1
|
Guerassimoff L, De Smedt SC, Sauvage F, Baudoin M. Acoustic tweezers for targeted drug delivery. Adv Drug Deliv Rev 2025; 220:115551. [PMID: 39988259 DOI: 10.1016/j.addr.2025.115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/15/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Acoustic tweezers are a highly promising technology for targeted drug delivery thanks to their unique capabilities: (i) they can effectively operate in both in vitro and in vivo environments, (ii) they can manipulate a wide range of particle sizes and materials, and (iii) they can exert forces several orders of magnitude larger than competing techniques while remaining safe for biological tissues. In particular, tweezers capable of selectively capturing and manipulating objects in 3D with a single beam, known as 'single beam tweezers', open new perspectives for delivering drug carriers to precise locations. In this review, we first introduce the fundamental physical principles underlying the manipulation of particles using acoustic tweezers and highlight the latest advancements in the field. We then discuss essential considerations for the design of drug delivery carriers suitable for use with acoustic tweezers. Finally, we summarise recent promising studies that explore the use of acoustic tweezers for in vitro, ex vivo, and in vivo drug delivery.
Collapse
Affiliation(s)
- Léa Guerassimoff
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Michael Baudoin
- Université Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, Unité Mixte de Recherche 8520, Institut d'Electronique, de Microélectronique et de Nanotechnologie, 59000 Lille, France; Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France.
| |
Collapse
|
2
|
Kumar P, Ashique S, Sharma H, Yasmin S, Islam A, Mandal S, Gowda BHJ, Khalid M, Ansari MY, Singh M, Ehsan I, Taj T, Taghizadeh-Hesary F. A narrative review on the use of Green synthesized metallic nanoparticles for targeted cancer therapy. Bioorg Chem 2025; 157:108305. [PMID: 40022847 DOI: 10.1016/j.bioorg.2025.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Cancer is a leading cause of death worldwide. While traditional and synthetic medical therapies are in place for cancer treatment, their effectiveness is hindered by various limitations, such as toxic side effects, limited availability, and high costs. In recent years, a promising alternative approach has emerged in the form of green-synthesized metallic nanoparticles (MNPs), which offer targeted cancer therapy. These nanoparticles (NPs) have garnered significant attention from cancer researchers owing to their natural or surface-induced anticancer properties, versatility of metals as agents, and eco-friendly nature. This approach may positively impact healthy cells surrounding the cancerous cells. Green-synthesized MNPs have gained popularity in cancer management because of their ease of handling in the laboratory and the affordability of starting materials compared to synthetic methods. This review analyzes green-synthesized MNPs for targeted cancer therapy, highlighting tumor-targeting strategies, synthesis methods, and clinical challenges. Unlike general reviews, it compares plant-, microbial-, and enzyme-mediated synthesis approaches, emphasizing their impact on nanoparticle stability, functionalization, and interactions with the tumor microenvironment for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Prashant Kumar
- SRM Modinagar College of Pharmacy, SRMIST Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, West Bengal 711316, India.
| | - Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, (UP), India
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Subhajit Mandal
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Mohammad Khalid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India; Ibne Seena College of Pharmacy, Azmi Vidya Nagri Anjhi Shahabad, Hardoi-241124 Uttar Pradesh (U.P.) India.
| | - Mansi Singh
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Iman Ehsan
- School of Pharmacy Sister Nivedita University, Kolkata-700156, WB, India
| | - Tahreen Taj
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore 575018, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mubarak N, Waqar MA, Khan AM, Asif Z, Alvi AS, Virk AA, Amir S. A comprehensive insight of innovations and recent advancements in nanocarriers for nose-to-brain drug targeting. Des Monomers Polym 2025; 28:7-29. [PMID: 39935823 PMCID: PMC11812116 DOI: 10.1080/15685551.2025.2464132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Central Nervous System (CNS) disorders are the leading cause of illness and affect the everyday lives of people all around the globe and are predicted to increase tremendously in the upcoming decades. Traditional methods of delivering drugs to the CNS face considerable limitations. Nose-to-brain targeting offers a promising alternative that bypasses the blood-brain barrier (BBB), enabling targeted drug administration to the central nervous system (CNS). Nanotechnology has brought forward innovative solutions to the challenges of drug delivery in CNS disorders. Nanocarriers such as liposomes, nanoparticles, nanoemulsions and dendrimers can enhance drug stability, bioavailability, and targeted delivery to the brain. These nanocarriers are designed to overcome physiological barriers and provide controlled and sustained drug release directly to the CNS. Nanocarrier technology has made significant strides in recent years, enabling more effective and targeted delivery of drugs to the brain. With recent advancements, intranasal delivery coupled with nanocarriers seems to be a promising combination that can provide better clinical profiles, pharmacokinetics, and pharmacodynamics for neurodegenerative disorders. This study focuses on exploring the nose-to-brain drug delivery system, emphasizing the use of various nanocarriers designed for this purpose. Additionally, the study encompasses recent advancements in nanocarrier technology tailored specifically to improve the efficiency of drug administration through the nasal route to the brain.
Collapse
Affiliation(s)
- Naeem Mubarak
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Asad Majeed Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Zainab Asif
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Aima Subia Alvi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Aqsa Arshad Virk
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Sakeena Amir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| |
Collapse
|
4
|
Dutta B, Barick KC, Hassan PA, Tyagi AK. Recent progress and current status of surface engineered magnetic nanostructures in cancer theranostics. Adv Colloid Interface Sci 2024; 334:103320. [PMID: 39515063 DOI: 10.1016/j.cis.2024.103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Cancer theranostic is the combination of diagnosis and therapeutic modalities for cancer treatment. It realizes a more flexible, precise and non-invasive treatment of patients. In this aspect, magnetic nanostructures (MNSs) have gained paramount importance and revolutionized the cancer management due to their unique physicochemical properties and inherent magnetic characteristics. MNSs have amazing theranostic ability starting from drug delivery to magnetic hyperthermia and magnetic resonance imaging to multimodal imaging in association with radioisotopes or fluorescent probes. Precise regulation over the synthetic process and their consequent surface functionalization makes them even more fascinating. The ultimate goal is to develop a platform that combines multiple diagnostic and therapeutic functionalities based on MNSs. This perspective has provided an overview of the state-of-art of theranostic applications of MNSs. Special emphasis has been dedicated towards the importance of synthetic approaches of MNSs as well as their subsequent surface engineering and integration with biological/therapeutic molecules that decide the final outcomes of the efficacy of MNSs in theranostic applications. Moreover, the recent advancements, opportunities and allied challenges towards clinical applications of MNSs in cancer management have been demonstrated.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - A K Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
5
|
Castilla-Casadiego DA, Loh DH, Pineda-Hernandez A, Rosales AM. Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells. Biomacromolecules 2024; 25:6319-6337. [PMID: 39283807 PMCID: PMC11506505 DOI: 10.1021/acs.biomac.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Mesenchymal stromal cells (MSCs) have broad immunomodulatory properties that range from regulation, proliferation, differentiation, and immune cell activation to secreting bioactive molecules that inhibit inflammation and regulate immune response. These properties provide MSCs with high therapeutic potency that has been shown to be relevant to tissue engineering and regenerative medicine. Hence, researchers have explored diverse strategies to control the immunomodulatory potential of stromal cells using polymeric substrates or scaffolds. These substrates alter the immunomodulatory response of MSCs, especially through biophysical cues such as matrix mechanical properties. To leverage these cell-matrix interactions as a strategy for priming MSCs, emerging studies have explored the use of stimuli-responsive substrates to enhance the therapeutic value of stromal cells. This review highlights how stimuli-responsive materials, including chemo-responsive, microenvironment-responsive, magneto-responsive, mechano-responsive, and photo-responsive substrates, have specifically been used to promote the immunomodulatory potential of stromal cells by controlling their secretory activity.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Darren H Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Albukhaty S, Sulaiman GM, Al-Karagoly H, Mohammed HA, Hassan AS, Alshammari AAA, Ahmad AM, Madhi R, Almalki FA, Khashan KS, Jabir MS, Yusuf M, Al-aqbi ZT, Sasikumar P, Khan RA. Iron oxide nanoparticles: The versatility of the magnetic and functionalized nanomaterials in targeting drugs, and gene deliveries with effectual magnetofection. J Drug Deliv Sci Technol 2024; 99:105838. [DOI: 10.1016/j.jddst.2024.105838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Wang J, Lu B, Yin G, Liu L, Yang P, Huang N, Zhao A. Design and Fabrication of Environmentally Responsive Nanoparticles for the Diagnosis and Treatment of Atherosclerosis. ACS Biomater Sci Eng 2024; 10:1190-1206. [PMID: 38343186 DOI: 10.1021/acsbiomaterials.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cardiovascular disease poses a significant threat to human health in today's society. A major contributor to cardiovascular disease is atherosclerosis (AS). The development of plaque in the affected areas involves a complex pathological environment, and the disease progresses rapidly. Nanotechnology, combined with emerging diagnostic and treatment methods, offers the potential for the management of this condition. This paper presents the latest advancements in environment-intelligent responsive controlled-release nanoparticles designed specifically for the pathological environment of AS, which includes characteristics such as low pH, high reactive oxygen species levels, high shear stress, and multienzymes. Additionally, the paper summarizes the applications and features of nanotechnology in interventional therapy for AS, including percutaneous transluminal coronary angioplasty and drug-eluting stents. Furthermore, the application of nanotechnology in the diagnosis of AS shows promising real-time, accurate, and continuous effects. Lastly, the paper explores the future prospects of nanotechnology, highlighting the tremendous potential in the diagnosis and treatment of atherosclerotic diseases, especially with the ongoing development in nano gas, quantum dots, and Metal-Organic Frameworks materials.
Collapse
Affiliation(s)
- Jingyue Wang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Bingyang Lu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ge Yin
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Li Liu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Nan Huang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ansha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
8
|
Safaiee R, Aminzadeh H, Sardarian AR, Nasresfahani S, Sheikhi MH. A high loading nanocarrier for the 5-fluorouracil anticancer drug based on chloromethylated graphene. Phys Chem Chem Phys 2024; 26:6410-6419. [PMID: 38315790 DOI: 10.1039/d3cp04211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In the present work, we report a facile and simple strategy to functionalize graphene with the chloromethyl (CH2Cl) functional group as a nanoplatform for effectual loading of the 5-fluorouracil (5-FU) anticancer drug. To achieve the highest loading capacity, hydrochloric acid concentration, the quantity of paraformaldehyde, ultrasonic treatment time, and stirring duration were all carefully optimized. The results revealed that the optimum conditions for functionalizing graphene were obtained at 70 mL of hydrochloric acid, 700 mg of paraformaldehyde, and times of 35 min and 2 h of ultrasonication and stirring. Later, the drug (5-FU) was loaded onto CH2Cl-functionalized graphene through hydrogen bonding and π-π interactions. The chemical structure of the functionalized material and the loading of the 5-FU drug were confirmed by FTIR analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The 5-FU loading capacity of as-prepared materials was determined using the ion chromatography instrument. Our findings demonstrate that chloromethylated graphene is a very excellent nano-platform for high-efficiency drug loading, yielding a loading capacity of 52.3%, comparatively higher than pure graphene (36.54%).
Collapse
Affiliation(s)
- R Safaiee
- Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
| | - H Aminzadeh
- Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
| | - A R Sardarian
- Chemistry Department, College of Sciences, Shiraz University, Shiraz 7146713565, Iran
| | - Sh Nasresfahani
- Electrical and Computer Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| | - M H Sheikhi
- School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
9
|
Akkaya B, Akkaya R, Nazlim A. Magnetic chitosan oligomer-sulfonate-stearic acid triple combination as cisplatin carrier for site-specific targeted on MCF-7 cancer cells: Preparation, characterization and in vitro experiments. Chem Biol Drug Des 2023; 102:692-706. [PMID: 37303090 DOI: 10.1111/cbdd.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
In this study, a new amphiphilic target-specific adsorbent, chitosan oligomer-sulfonate-stearic acid triple combination (S-Cho-SA), and magnetic chitosan oligomer-sulfonate-stearic acid triple combination (M-S-Cho-SA) by oleic acid (OA)-modified Fe3 O4 via hydrophobic interaction are fabricated. By modifying the nanoparticle surfaces and having the ability to magnetically allow the target region, these particles attract attention as important particles used in targeting mechanisms in cancer therapy. With magnetic nanoparticles and an external magnetic field, it is possible to transport therapeutic agents to the target site and keep them in the desired effect zone for a longer period of time. These new adsorbents are characterized by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, nuclear magnetic resonance (NMR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and thermogravimetric analysis (TG/DTA). After chemical characterization, it is complexed with cisplatin (CDDP). The magnetic adsorbents were loaded with high efficiency (>50%), and the release experiments exhibited that cisplatin is released more at pH 4.5 compared with pH 7.4 at 37°C. It showed better drug release results under a magnetic field for magnetic adsorbents (36% for pH 4.5 and 3.6% for pH 7.4). The biocompatibility of the prepared adsorbents was demonstrated via the XTT assay in MCF-7 cell lines. The results also exhibited that S-Cho-SA and M-S-Cho-SA were biocompatible, and free cisplatin and cisplatin-complexed adsorbents showed an antiproliferative effect. The results showed that these new cisplatin-loaded (M-S-Cho-SA) nanoparticles are good candidates for thermotherapy in cancer treatment in the future, as they can provide selectivity by site-specific targeting and hold onto an alternative magnetic field due to the magnetic nature of the nanoparticles.
Collapse
Affiliation(s)
- Birnur Akkaya
- Cumhuriyet University Science Faculty, Molecular Biology and Genetics Department, Sivas, Turkey
| | - Recep Akkaya
- Cumhuriyet University Medicine Faculty, Biophysic Department, Sivas, Turkey
| | - Arife Nazlim
- Cumhuriyet University Science Faculty, Molecular Biology and Genetics Department, Sivas, Turkey
| |
Collapse
|
10
|
Kriebel J, Gonçalves IM, Baptista V, Veiga MI, Minas G, Lima R, Catarino SO. Extensional flow for assessing the effect of nanocarriers on the mechanical deformability of red blood cells. EXPERIMENTAL THERMAL AND FLUID SCIENCE 2023; 146:110931. [DOI: 10.1016/j.expthermflusci.2023.110931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Çetin O, Güngör B, İçhedef Ç, Parlak Y, Bilgin ES, Üstün F, Durmuş Altun G, Başpınar Y, Teksöz S. Development of a Radiolabeled Folate-Mediated Drug Delivery System for Effective Delivery of Docetaxel. ACS OMEGA 2023; 8:25316-25325. [PMID: 37483227 PMCID: PMC10357535 DOI: 10.1021/acsomega.3c02656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
Many preclinical studies are carried out with the aim of developing new formulations for the effective delivery of taxane class drugs, one of the most important anticancer drugs used clinically today. In this study, a radiolabeled folate-mediated solid lipid magnetic nanoparticle (SLMNP) system was developed by loading superparamagnetic iron oxide nanoparticles (MNP) and docetaxel (DTX) into the solid lipid nanoparticles as a drug delivery system that will function both in cancer treatment and diagnosis. For this purpose, first, SLMNP was synthesized by the hot homogenization method, and the surface of the particles was modified with a folate derivative to carry the particles to tissues with folate receptors. The synthesized magnetic solid lipid nanoparticles were loaded with DTX, and then radiolabeling was carried out with technetium-99 m (99mTc-DTX-SLMNP). Structural characteristics of these nanoparticles were determined by characterization methods. According to the TEM images of MNPs, SLN, and SLMNPs, MNPs were observed between 25and 35 nm, SLNs between 400 and 500 nm, and SLMNPs between 350 and 450 nm. The drug entrapment efficiency of SLMNPs loaded with DTX was found to be 19%, and the percentage efficiency of radiolabeling was found to be 98.0 ± 2.0%. The biological behavior of this radiolabeled system was investigated in vitro and in vivo. Folate receptor-positive SKOV-3 and folate receptor-negative A549 cancer cell lines were studied. The IC50 values of DTX-SLMNP in SKOV-3 and A549 cells were 50.21 and 172.27 μM at 48 h, respectively. Gamma camera imaging studies of 99mTc-DTX-SLMNP and magnetically applied 99mTc-DTX-SLMNP compounds were performed on tumor-bearing CD-1 nude mice. The uptake in the folate receptor-positive tumor region was higher than that in the folate receptor negative tumor region. We proposed that the drug delivery system we prepared in this study be evaluated for preclinical studies of new drug carrier formulations of the taxane class of anticancer drugs.
Collapse
Affiliation(s)
- Oğuz Çetin
- Department
of Nuclear Applications, Institute of Nuclear
Sciences, Ege University, Izmir 35100, Turkey
| | - Burcu Güngör
- Department
of Nuclear Applications, Institute of Nuclear
Sciences, Ege University, Izmir 35100, Turkey
| | - Çiğdem İçhedef
- Department
of Nuclear Applications, Institute of Nuclear
Sciences, Ege University, Izmir 35100, Turkey
| | - Yasemin Parlak
- Department
of Nuclear Medicine, School of Medicine, Celal Bayar University, Manisa 45040, Turkey
| | - Elvan Sayıt Bilgin
- Department
of Nuclear Medicine, School of Medicine, Celal Bayar University, Manisa 45040, Turkey
| | - Funda Üstün
- Department
of Nuclear Medicine, Faculty of Medicine, Trakya University, Edirne 22030, Turkey
| | - Gülay Durmuş Altun
- Department
of Nuclear Medicine, Faculty of Medicine, Trakya University, Edirne 22030, Turkey
| | - Yücel Başpınar
- Department
of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Serap Teksöz
- Department
of Nuclear Applications, Institute of Nuclear
Sciences, Ege University, Izmir 35100, Turkey
| |
Collapse
|
12
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, Kuča K. How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:3535-3575. [PMID: 37409027 PMCID: PMC10319292 DOI: 10.2147/ijn.s375964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | | | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
| | - Leili Afsah-Hejri
- Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
| | | | - Kamil Kuča
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Eivazzadeh-Keihan R, Sadat Z, Mohammadi A, Aghamirza Moghim Aliabadi H, Kashtiaray A, Maleki A, Mahdavi M. Fabrication and biological investigation of a novel star polymer based on magnetic cyclic aromatic polyimide chains. Sci Rep 2023; 13:9598. [PMID: 37311979 DOI: 10.1038/s41598-023-36619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Herein, a novel nanostructure based on cyclic aromatic polyimide with statistical star polymer structure was synthesized via the functionalization of the CuFe2O4 MNPs surface. The polymerization process on the functionalized surface of CuFe2O4 MNPs was performed with pyromellitic dianhydride and phenylenediamine derivatives. All analytical methods such as Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, X-ray diffraction (XRD) pattern, energy-dispersive X-ray (EDX), field-emission scanning electron microscope (FE-SEM), vibrating-sample magnetometer (VSM) were performed to characterize the structure of CuFe2O4@SiO2-polymer nanomagnetic. The cytotoxicity of CuFe2O4@SiO2-Polymer was investigated for biomedical application by MTT test. The results proved that this nanocmposite was biocompatible with HEK293T healthy cells. Also, the evaluation antibacterial property of CuFe2O4@SiO2-Polymer showed that its MIC in Gram-negative and Gram-positive bacteria were 500-1000 µg/mL, so it had antibacterial activity.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | | | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Upadhayay VK, Chitara MK, Mishra D, Jha MN, Jaiswal A, Kumari G, Ghosh S, Patel VK, Naitam MG, Singh AK, Pareek N, Taj G, Maithani D, Kumar A, Dasila H, Sharma A. Synergistic impact of nanomaterials and plant probiotics in agriculture: A tale of two-way strategy for long-term sustainability. Front Microbiol 2023; 14:1133968. [PMID: 37206335 PMCID: PMC10189066 DOI: 10.3389/fmicb.2023.1133968] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023] Open
Abstract
Modern agriculture is primarily focused on the massive production of cereals and other food-based crops in a sustainable manner in order to fulfill the food demands of an ever-increasing global population. However, intensive agricultural practices, rampant use of agrochemicals, and other environmental factors result in soil fertility degradation, environmental pollution, disruption of soil biodiversity, pest resistance, and a decline in crop yields. Thus, experts are shifting their focus to other eco-friendly and safer methods of fertilization in order to ensure agricultural sustainability. Indeed, the importance of plant growth-promoting microorganisms, also determined as "plant probiotics (PPs)," has gained widespread recognition, and their usage as biofertilizers is being actively promoted as a means of mitigating the harmful effects of agrochemicals. As bio-elicitors, PPs promote plant growth and colonize soil or plant tissues when administered in soil, seeds, or plant surface and are used as an alternative means to avoid heavy use of agrochemicals. In the past few years, the use of nanotechnology has also brought a revolution in agriculture due to the application of various nanomaterials (NMs) or nano-based fertilizers to increase crop productivity. Given the beneficial properties of PPs and NMs, these two can be used in tandem to maximize benefits. However, the use of combinations of NMs and PPs, or their synergistic use, is in its infancy but has exhibited better crop-modulating effects in terms of improvement in crop productivity, mitigation of environmental stress (drought, salinity, etc.), restoration of soil fertility, and strengthening of the bioeconomy. In addition, a proper assessment of nanomaterials is necessary before their application, and a safer dose of NMs should be applicable without showing any toxic impact on the environment and soil microbial communities. The combo of NMs and PPs can also be encapsulated within a suitable carrier, and this method aids in the controlled and targeted delivery of entrapped components and also increases the shelf life of PPs. However, this review highlights the functional annotation of the combined impact of NMs and PPs on sustainable agricultural production in an eco-friendly manner.
Collapse
Affiliation(s)
- Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Manoj Kumar Chitara
- Department of Plant Pathology, College of Agriculture, A.N.D University of Agriculture and Technology, Ayodhya, Uttar Pradesh, India
| | - Dhruv Mishra
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Manindra Nath Jha
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Aman Jaiswal
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Geeta Kumari
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Saipayan Ghosh
- Department of Horticulture, PGCA, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Vivek Kumar Patel
- Department of Plant Pathology, PGCA, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Mayur G. Naitam
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Ashish Kumar Singh
- Department of Biotechnology and Synthetic Biology, Center of Innovative and Applied Bioprocessing, Sector 81, Mohali, India
| | - Navneet Pareek
- Department of Soil Science, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Gohar Taj
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences and Humanities, GBPUA&; T, Pantnagar, Uttarakhand, India
| | | | - Ankit Kumar
- Department of Horticulture, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Hemant Dasila
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Adita Sharma
- College of Fisheries, Dholi, Dr. Rajendra Prasad Central Agricultural University, Muzaffarpur, Bihar, India
| |
Collapse
|
15
|
Joshi B, Shankar U, Vishwakarma S, Kumar A, Kumar A, Joshi D, Joshi A. Multifunctional Ultrasmall Theranostic Nanohybrids Developed by Ultrasonic Atomizer for Drug Delivery and Magnetic Resonance Imaging. ACS APPLIED BIO MATERIALS 2023; 6:1943-1952. [PMID: 37126316 DOI: 10.1021/acsabm.3c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Theranostic nanoparticulate systems (TNPs) have shown potential in addressing problems related to spatial localization and temporally controlled release of drugs with the capabilities of real-time imaging to evaluate the progress of therapy. The current study reports the ultrasonic atomization-led synthesis of in vitro and in vivo evaluations of ultrasmall chitosan-based theranostic nanohybrid formulations with encapsulated doxorubicin (DOX) and iron-oxide magnetic nanoparticles. The nanohybrid particles are characterized using transmission electron microscopy, powder X-ray diffraction, FTIR, DOX encapsulation efficiency, in vitro release, cellular uptake, and toxicity. These formulations were also tested for the capability of invivo tumor reduction and simultaneous magnetic resonance imaging using Swiss albino mice. Ultrasonic atomizer-led synthesis resulted in chitosan-magnetic nanohybrids (CMNPs) having sizes of 15 ± 3 nm which comprise MNP of 10 ± 3 nm. The encapsulation of DOX in CMNP was around 25%, resulting in an 80% sustained release over 10 days at pH 5 and 7. CMNP was also found to be an efficient DOX delivery vehicle tested on cancer cells (HeLa). The CMNPs were able to reduce the tumor volume by 60% in 15 days. The inherent magnetic property and nanoscale size of CMNPs also provided for enhanced contrast efficiency in magnetic resonance imaging of tumors. Thus, such multifunctional theranostic nanoparticles can be an efficient tool for targeted diagnostic and therapeutic success.
Collapse
Affiliation(s)
- Bhavana Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| | - Uma Shankar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| | - Supriya Vishwakarma
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh 462026, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh 462026, India
| | - Deepti Joshi
- Department of Pathology, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh 462026, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
16
|
Shirazi M, Allafchian A, Salamati H. Design and fabrication of magnetic Fe 3O 4-QSM nanoparticles loaded with ciprofloxacin as a potential antibacterial agent. Int J Biol Macromol 2023; 241:124517. [PMID: 37088186 DOI: 10.1016/j.ijbiomac.2023.124517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/02/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
In this investigation, we have synthesized magnetite nanoparticles (Fe3O4 NPs) coated with quince seed mucilage (QSM) as a natural, biocompatible, and biodegradable component and loaded them with ciprofloxacin (CIP) to act as an antibacterial agent. The structural, magnetic, physicochemical, colloidal, and antibacterial properties of the samples were tested using various characterization tools such as XRD, TEM, FE-SEM, VSM, FT-IR, UV-Vis, DLS, BET, and disk diffusion for testing the antibacterial properties. XRD and VSM results confirmed the fabrication of a highly pure cubic spinel phase for Fe3O4. The results of FE-SEM and TEM analyses indicate a spherical morphology of the magnetite NPs with a mean diameter of about 13 nm, and the results of DLS show a hydrodynamic diameter of 81.9 to 119.2 nm. The zeta potential value for the magnetic Fe3O4 NPs was as high as -55.2 mV, indicating suitable colloidal stability of the NPs for biological applications. The VSM results indicate a high saturation magnetization of the samples as well as a small coercivity and Remanence of the samples, which indicate the superparamagnetic property of the NPs. It was also indicated that the amount of drug adsorbed on the magnetic nanoparticles at different pH values (5.5 to 6.5) is about 85 %. It was likewise detected that the synthesized Fe3O4@QSM-CIP NPs possess antibacterial activity against standard strains of both Gram positive and Gram-negative bacteria (minimum inhibitory concentration = 100 ppm). The overall findings imply that the proposed magnetic NPs with antibacterial activity are promising for biomedical applications.
Collapse
Affiliation(s)
- Mehdi Shirazi
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hadi Salamati
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
17
|
Kheilkordi Z, Mohammadi Ziarani G, Mohajer F, Badiei A, Varma RS. Synthesis and Application of Novel Nanomagnetic Catalyst Fe3O4@SiO2@Pr–Gu–Cr–COOH in the Green Multi-component Synthesis of 1-(Benzothiazolylamino)methyl-2-naphthol. J Inorg Organomet Polym Mater 2023; 33:1028-1036. [DOI: 10.1007/s10904-023-02556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
|
18
|
Lau ECHT, Åhlén M, Cheung O, Ganin AY, Smith DGE, Yiu HHP. Gold-iron oxide (Au/Fe3O4) magnetic nanoparticles as the nanoplatform for binding of bioactive molecules through self-assembly. Front Mol Biosci 2023; 10:1143190. [PMID: 37051321 PMCID: PMC10083301 DOI: 10.3389/fmolb.2023.1143190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Nanomedicine plays a crucial role in the development of next-generation therapies. The use of nanoparticles as drug delivery platforms has become a major area of research in nanotechnology. To be effective, these nanoparticles must interact with desired drug molecules and release them at targeted sites. The design of these “nanoplatforms” typically includes a functional core, an organic coating with functional groups for drug binding, and the drugs or bioactive molecules themselves. However, by exploiting the coordination chemistry between organic molecules and transition metal centers, the self-assembly of drugs onto the nanoplatform surfaces can bypass the need for an organic coating, simplifying the materials synthesis process. In this perspective, we use gold-iron oxide nanoplatforms as examples and outline the prospects and challenges of using self-assembly to prepare drug-nanoparticle constructs. Through a case study on the binding of insulin on Au-dotted Fe3O4 nanoparticles, we demonstrate how a self-assembly system can be developed. This method can also be adapted to other combinations of transition metals, with the potential for scaling up. Furthermore, the self-assembly method can also be considered as a greener alternative to traditional methods, reducing the use of chemicals and solvents. In light of the current climate of environmental awareness, this shift towards sustainability in the pharmaceutical industry would be welcomed.
Collapse
Affiliation(s)
- Elizabeth C. H. T. Lau
- Institute of Chemical Science, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Material Sciences and Engineering, Uppsala University, Uppsala, Sweden
| | - Ocean Cheung
- Division of Nanotechnology and Functional Materials, Department of Material Sciences and Engineering, Uppsala University, Uppsala, Sweden
| | - Alexey Y. Ganin
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - David G. E. Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Humphrey H. P. Yiu
- Institute of Chemical Science, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- *Correspondence: Humphrey H. P. Yiu,
| |
Collapse
|
19
|
Nanoparticles in Clinical Trials: Analysis of Clinical Trials, FDA Approvals and Use for COVID-19 Vaccines. Int J Mol Sci 2023; 24:ijms24010787. [PMID: 36614230 PMCID: PMC9821409 DOI: 10.3390/ijms24010787] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Nanoparticles are heterologous small composites that are usually between 1 and 100 nanometers in size. They are applied in many areas of medicine with one of them being drug delivery. Nanoparticles have a number of advantages as drug carriers which include reduced toxic effects, increased bioavailability, and their ability to be modified for specific tissues or cells. Due to the exciting development of nanotechnology concomitant with advances in biotechnology and medicine, the number of clinical trials devoted to nanoparticles for drug delivery is growing rapidly. Some nanoparticles, lipid-based types, in particular, played a crucial role in the developing and manufacturing of the two COVID-19 vaccines-Pfizer and Moderna-that are now being widely used. In this analysis, we provide a quantitative survey of clinical trials using nanoparticles during the period from 2002 to 2021 as well as the recent FDA-approved drugs (since 2016). A total of 486 clinical trials were identified using the clinicaltrials.gov database. The prevailing types of nanoparticles were liposomes (44%) and protein-based formulations (26%) during this period. The most commonly investigated content of the nanoparticles were paclitaxel (23%), metals (11%), doxorubicin (9%), bupivacaine and various vaccines (both were 8%). Among the FDA-approved nanoparticle drugs, polymeric (29%), liposomal (22%) and lipid-based (21%) drugs were the most common. In this analysis, we also discuss the differential development of the diverse groups of nanoparticles and their content, as well as the underlying factors behind the trends.
Collapse
|
20
|
Kovalenko VL, Komedchikova EN, Sogomonyan AS, Tereshina ED, Kolesnikova OA, Mirkasymov AB, Iureva AM, Zvyagin AV, Nikitin PI, Shipunova VO. Lectin-Modified Magnetic Nano-PLGA for Photodynamic Therapy In Vivo. Pharmaceutics 2022; 15:pharmaceutics15010092. [PMID: 36678721 PMCID: PMC9862264 DOI: 10.3390/pharmaceutics15010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
The extreme aggressiveness and lethality of many cancer types appeal to the problem of the development of new-generation treatment strategies based on smart materials with a mechanism of action that differs from standard treatment approaches. The targeted delivery of nanoparticles to specific cancer cell receptors is believed to be such a strategy; however, there are no targeted nano-drugs that have successfully completed clinical trials to date. To meet the challenge, we designed an alternative way to eliminate tumors in vivo. Here, we show for the first time that the targeting of lectin-equipped polymer nanoparticles to the glycosylation profile of cancer cells, followed by photodynamic therapy (PDT), is a promising strategy for the treatment of aggressive tumors. We synthesized polymer nanoparticles loaded with magnetite and a PDT agent, IR775 dye (mPLGA/IR775). The magnetite incorporation into the PLGA particle structure allows for the quantitative tracking of their accumulation in different organs and the performing of magnetic-assisted delivery, while IR775 makes fluorescent in vivo bioimaging as well as light-induced PDT possible, thus realizing the theranostics concept. To equip PLGA nanoparticles with targeting modality, the particles were conjugated with lectins of different origins, and the flow cytometry screening revealed that the most effective candidate for breast cancer cell labeling is ConA, a lectin from Canavalia ensiformis. In vivo experiments showed that after i.v. administration, mPLGA/IR775-ConA nanoparticles efficiently accumulated in the allograft tumors under the external magnetic field; produced a bright fluorescent signal for in vivo bioimaging; and led to 100% tumor growth inhibition after the single session of PDT, even for large solid tumors of more than 200 mm3 in BALB/c mice. The obtained results indicate that the mPLGA/IR775 nanostructure has great potential to become a highly effective oncotheranostic agent.
Collapse
Affiliation(s)
- Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Elena N. Komedchikova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Anna S. Sogomonyan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Ekaterina D. Tereshina
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Olga A. Kolesnikova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Aziz B. Mirkasymov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Anna M. Iureva
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Andrei V. Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
- Correspondence:
| |
Collapse
|
21
|
Zeinali S, Fekri LZ, Nikpassand M, Varma RS. Greener Syntheses of Coumarin Derivatives Using Magnetic Nanocatalysts: Recent Advances. Top Curr Chem (Cham) 2022; 381:1. [PMID: 36370211 DOI: 10.1007/s41061-022-00407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
Coumarins (2H-1-benzopyran-2-ones) are an important group of biological heterocyclic compounds present in various parts of many plant species, encompassing an array of biological and pharmaceutical activities. In view of the importance of coumarins in heterocyclic chemistry and biological sciences and recent advances in the design of magnetic nanocatalysts, we present herein recent developments pertaining to their synthesis exclusively using magnetic nanoparticles, which can be retrieved easily and thus conform to the tenets of greener synthesis. The preparation of various types of coumarins such as Pechmann-based coumarins, bis coumarins, pyranocoumarins, and coumarin derivatives bearing amine moiety, linked to nicotinonitriles, N-coumarin-2-furanone, and pyrrole-linked chromene derivatives using nanocatalysts with a Fe3O4 core are described. This review covers the synthetic developments in the recent years 2012-2021 and focuses entirely on the synthesis of coumarins in the presence of magnetic nanocatalysts using greener approaches such as solvent-free conditions or deploying alternative activation methods, namely microwave or ultrasound irradiation.
Collapse
Affiliation(s)
- Shohreh Zeinali
- Department of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran
| | - Leila Zare Fekri
- Department of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran.
| | | | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
22
|
Jamasbi N, Mohammadi Ziarani G, Mohajer F, Darroudi M, Badiei A, Varma RS, Karimi F. Silica-coated modified magnetic nanoparticles (Fe 3O 4@SiO 2@(BuSO 3H) 3) as an efficient adsorbent for Pd 2+ removal. CHEMOSPHERE 2022; 307:135622. [PMID: 35810872 DOI: 10.1016/j.chemosphere.2022.135622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/18/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
It is crucial to fabricate cost-effective and efficient strategies for monitoring and eliminating hazardous metals in the water supplies. Among the many techniques, adsorption is one of the most powerful and facile ways for eliminating pollutants from effluents. It is also crucial to engineering high-performance low-cost adsorbents. In this regard, herein, Fe3O4@SiO2@(BuSO3H)3 as a modified core-shell magnetic silica nanoparticle embodies good selectivity to extract toxic metal ions from aquatic media. The present work investigated the removal performance of the magnetic adsorbent towards Pd2+ cation amongst the other heavy metal ions including Co2+, Pb2+, Hg2+, Cd2+, Cu2+, Zn2+ in aqueous solution. The flame atomic absorption spectrometry (FAAS) was utilized to assess the removal efficiency of the adsorbent. Several experimental parameters including elution condition, initial Pd(II) concentration, adsorbent dosage, initial pH of the solution, and contact time were explored to achieve the optimal conditions. The data of adsorption were very well with the Langmuir isotherm model, according to the adsorption isotherm mechanism experiments. In conclusion, this study lays the way for the development of novel magnetic adsorbents with high removal efficiencies for the removal of toxic metal ions from aqueous environment.
Collapse
Affiliation(s)
- Negar Jamasbi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, P. O. Box 1993893973, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, P. O. Box 1993893973, Iran.
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, P. O. Box 1993893973, Iran
| | - Mahdieh Darroudi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, P. O. Box 1993893973, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| |
Collapse
|
23
|
Vakil AU, Ramezani M, Monroe MBB. Magnetically Actuated Shape Memory Polymers for On-Demand Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207279. [PMID: 36295344 PMCID: PMC9611458 DOI: 10.3390/ma15207279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 05/27/2023]
Abstract
Repeated use of intravenous infusions to deliver drugs can cause nerve damage, pain, and infection. There is an unmet need for a drug delivery method that administers drugs on demand for prolonged use. Here, we developed magnetically responsive shape memory polymers (SMPs) to enhance control over drug release. Iron oxide magnetic nanoparticles (mnps) were synthesized and incorporated into previously developed SMPs to enable magnetically induced shape memory effects that can be activated remotely via the application of an alternating magnetic field. These materials were tested for their shape memory properties (dynamic mechanical analysis), cytocompatibility (3T3 fibroblast viability), and tunable drug delivery rates (UV−VIS to evaluate the release of incorporated doxorubicin, 6-mercaptopurine, and/or rhodamine). All polymer composites had >75% cytocompatibility over 72 h. Altering the polymer chemistry and mnp content provided methods to tune drug release. Namely, linear polymers with higher mnp content had faster drug release. Highly cross-linked polymer networks with lower mnp content slowed drug release. Shape memory properties and polymer/drug interactions provided additional variables to tune drug delivery rates. Polymers that were fixed in a strained secondary shape had a slower release rate compared with unstrained polymers, and hydrophobic drugs were released more slowly than hydrophilic drugs. Using these design principles, a single material with gradient chemistry and dual drug loading was synthesized, which provided a unique mechanism to deliver two drugs from a single scaffold with distinct delivery profiles. This system could be employed in future work to provide controlled release of selected drug combinations with enhanced control over release as compared with previous approaches.
Collapse
|
24
|
Zhao K, Xie Y, Lin X, Xu W. The Mucoadhesive Nanoparticle-Based Delivery System in the Development of Mucosal Vaccines. Int J Nanomedicine 2022; 17:4579-4598. [PMID: 36199476 PMCID: PMC9527817 DOI: 10.2147/ijn.s359118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Mucosal tissue constitutes the largest interface between the body and the external environment, regulating the entry of pathogens, particles, and molecules. Mucosal immunization is the most effective way to trigger a protective mucosal immune response. However, the majority of the currently licensed vaccines are recommended to be administered by intramuscular injection, which has obvious shortcomings, such as high production costs, low patient compliance, and lack of mucosal immune response. Strategies for eliciting mucosal and systemic immune responses are being developed, including appropriate vaccine adjuvant, delivery system, and bacterial or viral vectors. Biodegradable mucoadhesive nanoparticles (NPs) are the most promising candidate for vaccine delivery systems due to their inherent immune adjuvant property and the ability to protect the antigen from degradation, sustain the release of loaded antigen, and increase the residence time of antigen at the administration site. The current review outlined the complex structure of mucosa, the mechanism of interaction between NPs and mucosa, factors affecting the mucoadhesion of NPs, and the application of the delivery system based on mucoadhesive NPs in the field of vaccines. Moreover, this review demonstrated that the biodegradable and mucoadhesive NP-based delivery system has the potential for mucosal administration of vaccines.
Collapse
Affiliation(s)
- Kai Zhao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, 318000, People’s Republic of China
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, Zhejiang, 318000, People’s Republic of China
- Correspondence: Kai Zhao, Tel +86 576 88660338, Email
| | - Yinzhuo Xie
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, Zhejiang, 318000, People’s Republic of China
| | - Xuezheng Lin
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, 318000, People’s Republic of China
- Xuezheng Lin, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, 318000, People’s Republic of China, Email
| | - Wei Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People’s Republic of China
| |
Collapse
|
25
|
Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Adv Colloid Interface Sci 2022; 307:102734. [DOI: 10.1016/j.cis.2022.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
|
26
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
27
|
A concise review on bio-responsive polymers in targeted drug delivery system. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Radhakrishnan D, Mohanan S, Choi G, Choy JH, Tiburcius S, Trinh HT, Bolan S, Verrills N, Tanwar P, Karakoti A, Vinu A. The emergence of nanoporous materials in lung cancer therapy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:225-274. [PMID: 35875329 PMCID: PMC9307116 DOI: 10.1080/14686996.2022.2052181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Lung cancer is one of the most common cancers, affecting more than 2.1 million people across the globe every year. A very high occurrence and mortality rate of lung cancer have prompted active research in this area with both conventional and novel forms of therapies including the use of nanomaterials based drug delivery agents. Specifically, the unique physico-chemical and biological properties of porous nanomaterials have gained significant momentum as drug delivery agents for delivering a combination of drugs or merging diagnosis with targeted therapy for cancer treatment. This review focuses on the emergence of nano-porous materials for drug delivery in lung cancer. The review analyses the currently used nanoporous materials, including inorganic, organic and hybrid porous materials for delivering drugs for various types of therapies, including chemo, radio and phototherapy. It also analyses the selected research on stimuli-responsive nanoporous materials for drug delivery in lung cancer before summarizing the various findings and projecting the future of emerging trends. This review provides a strong foundation for the current status of the research on nanoporous materials, their limitations and the potential for improving their design to overcome the unique challenges of delivering drugs for the treatment of lung cancer.
Collapse
Affiliation(s)
- Deepika Radhakrishnan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Goeun Choi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- College of Science and Technology, Dankook University, Cheonan31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan31116, Korea
| | - Jin-Ho Choy
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- Course, College of Medicine, Dankook UniversityDepartment of Pre-medical, Cheonan31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
| | - Steffi Tiburcius
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hoang Trung Trinh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shankar Bolan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nikki Verrills
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Pradeep Tanwar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
29
|
Dong T, Hua Y, Zhu X, Huang X, Chi S, Liu Y, Lou CW, Lin JH. Highly Efficient and Sustainable PM Filtration Using Piezo Nanofibrous Membrane with Gradient Shrinking Porous Network. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
30
|
Multi-Responsive Optimization of Novel pH-Sensitive Hydrogel Beads Based on Basil Seed Mucilage, Alginate, and Magnetic Particles. Gels 2022; 8:gels8050274. [PMID: 35621571 PMCID: PMC9141934 DOI: 10.3390/gels8050274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
Conventional drug delivery systems often cause side effects and gastric degradation. Novel drug delivery systems must be developed to decrease side effects and increase the efficacy of drug delivery. This research aimed to fabricate hydrogel beads for use as a drug delivery system based on basil seed mucilage (BSM), sodium alginate (SA), and magnetic particles (MPs). The Taguchi method and Grey relational analysis were used for the design and optimization of the hydrogel beads. Three factors, including BSM, SA, and MPs at four levels were designed by L-16 orthogonal arrays. BSM was the main factor influencing bead swelling, drug release rate at pH 7.4, and release of antioxidants at pH 1.2 and 7.4. In addition, SA and MPs mainly affected drug loading and drug release rate in acidic medium, respectively. Grey relational analysis indicated that the composition providing optimal overall properties was 0.2 vol% BSM, 0.8 vol% SA, and 2.25 vol% MPs. Based on the findings of this work, BSM/SA/MPs hydrogel beads have the potential to be used as a pH-sensitive alternative material for drug delivery in colon-specific systems.
Collapse
|
31
|
Effect of Ti Atoms on Néel Relaxation Mechanism at Magnetic Heating Performance of Iron Oxide Nanoparticles. COATINGS 2022. [DOI: 10.3390/coatings12040481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The study was based on understanding the relationship between titanium (Ti) doping amount and magnetic heating performance of magnetite (Fe3O4). Superparamagnetic nanosized Ti-doped magnetite ((Fe1−x,Tix)3O4; x = 0.02, 0.03 and 0.05) particles were synthesized by sol-gel technique. In addition to (Fe1−x,Tix)3O4 nanoparticles, SiO2 coated (Fe1−x,Tix)3O4 nanoparticles were produced as core-shell structures to understand the effects of silica coating on the magnetic properties of nanoparticles. Moreover, the magnetic properties were associated with the Néel relaxation mechanism due to the magnetic heating ability of single-domain state nanoparticles. In terms of results, it was observed that the induced RF magnetic field for SiO2 coated (Fe0.97,Ti0.03)3O4 nanoparticles caused an increase in temperature difference (ΔT), which reached up to 22 °C in 10 min. The ΔT values of SiO2 coated (Fe0.97,Ti0.03)3O4 nanoparticles were very close to the values of uncoated Fe3O4 nanoparticles.
Collapse
|
32
|
Fabrication of a magnetic nanocarrier for doxorubicin delivery based on hyperbranched polyglycerol and carboxymethyl cellulose: An investigation on the effect of borax cross-linker on pH-sensitivity. Int J Biol Macromol 2022; 203:80-92. [PMID: 35092736 DOI: 10.1016/j.ijbiomac.2022.01.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
A new core-shell pH-responsive nanocarrier was prepared based on magnetic nanoparticle (MNP) core. Magnetic nanoparticles were first modified with hyperbranched polyglycerol as the first shell. Then the magnetic core was decorated with doxorubicin anticancer drug (DOX) and covered with PEGylated carboxymethylcellulose as the second shell. Borax was used to partially cross-link organic shells in order to evaluate drug loading content and pH-sensitivity. The structure of nanocarrier, organic shell loadings, magnetic responsibility, morphology, size, dispersibility, and drug loading content were investigated by IR, NMR, TG, VSM, XRD, DLS, HR-TEM and UV-Vis analyses. In vitro release investigations demonstrated that the use of borax as cross-linker between organic shells make the nanocarrier highly sensitive to pH so that more that 70% of DOX is released in acidic pH. A reverse pH-sensitivity was observed for the nanocarrier without borax cross-linker. The MTT assay determined that the nanocarrier exhibited excellent biocompatibility toward normal cells (HEK-293) and high toxicity against cancerous cells (HeLa). The nanocarrier also showed high hemocompatibility. Cellular uptake revealed high ability of nanocarrier toward HeLa cells comparable with free DOX. The results also suggested that low concentration of nanocarrier has a great potential for use as contrast agent in magnetic resonance imaging (MRI).
Collapse
|
33
|
López Ruiz A, Ramirez A, McEnnis K. Single and Multiple Stimuli-Responsive Polymer Particles for Controlled Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14020421. [PMID: 35214153 PMCID: PMC8877485 DOI: 10.3390/pharmaceutics14020421] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
Polymers that can change their properties in response to an external or internal stimulus have become an interesting platform for drug delivery systems. Polymeric nanoparticles can be used to decrease the toxicity of drugs, improve the circulation of hydrophobic drugs, and increase a drug’s efficacy. Furthermore, polymers that are sensitive to specific stimuli can be used to achieve controlled release of drugs into specific areas of the body. This review discusses the different stimuli that can be used for controlled drug delivery based on internal and external stimuli. Internal stimuli have been defined as events that evoke changes in different characteristics, inside the body, such as changes in pH, redox potential, and temperature. External stimuli have been defined as the use of an external source such as light and ultrasound to implement such changes. Special attention has been paid to the particular chemical structures that need to be incorporated into polymers to achieve the desired stimuli response. A current trend in this field is the incorporation of several stimuli in a single polymer to achieve higher specificity. Therefore, to access the most recent advances in stimuli-responsive polymers, the focus of this review is to combine several stimuli. The combination of different stimuli is discussed along with the chemical structures that can produce it.
Collapse
Affiliation(s)
- Aida López Ruiz
- Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Ann Ramirez
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Kathleen McEnnis
- Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA;
- Correspondence:
| |
Collapse
|
34
|
Pryadko AS, Botvin VV, Mukhortova YR, Pariy I, Wagner DV, Laktionov PP, Chernonosova VS, Chelobanov BP, Chernozem RV, Surmeneva MA, Kholkin AL, Surmenev RA. Core-Shell Magnetoactive PHB/Gelatin/Magnetite Composite Electrospun Scaffolds for Biomedical Applications. Polymers (Basel) 2022; 14:polym14030529. [PMID: 35160518 PMCID: PMC8839593 DOI: 10.3390/polym14030529] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
Novel hybrid magnetoactive composite scaffolds based on poly(3-hydroxybutyrate) (PHB), gelatin, and magnetite (Fe3O4) were fabricated by electrospinning. The morphology, structure, phase composition, and magnetic properties of composite scaffolds were studied. Fabrication procedures of PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the formation of both core-shell and ribbon-shaped structure of the fibers. In case of hybrid PHB/gelatin/Fe3O4 scaffolds submicron-sized Fe3O4 particles were observed in the surface layers of the fibers. The X-ray photoelectron spectroscopy results allowed the presence of gelatin on the fiber surface (N/C ratio–0.11) to be revealed. Incubation of the composite scaffolds in saline for 3 h decreased the amount of gelatin on the surface by more than ~75%. The differential scanning calorimetry results obtained for pure PHB scaffolds revealed a characteristic melting peak at 177.5 °C. The presence of gelatin in PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the decrease in melting temperature to 168–169 °C in comparison with pure PHB scaffolds due to the core-shell structure of the fibers. Hybrid scaffolds also demonstrated a decrease in crystallinity from 52.3% (PHB) to 16.9% (PHB/gelatin) and 9.2% (PHB/gelatin/Fe3O4). All the prepared scaffolds were non-toxic and saturation magnetization of the composite scaffolds with magnetite was 3.27 ± 0.22 emu/g, which makes them prospective candidates for usage in biomedical applications.
Collapse
Affiliation(s)
- Artyom S. Pryadko
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.P.); (Y.R.M.); (I.P.); (R.V.C.); (M.A.S.)
| | - Vladimir V. Botvin
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Yulia R. Mukhortova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.P.); (Y.R.M.); (I.P.); (R.V.C.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Igor Pariy
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.P.); (Y.R.M.); (I.P.); (R.V.C.); (M.A.S.)
| | - Dmitriy V. Wagner
- Faculty of Radiophysics, National Research Tomsk State University, 634050 Tomsk, Russia;
| | - Pavel P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.L.); (V.S.C.); (B.P.C.)
| | - Vera S. Chernonosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.L.); (V.S.C.); (B.P.C.)
| | - Boris P. Chelobanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.L.); (V.S.C.); (B.P.C.)
- Laboratory of Molecular Medicine, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Roman V. Chernozem
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.P.); (Y.R.M.); (I.P.); (R.V.C.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Maria A. Surmeneva
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.P.); (Y.R.M.); (I.P.); (R.V.C.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Andrei L. Kholkin
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (A.L.K.); (R.A.S.)
| | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.P.); (Y.R.M.); (I.P.); (R.V.C.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Correspondence: (A.L.K.); (R.A.S.)
| |
Collapse
|
35
|
Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted Delivery Methods for Anticancer Drugs. Cancers (Basel) 2022; 14:622. [PMID: 35158888 PMCID: PMC8833699 DOI: 10.3390/cancers14030622] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Several drug-delivery systems have been reported on and often successfully applied in cancer therapy. Cell-targeted delivery can reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity. Besides traditional liposomal and micellar formulations, various nanocarrier systems have recently become the focus of developmental interest. This review discusses the preparation and targeting techniques as well as the properties of several liposome-, micelle-, solid-lipid nanoparticle-, dendrimer-, gold-, and magnetic-nanoparticle-based delivery systems. Approaches for targeted drug delivery and systems for drug release under a range of stimuli are also discussed.
Collapse
Affiliation(s)
- Valery V. Veselov
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - Alexander E. Nosyrev
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - László Jicsinszky
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Renad N. Alyautdin
- Department of Pharmacology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia
| |
Collapse
|
36
|
Advancements in Fabrication and Application of Chitosan Composites in Implants and Dentistry: A Review. Biomolecules 2022; 12:biom12020155. [PMID: 35204654 PMCID: PMC8961661 DOI: 10.3390/biom12020155] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/05/2023] Open
Abstract
Chitosan is a biopolymer that is found in nature and is produced from chitin deacetylation. Chitosan has been studied thoroughly for multiple applications with an interdisciplinary approach. Antifungal antibacterial activities, mucoadhesion, non-toxicity, biodegradability, and biocompatibility are some of the unique characteristics of chitosan-based biomaterials. Moreover, chitosan is the only widely-used natural polysaccharide, and it is possible to chemically modify it for different applications and functions. In various fields, chitosan composite and compound manufacturing has acquired much interest in developing several promising products. Chitosan and its derivatives have gained attention universally in biomedical and pharmaceutical industries as a result of their desired characteristics. In the present mini-review, novel methods for preparing chitosan-containing materials for dental and implant engineering applications along with challenges and future perspectives are discussed.
Collapse
|
37
|
Chau NTT, Koh ES, Lee SJ, Rui Z, Yang SY. Functional Polyelectrolyte Coatings on Polymeric and Magnetic Colloidal Particles for Antifouling and Non-Toxic Bioconjugate Nanoparticles. Macromol Res 2022. [DOI: 10.1007/s13233-021-9102-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Surendra D, Chamaraja N, Godipurge S, Yallappa S. Synthesis and functionalization of silver ferrite (AgFe2O3) nanoparticles with l-methionine: In vivo toxicity studies against Drosophila melanogaster (Diptera: Drosophilidae). RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|