immunofluorescence-based microneutralization assay; T-cell responses to SARS-CoV-2 Spike using TruCulture ELISA; and IL-2 and IFNγ ELISpot assays. Assay results were compared by DMT class. Spearman correlation and multivariate analyses were performed to examine associations between immunologic responses and infection severity. RESULTS Between 1/6/2021 and 7/21/2021, 389 MS patients were recruited (mean age 40.3 years; 74% female; 62% non-White). Most common DMTs were ocrelizumab (OCR) - 40%; natalizumab - 17%, Sphingosine 1-phosphate receptor (S1P) modulators -12%; and 15% untreated. 177 patients (46%) had laboratory evidence of SARS-CoV-2 infection; 130 had symptomatic infection, 47 - asymptomatic. Antibody responses were markedly attenuated in OCR compared to other groups (p≤0.0001). T-cell responses (IFNγ) were decreased in S1P (p=0.03), increased in natalizumab (p<0.001), and similar in other DMTs, including OCR. Cellular and humoral responses were moderately correlated in both OCR (r=0.45, p=0.0002) and non-OCR (r=0.64, p<0.0001). Immune responses did not differ by race/ethnicity. COVID-19 clinical course was mostly non-severe and similar across DMTs; 7% (9/130) were hospitalized. INTERPRETATION DMTs had differential effects on humoral and cellular immune responses to SARS-CoV-2 infection. Immune responses did not correlate with COVID-19 clinical severity in this relatively young and non-disabled group of MS patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ilya Kister
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yury Patskovsky
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ryan Curtin
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jinglan Pei
- Genentech, Inc., South San Francisco, CA, USA
| | - Katherine Perdomo
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Zoe Rimler
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Iryna Voloshyna
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Marie I Samanovic
- NYU Langone Vaccine Center, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Amber R Cornelius
- NYU Langone Vaccine Center, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Yogambigai Velmurugu
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Samantha Nyovanie
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Joseph Kim
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ethan Tardio
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Tamar E Bacon
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Lana Zhovtis Ryerson
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Pranil Raut
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | | - Mark J Mulligan
- NYU Langone Vaccine Center, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Gregg J Silverman
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
20
|
Mariottini A, Bertozzi A, Marchi L, Di Cristinzi M, Mechi C, Barilaro A, Massacesi L, Repice AM. Effect of disease-modifying treatments on antibody-mediated response to anti-COVID19 vaccination in people with multiple sclerosis. J Neurol 2022; 269:2840-2847. [PMID: 35239006 PMCID: PMC8891428 DOI: 10.1007/s00415-022-11003-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/10/2022]
Abstract
Background Few data are available so far on the antibody-mediated immune response to anti-SARS-Cov2 vaccination in people with multiple sclerosis (pwMS) treated with disease-modifying treatments (DMTs), therefore this issue was explored in a real-life cohort of pwMS. Materials and methods Retrospective monocentric study on anti-spike protein antibody response in pwMS who had received vaccination for Sars-Cov2. Adverse events following vaccination were also recorded. Results One hundred and twenty pwMS were included: 83 females (69%); median age at vaccination 42 years (range 21–73); 112/120 patients (93%) were receiving DMTs at vaccination. Anti-spike protein IgG antibodies were detectable in 102/120 (85%) cases overall, being the proportion lower in pwMS receiving anti-CD20 antibodies (14/31, 45%) compared to non-depletive treatments (77/78, 99%), p < 0.0001. Median anti-spike titre was lower in anti-CD20 antibodies and fingolimod-treated pwMS compared to those receiving other DMTs, and it correlated with anti-CD20 treatment duration (R − 0.93, p < 0.0001) and with age at vaccination in pwMS not receiving depletive treatments (R − 0.25, p = 0.028). Baseline CD19+ cell count (where available) was higher in the responder group than in non-responders, p < 0.0001. Two symptomatic COVID-19 infections were diagnosed over a median follow-up of 5 months (range 2–7); adverse events were aligned with the published literature. Conclusion Antibody response to anti-COVID-19 vaccines was detected in most of the pwMS analysed, but frequency of responders was reduced in those receiving CD20 depleting therapies compared to other DMTs-treated pwMS. Investigations on cell-mediated immune response are needed to assess whether a protective immune response is elicited also in non-antibody responders.
Collapse
Affiliation(s)
- Alice Mariottini
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy.,Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy
| | - Andrea Bertozzi
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
| | - Leonardo Marchi
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
| | - Maria Di Cristinzi
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
| | - Claudia Mechi
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy
| | - Alessandro Barilaro
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy
| | - Luca Massacesi
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy.,Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy
| | - Anna Maria Repice
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
21
|
Seroconversion after COVID-19 vaccination for multiple sclerosis patients on high efficacy disease modifying medications. Mult Scler Relat Disord 2022; 60:103719. [PMID: 35276450 PMCID: PMC8890787 DOI: 10.1016/j.msard.2022.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
Abstract
The impaired ability to mount an effective immune response to vaccination leaves immunosuppressed patients at higher risk of severe COVID-19 infection. This retrospective study aimed to evaluate COVID-19 seroconversion and antibody titers for patients on immune modulating therapies compared to those not on disease modifying therapy (DMT). As expected, individuals on B-cell depletion therapies (BCDT) and those on sphingosine 1-phosphate (S1P) modulators had an impaired humoral response to mRNA vaccination. We observed variable seroconversion depending on the type of B-cell depleting medication, with a smaller percentage of seroconversion in patients on infused BCDT (iBCDT, ocrelizumab and rituximab) compared to ofatumumab. The humoral response to vaccination was not impaired for individuals on natalizumab or for untreated MS patients. These observations may influence DMT selection during the COVID-19 era.
Collapse
|
22
|
Zabalza A, Arrambide G, Tagliani P, Cárdenas-Robledo S, Otero-Romero S, Esperalba J, Fernandez-Naval C, Trocoli Campuzano J, Martínez Gallo M, Castillo M, Bonastre M, Resina Sallés M, Beltran J, Carbonell-Mirabent P, Rodríguez-Barranco M, López-Maza S, Melgarejo Otálora PJ, Ruiz-Ortiz M, Pappolla A, Rodríguez Acevedo B, Midaglia L, Vidal-Jordana A, Cobo-Calvo A, Tur C, Galán I, Castilló J, Río J, Espejo C, Comabella M, Nos C, Sastre-Garriga J, Tintore M, Montalban X. Humoral and Cellular Responses to SARS-CoV-2 in Convalescent COVID-19 Patients With Multiple Sclerosis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2022; 9:9/2/e1143. [PMID: 35105687 PMCID: PMC8808353 DOI: 10.1212/nxi.0000000000001143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/21/2021] [Indexed: 01/22/2023]
Abstract
Background and Objectives Information about humoral and cellular responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antibody persistence in convalescent (COVID-19) patients with multiple sclerosis (PwMS) is scarce. The objectives of this study were to investigate factors influencing humoral and cellular responses to SARS-CoV-2 and its persistence in convalescent COVID-19 PwMS. Methods This is a retrospective study of confirmed COVID-19 convalescent PwMS identified between February 2020 and May 2021 by SARS-CoV-2 antibody testing. We examined relationships between demographics, MS characteristics, disease-modifying therapy (DMT), and humoral (immunoglobulin G against spike and nucleocapsid proteins) and cellular (interferon-gamma [IFN-γ]) responses to SARS-CoV-2. Results A total of 121 (83.45%) of 145 PwMS were seropositive, and 25/42 (59.5%) presented a cellular response up to 13.1 months after COVID-19. Anti–CD20-treated patients had lower antibody titers than those under other DMTs (p < 0.001), but severe COVID-19 and a longer time from last infusion increased the likelihood of producing a humoral response. IFN-γ levels did not differ among DMT. Five of 7 (71.4%) anti-–CD20-treated seronegative patients had a cellular response. The humoral response persisted for more than 6 months in 41/56(81.13%) PwMS. In multivariate analysis, seropositivity decreased due to anti-CD20 therapy (OR 0.08 [95% CI 0.01–0.55]) and increased in males (OR 3.59 [1.02–12.68]), whereas the cellular response decreased in those with progressive disease (OR 0.04 [0.001–0.88]). No factors were associated with antibody persistence. Discussion Humoral and cellular responses to SARS-CoV-2 are present in COVID-19 convalescent PwMS up to 13.10 months after COVID-19. The humoral response decreases under anti-CD20 treatment, although the cellular response can be detected in anti–CD20-treated patients, even in the absence of antibodies.
Collapse
|
23
|
Iannetta M, Landi D, Cola G, Campogiani L, Malagnino V, Teti E, Coppola L, Di Lorenzo A, Fraboni D, Buccisano F, Grelli S, Mozzani M, Zingaropoli MA, Ciardi MR, Nisini R, Bernardini S, Andreoni M, Marfia GA, Sarmati L. B- and T-Cell Responses After SARS-CoV-2 Vaccination in Patients With Multiple Sclerosis Receiving Disease Modifying Therapies: Immunological Patterns and Clinical Implications. Front Immunol 2022; 12:796482. [PMID: 35111162 PMCID: PMC8801814 DOI: 10.3389/fimmu.2021.796482] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background Vaccination campaign to contrast the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has raised the issue of vaccine immunogenicity in special populations such as people with multiple sclerosis (PwMS) on highly effective disease modifying treatments (DMTs). While humoral responses to SARS-CoV-2 mRNA vaccines have been well characterized in the general population and in PwMS, very little is known about cell-mediated responses in conferring protection from SARS-CoV-2 infection and severe coronavirus disease-2019 (COVID-19). Methods PwMS on ocrelizumab, fingolimod or natalizumab, vaccinated with two doses of mRNABNT162b2 (Comirnaty®) vaccine were enrolled. Anti-Spike (S) and anti-Nucleoprotein (N) antibody titers, IFN-gamma production upon S and N peptide libraries stimulation, peripheral blood lymphocyte absolute counts were assessed after at least 1 month and within 4 months from vaccine second dose administration. A group of age and sex matched healthy donors (HD) were included as reference group. Statistical analysis was performed using GraphPad Prism 8.2.1. Results Thirty PwMS and 9 HDs were enrolled. All the patients were negative for anti-N antibody detection, nor reported previous symptoms of COVID-19. Peripheral blood lymphocyte counts were assessed in PwMS showing: (i) reduction of circulating B-lymphocytes in PwMS on ocrelizumab; (ii) reduction of peripheral blood B- and T-lymphocyte absolute counts in PwMS on fingolimod and (iii) normal B- and T-lymphocyte absolute counts with an increase in circulating CD16+CD56+ NK-cells in PwMS on natalizumab. Three patterns of immunological responses were identified in PwMS. In patients on ocrelizumab, anti-S antibody were lacking or reduced, while T-cell responses were normal. In patients on fingolimod both anti-S titers and T-cell mediated responses were impaired. In patients on natalizumab both anti-S titers and T-cell responses were present and comparable to those observed in HD. Conclusions The evaluation of T-cell responses, anti-S titers and peripheral blood lymphocyte absolute count in PwMS on DMTs can help to better characterize the immunological response after SARS-CoV-2 vaccination. The evaluation of T-cell responses in longitudinal cohorts of PwMS will help to clarify their protective role in preventing SARS-CoV-2 infection and severe COVID-19. The correlation between DMT treatment and immunological responses to SARS-CoV-2 vaccines could help to better evaluate vaccination strategies in PwMS.
Collapse
Affiliation(s)
- Marco Iannetta
- Infectious Disease Unit, Department of System Medicine, Tor Vergata University and Hospital, Rome, Italy
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University and Hospital, Rome, Italy
| | - Gaia Cola
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University and Hospital, Rome, Italy
| | - Laura Campogiani
- Infectious Disease Unit, Department of System Medicine, Tor Vergata University and Hospital, Rome, Italy
| | - Vincenzo Malagnino
- Infectious Disease Unit, Department of System Medicine, Tor Vergata University and Hospital, Rome, Italy
| | - Elisabetta Teti
- Infectious Disease Unit, Department of System Medicine, Tor Vergata University and Hospital, Rome, Italy
| | - Luigi Coppola
- Infectious Disease Unit, Department of System Medicine, Tor Vergata University and Hospital, Rome, Italy
| | - Andrea Di Lorenzo
- Infectious Disease Unit, Department of System Medicine, Tor Vergata University and Hospital, Rome, Italy
| | - Daniela Fraboni
- Department of Biomedicine and Prevention, Tor Vergata University and Hospital, Rome, Italy
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, Tor Vergata University and Hospital, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, Tor Vergata University and Hospital, Rome, Italy
| | - Marcello Mozzani
- Department of Experimental Medicine, Tor Vergata University and Hospital, Rome, Italy
| | | | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Roberto Nisini
- Department of Infectious Diseases, Istituto Superiore di Sanità (ISS), Roma, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, Tor Vergata University and Hospital, Rome, Italy
| | - Massimo Andreoni
- Infectious Disease Unit, Department of System Medicine, Tor Vergata University and Hospital, Rome, Italy
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University and Hospital, Rome, Italy.,Unit of Neurology, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli, Italy
| | - Loredana Sarmati
- Infectious Disease Unit, Department of System Medicine, Tor Vergata University and Hospital, Rome, Italy
| |
Collapse
|
24
|
Katz JD, Bouley AJ, Jungquist RM, Douglas EA, O'Shea IL, Lathi ES. Humoral and T-cell responses to SARS-CoV-2 vaccination in multiple sclerosis patients treated with ocrelizumab. Mult Scler Relat Disord 2022; 57:103382. [PMID: 35158475 PMCID: PMC8575541 DOI: 10.1016/j.msard.2021.103382] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND The COVID-19 epidemic raises important questions about the efficacy of vaccines for people treated with ocrelizumab, an anti-CD20 therapy. Ocrelizumab has been shown to reduce the humoral response to SARS-CoV-2 infection and vaccination, but the T-cell response to vaccination has not been fully characterized. We sought to provide data regarding B and T-cell mediated responses to SARS-CoV-2 vaccination in ocrelizumab-treated patients, and to determine what variables correlate with vaccine immunogenicity. We hypothesized that patients without a humoral response to SARS-CoV-2 vaccination would still have intact T-cell responses. METHODS We conducted a prospective, observational, single center cohort study of patients with MS treated with either ocrelizumab or natalizumab as a comparator between March 2, 2021, and July 1, 2021. Eligible patients were age 18 to 55 and had no known prior infection with, or vaccination against, SARS-CoV-2. Patients with prior use of immunosuppressive or chemotherapeutic agents, or treatment with any anti-CD20 therapy other than ocrelizumab within 12 months of enrollment, were excluded. The Roche Elecsys anti-SARS-CoV-2 S immunoassay was performed prior to and 3-4 weeks post vaccination to evaluate the antibody response to SARS-CoV-2 spike IgG. The Adaptive Biotechnologies T-Detect COVID Test was performed to evaluate the adaptive T-cell immune response to SARS-CoV-2 in OCR-treated patients with no detectable antibodies. Data were analyzed using descriptive statistics, Fisher's exact test, and Wilcoxon rank sum. RESULTS Forty-eight patients were enrolled in the study, 69% treated with ocrelizumab and 31% treated with natalizumab. Eighteen percent of ocrelizumab and 100% of natalizumab patients had a positive antibody response. In ocrelizumab-treated patients, there was no correlation between age, sex, BMI, total number of infusions, immunoglobulin G, CD19, or absolute lymphocyte count and antibody response. There was a trend suggesting that a longer interval between the last infusion and vaccination increased the likelihood of producing antibodies (P = 0.062). All ocrelizumab patients with negative antibody responses had positive T-cell responses. CONCLUSIONS Treatment with ocrelizumab substantially impaired the humoral response to SAR-CoV-2 vaccination but did not impair T-cell responses. Further research is needed to determine if the T-cell response to SARS-CoV-2 vaccination is sufficient to prevent infection or reduce severity of COVID in patients who did not produce antibodies.
Collapse
Affiliation(s)
- J D Katz
- The Elliot Lewis Center for Multiple Sclerosis Care, Dragonfly Research, Wellesley, MA 02481, USA.
| | - A J Bouley
- The Elliot Lewis Center for Multiple Sclerosis Care, Dragonfly Research, Wellesley, MA 02481, USA
| | - R M Jungquist
- The Elliot Lewis Center for Multiple Sclerosis Care, Dragonfly Research, Wellesley, MA 02481, USA
| | - E A Douglas
- The Elliot Lewis Center for Multiple Sclerosis Care, Dragonfly Research, Wellesley, MA 02481, USA
| | - I L O'Shea
- The Elliot Lewis Center for Multiple Sclerosis Care, Dragonfly Research, Wellesley, MA 02481, USA
| | - E S Lathi
- The Elliot Lewis Center for Multiple Sclerosis Care, Dragonfly Research, Wellesley, MA 02481, USA
| |
Collapse
|
25
|
Sellner J. Einblicke in die Behandlung der Multiplen Sklerose mit Cladribin-Tabletten seit Beginn der COVID-19-Pandemie. PSYCHOPRAXIS. NEUROPRAXIS 2021. [PMCID: PMC8558779 DOI: 10.1007/s00739-021-00761-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Der Prävention von Infektionskrankheiten kommt bei der Multiplen Sklerose (MS) eine besondere Bedeutung zu, da diese den Krankheitsverlauf ungünstig beeinflussen können. Dies wird uns im Rahmen der COVID-19-Pandemie verdeutlicht, wo die SARS-CoV-2-Infektion als Auslöser von besonders schweren und prolongierten Schüben und klinischer Verschlechterung identifiziert werden konnte. Umso wichtiger ist es daher, den Einfluss der für die MS zugelassenen Immuntherapien auf eine etwaige Suszeptibilität für eine SARS-CoV-2-Infektion, den COVID-19-Krankheitsverlauf und das Impfansprechen zu verstehen. In dieser Übersichtsarbeit werden diese Punkte unter besonderer Berücksichtigung von Cladribin-Tabletten, einer für den hochaktiven MS-Verlauf zugelassenen Immunrekonstitutionstherapie, beleuchtet.
Collapse
Affiliation(s)
- Johann Sellner
- Abteilung für Neurologie, Landesklinikum Mistelbach-Gänserndorf, Liechtensteinstr. 67, 2130 Mistelbach, Österreich
| |
Collapse
|
26
|
Toscano S, Chisari CG, Patti F. Multiple Sclerosis, COVID-19 and Vaccines: Making the Point. Neurol Ther 2021; 10:627-649. [PMID: 34625925 PMCID: PMC8500471 DOI: 10.1007/s40120-021-00288-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
On 11 March 2020, the World Health Organization declared the coronavirus disease 19 (COVID-19) outbreak a pandemic. In this context, several studies and clinical trials have been conducted since then, and many are currently ongoing, leading to the development of several COVID-19 vaccines with different mechanisms of action. People affected by multiple sclerosis (MS) have been considered high-risk subjects in most countries and prioritized for COVID-19 vaccination. However, the management of MS during the COVID-19 pandemic has represented a new challenge for MS specialists, particularly because of the initial lack of guidelines and differing recommendations. Despite an initial hesitation in prescribing disease-modifying drugs (DMDs) in naïve and already treated patients with MS, most national neurology associations and organizations agree on not stopping treatment. However, care is needed especially for patients treated with immune-depleting drugs, which also require some attentions in programming vaccine administration. Many discoveries and new research results have accumulated in a short time on COVID-19, resulting in a need for summarizing the existing evidence on this topic. In this review, we describe the latest research results on the immunological aspects of SARS-CoV-2 infection speculating about their impact on COVID-19 vaccines' mechanisms of action and focused on the management of MS during the COVID pandemic according to the most recent guidelines and recommendations. Finally, the efficacy of COVID-19 and other well-known vaccines against infectious disease in patients with MS on DMDs is discussed.
Collapse
Affiliation(s)
- Simona Toscano
- Department G. F. Ingrassia, Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Clara G Chisari
- Department G. F. Ingrassia, Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Francesco Patti
- Department G. F. Ingrassia, Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| |
Collapse
|
27
|
Naser Moghadasi A. Importance of T-cell response to COVID-19 vaccination in patients with multiple sclerosis treated by anti-CD20 therapies: New vaccines are required to be developed. Mult Scler Relat Disord 2021; 56:103263. [PMID: 34543859 PMCID: PMC8436422 DOI: 10.1016/j.msard.2021.103263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/12/2021] [Indexed: 11/23/2022]
Affiliation(s)
- Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Abstract
Detailed immunological analysis in a new study provides insight into the mechanisms of immune responses after SARS-CoV-2 vaccination in people who are receiving B cell-depleting therapy for multiple sclerosis. The findings have implications for clinical practice, but more questions about SARS-CoV-2 vaccination and immunosuppression remain.
Collapse
Affiliation(s)
- Thomas Berger
- grid.22937.3d0000 0000 9259 8492Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kornek
- grid.22937.3d0000 0000 9259 8492Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|