1
|
Zhao M, Cho SH, Wu X, Mao J, Vogt BD, Zacharia NS. Covalently crosslinked coacervates: immobilization and stabilization of proteins with enhanced enzymatic activity. SOFT MATTER 2024; 20:7623-7633. [PMID: 39291470 DOI: 10.1039/d4sm00765d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Coacervates represent models for membrane-free protocells and thus provide a simple route to synthetic cellular-like systems that provide selective encapsulation of solutes. Here, we demonstrate a simple and versatile post-coacervation crosslink method using the thiol-ene click reaction in aqueous media to prepare covalently crosslinked coacervates. The crosslinking of the coacervate enables stability at extreme pH where the uncrosslinked coacervate fully disassembles. The crosslinking also enhances the hydrophobicity within the coacervate environment to increase the encapsulation efficiency of bovine serum albumin (BSA), as compared to the uncrosslinked coacervate. Additionally, the crosslinked coacervate increases the stabilization of BSA at low pH. These crosslinked coacervates can act as carriers for enzymes. The enzymatic activity of alkaline phosphatase (ALP) is enhanced within the crosslinked coacervate compared to the ALP in aqueous solution. The post-coacervation crosslink approach allows the utilization of coacervates for encapsulation of biologicals under conditions where the coacervate would generally disassemble. We demonstrate that these crosslinked coacervates enable the protection of encapsulated protein against denaturation at extreme pH and enhance the enzymatic activity with encapsulation. This click approach to stabilization of coacervates should be broadly applicable to other systems for a variety of biologics and environmentally sensitive molecules.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Szu-Hao Cho
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Xinchi Wu
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Jingyi Mao
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Bryan D Vogt
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Nicole S Zacharia
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| |
Collapse
|
2
|
Enhanced Corrosion Resistance and Local Therapy from Nano-Engineered Titanium Dental Implants. Pharmaceutics 2023; 15:pharmaceutics15020315. [PMID: 36839638 PMCID: PMC9963924 DOI: 10.3390/pharmaceutics15020315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Titanium is the ideal material for fabricating dental implants with favorable biocompatibility and biomechanics. However, the chemical corrosions arising from interaction with the surrounding tissues and fluids in oral cavity can challenge the integrity of Ti implants and leach Ti ions/nanoparticles, thereby causing cytotoxicity. Various nanoscale surface modifications have been performed to augment the chemical and electrochemical stability of Ti-based dental implants, and this review discusses and details these advances. For instance, depositing nanowires/nanoparticles via alkali-heat treatment and plasma spraying results in the fabrication of a nanostructured layer to reduce chemical corrosion. Further, refining the grain size to nanoscale could enhance Ti implants' mechanical and chemical stability by alleviating the internal strain and establishing a uniform TiO2 layer. More recently, electrochemical anodization (EA) has emerged as a promising method to fabricate controlled TiO2 nanostructures on Ti dental implants. These anodized implants enhance Ti implants' corrosion resistance and bioactivity. A particular focus of this review is to highlight critical advances in anodized Ti implants with nanotubes/nanopores for local drug delivery of potent therapeutics to augment osseo- and soft-tissue integration. This review aims to improve the understanding of novel nano-engineered Ti dental implant modifications, focusing on anodized nanostructures to fabricate the next generation of therapeutic and corrosion-resistant dental implants. The review explores the latest developments, clinical translation challenges, and future directions to assist in developing the next generation of dental implants that will survive long-term in the complex corrosive oral microenvironment.
Collapse
|
3
|
Lu X, Liu Z, Zhang JR, Zhou Y, Wang L, Zhu JJ. General Synergistic Hybrid Catalyst Synthesis Method Using a Natural Enzyme Scaffold-Confined Metal Nanocluster. ACS APPLIED MATERIALS & INTERFACES 2023; 15:761-771. [PMID: 36580579 DOI: 10.1021/acsami.2c14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to differences in the chemical properties or optimal reaction conditions of the catalysts, the challenge in the design of bio-chemical hybrid catalysts is that the bio-catalysts or chemical catalysts usually cannot maintain the initial catalytic performance. Herein, we report a general bio-chemical hybrid catalyst synthesis method using a natural enzyme scaffold-confined metal nanocluster. A redox-active enzyme is a nanoreactor that allows access to and reduces metal ions into metal nanoclusters in situ, resulting in the enzyme-confined metal nanocluster hybrid catalyst with a synergistic effect to boost catalytic performance. Specifically, bilirubin oxidase-Ir nanoclusters (BOD-Ir NCs) with catalytic properties for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are designed. The BOD-Ir NCs exhibit an approximately 2-fold ORR activity compared with pure BOD and a 4-fold OER activity compared with pure Ir NCs. BOD-Ir NCs exhibit stability for over 50,000 s, exceeding that of pure Ir NCs (22,000 s). The synergistic catalytic performance is attributed to the following: the mild preparation condition and matched sizes of BOD and the Ir NCs maintain the natural activity of BOD; the highly conductive Ir NCs improve the ORR activity of BOD; and the confining effect of BOD, which improves the stability and activity of the Ir NCs during the OER. In particular, BOD-Ir NCs exhibit a high half-wave potential of 0.97 V for the ORR and a low overpotential of 319 mV at 10 mA cm-2 for the OER, surpassing most of reported catalysts under neutral conditions. Furthermore, laccase-Ir NCs and glucose oxidase-Pd NCs with synergistic catalytic performances are fabricated, proving the universality of this synthetic method. This facile strategy for designing synergistic hybrid catalysts is expected to be applied to more complex chemical transformations.
Collapse
Affiliation(s)
- Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Zhuo Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Yang Zhou
- Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing210023, China
| | - Linlin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an710021, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
4
|
Egg White-Mediated Fabrication of Mg/Al-LDH-Hard Biochar Composite for Phosphate Adsorption. Molecules 2022; 27:molecules27248951. [PMID: 36558084 PMCID: PMC9781947 DOI: 10.3390/molecules27248951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Phosphorus is one of the main causes of water eutrophication. Hard biochar is considered a promising phosphate adsorbent, but its application is limited by its textural properties and low adsorption capacity. Here, an adhesion approach in a mixed suspension containing egg white is proposed for preparing the hybrid material of Mg/Al-layered double hydroxide (LDH) and almond shell biochar (ASB), named L-AE or L-A (with or without egg white). Several techniques, including XRD, SEM/EDS, FTIR and N2 adsorption/desorption, were used to characterize the structure and adsorption behavior of the modified adsorbents. The filament-like material contained nitrogen elements at a noticed level, indicating that egg white was the crosslinker that mediated the formation of the L-AE hybrid material. The L-AE had a higher phosphate adsorption rate with a higher equilibrium adsorption capacity than the L-A. The saturation phosphate adsorption capacity of L-AE was nearly three times higher than that of L-A. Furthermore, the number of surface groups and the density of the positively charged surface sites follow the ASB < L-A < L-AE order, which is consistent with their phosphate adsorption performance. The study may offer an efficient approach to improving hard biochar’s adsorption performance in wastewater treatment.
Collapse
|
5
|
Microwave Treatment of Calcium Phosphate/Titanium Dioxide Composite to Improve Protein Adsorption. MATERIALS 2022; 15:ma15144773. [PMID: 35888240 PMCID: PMC9316246 DOI: 10.3390/ma15144773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023]
Abstract
Calcium phosphate has attracted enormous attention as a bone regenerative material in biomedical fields. In this study, we investigated the effect of microwave treatment on calcium phosphate deposited TiO2 nanoflower to improve protein adsorption. Hierarchical rutile TiO2 nanoflowers (TiNF) fabricated by a hydrothermal method were soaked in modified simulated body fluid for 3 days to induce calcium phosphate (CAP) formation, followed by exposure to microwave radiation (MW). Coating the dental implants with CAP/TiNF provides a means of improving the biological properties, as the structure, morphology, and thickness of the composites can be controlled. The composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), field emission transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR), respectively. The composites were identified to be composed of aggregated nano-sized particles with sphere-like shapes, and the calcium phosphate demonstrated low crystallinity. The ability of bovine serum albumin (BSA) to adsorb on MW-treated CAP/TiNF composites was studied as a function of BSA concentration. The Sips isotherm was used to analyze the BSA adsorption on MW-treated CAP/TiNF composites. The MW-treated samples showed high protein adsorption capacity, thereby indicating their potential in various biomedical applications.
Collapse
|
6
|
Sargazi S, ER S, Sacide Gelen S, Rahdar A, Bilal M, Arshad R, Ajalli N, Farhan Ali Khan M, Pandey S. Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: An updated and comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Pisarek M, Ambroziak R, Hołdyński M, Roguska A, Majchrowicz A, Wysocki B, Kudelski A. Nanofunctionalization of Additively Manufactured Titanium Substrates for Surface-Enhanced Raman Spectroscopy Measurements. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3108. [PMID: 35591442 PMCID: PMC9101506 DOI: 10.3390/ma15093108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022]
Abstract
Powder bed fusion using a laser beam (PBF-LB) is a commonly used additive manufacturing (3D printing) process for the fabrication of various parts from pure metals and their alloys. This work shows for the first time the possibility of using PBF-LB technology for the production of 3D titanium substrates (Ti 3D) for surface-enhanced Raman scattering (SERS) measurements. Thanks to the specific development of the 3D titanium surface and its nanoscale modification by the formation of TiO2 nanotubes with a diameter of ~80 nm by the anodic oxidation process, very efficient SERS substrates were obtained after deposition of silver nanoparticles (0.02 mg/cm2, magnetron sputtering). The average SERS enhancement factor equal to 1.26 × 106 was determined for pyridine (0.05 M + 0.1 M KCl), as a model adsorbate. The estimated enhancement factor is comparable with the data in the literature, and the substrate produced in this way is characterized by the high stability and repeatability of SERS measurements. The combination of the use of a printed metal substrate with nanofunctionalization opens a new path in the design of SERS substrates for applications in analytical chemistry. Methods such as SEM scanning microscopy, photoelectron spectroscopy (XPS) and X-ray diffraction analysis (XRD) were used to determine the morphology, structure and chemical composition of the fabricated materials.
Collapse
Affiliation(s)
- Marcin Pisarek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (R.A.); (M.H.); (A.R.)
| | - Robert Ambroziak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (R.A.); (M.H.); (A.R.)
| | - Marcin Hołdyński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (R.A.); (M.H.); (A.R.)
| | - Agata Roguska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (R.A.); (M.H.); (A.R.)
| | - Anna Majchrowicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland;
| | - Bartłomiej Wysocki
- Center of Digital Science and Technology, Cardinal Stefan Wyszynski University in Warsaw, Woycickiego 1/3, 01-938 Warsaw, Poland;
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| |
Collapse
|
8
|
Ji C, Zheng J, Jin Y, Yin X, Han S, Zhang M. In Site Generation of Well‐Dispersed Ag
3
PO
4
NPs on Protein‐Inorganic Hybrid Nanoflowers with Enhanced Catalytic Performance. ChemistrySelect 2022. [DOI: 10.1002/slct.202104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chunxiao Ji
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Jing Zheng
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Yuqin Jin
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Xue‐bo Yin
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Suping Han
- Department of Pharmacy Shandong Medical College No.5460 Erhuannanlu Road Jinan 250002 China
| | - Min Zhang
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| |
Collapse
|
9
|
Yun J, Tsui KH, Fan Z, Burrow M, Matinlinna JP, Wang Y, Tsoi JKH. A biomimetic approach to evaluate mineralization of bioactive glass-loaded resin composites. J Prosthodont Res 2022; 66:572-581. [PMID: 35197408 DOI: 10.2186/jpr.jpr_d_21_00177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE This study explores novel solutions other than standard SBF for biomimetic evaluations of mineralization particularly for resin composites containing bioactive glass (BAG). METHODS Experimental UDMA/TEGDMA resin composites with 0.0, 1.9, 3.8 or 7.7 vol% of 45S5 BAG fillers were prepared. Besides simulated body fluid (SBF) as control, the specimens were immersed in three other solutions either with bicarbonate which are Hank's balanced salt solution (HBSS) and cell culture medium (MEM), or without bicarbonate which is a novel Simple HEPES-containing Artificial Remineralization Promotion (SHARP) solution, for 3, 7 and 14 days. These solutions were then analyzed by ICP-OES and pH, and the surfaces of the BAG composites were analyzed by SEM, XRD and FTIR. RESULTS ICP-OES revealed Ca and P concentration continuously decrease, while Si concentration increases with time in the solutions other than SBF, which showed almost unchanged elemental concentration. Only SHARP solution is able to maintain a constant pH over the immersion time. SEM, together with XRD and FTIR, showed nano-sized octacalcium phosphate (OCP) nanospheres formation on 3.8 and 7.7 vol% BAG composites after 14 days immersion in HBSS (500-600 nm) and MEM (300-400 nm). SHARP solution enabled OCP formation after 3 days and then self-assembled into urchin-like carbonated hydroxyapatite (CHA) microspheres encompassed with nanorods of 100 nm width and 8 µm length after 14 days of immersion for 7.7 vol% BAG composites. CONCLUSION This study suggests SHARP solution can evaluate mineralization biomimetically whereas CHA microspheres can be formed on BAG-containing resin composites.
Collapse
Affiliation(s)
- Jiaojiao Yun
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Kwong-Hoi Tsui
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Michael Burrow
- Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jukka P Matinlinna
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yan Wang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, China
| | - James K H Tsoi
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Pisarek M, Krawczyk M, Kosiński A, Hołdyński M, Andrzejczuk M, Krajczewski J, Bieńkowski K, Solarska R, Gurgul M, Zaraska L, Lisowski W. Materials characterization of TiO 2 nanotubes decorated by Au nanoparticles for photoelectrochemical applications. RSC Adv 2021; 11:38727-38738. [PMID: 35493210 PMCID: PMC9044200 DOI: 10.1039/d1ra07443a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
The structural and chemical modification of TiO2 nanotubes (NTs) by the deposition of a well-controlled Au deposit was investigated using a combination of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Scanning Transmission Electron Microscopy (STEM), Raman measurements, UV-Vis spectroscopy and photoelectrochemical investigations. The fabrication of the materials focused on two important factors: the deposition of Au nanoparticles (NPs) in UHV (ultra high vacuum) conditions (1-2 × 10-8 mbar) on TiO2 nanotubes (NTs) having a diameter of ∼110 nm, and modifying the electronic interaction between the TiO2 NTs and Au nanoparticles (NPs) with an average diameter of about 5 nm through the synergistic effects of SMSI (Strong Metal Support Interaction) and LSPR (Local Surface Plasmon Resonance). Due to the formation of unique places in the form of "hot spots", the proposed nanostructures proved to be photoactive in the UV-Vis range, where a characteristic gold plasmonic peak was observed at a wavelength of 580 nm. The photocurrent density of Au deposited TiO2 NTs annealed at 650 °C was found to be much greater (14.7 μA cm-2) than the corresponding value (∼0.2 μA cm-2) for nanotubes in the as-received state. The IPCE (incident photon current efficiency) spectral evidence also indicates an enhancement of the photoconversion of TiO2 NTs due to Au NP deposition without any significant change in the band gap energy of the titanium dioxide (E g ∼3.0 eV). This suggests that a plasmon-induced resonant energy transfer (PRET) was the dominant effect responsible for the photoactivity of the obtained materials.
Collapse
Affiliation(s)
- Marcin Pisarek
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 3333 +48 22 343 3325
| | - Mirosław Krawczyk
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 3333 +48 22 343 3325
| | - Andrzej Kosiński
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 3333 +48 22 343 3325
| | - Marcin Hołdyński
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 3333 +48 22 343 3325
| | - Mariusz Andrzejczuk
- Faculty of Materials Science and Engineering, Warsaw University of Technology Wołoska 141 02-507 Warsaw Poland
| | - Jan Krajczewski
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Krzysztof Bieńkowski
- Laboratory of Molecular Research for Solar Energy Innovations, Centre of New Technologies University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Renata Solarska
- Laboratory of Molecular Research for Solar Energy Innovations, Centre of New Technologies University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Magdalena Gurgul
- Faculty of Chemistry, Jagiellonian University in Kraków Gronostajowa 2 30-387 Kraków Poland
| | - Leszek Zaraska
- Faculty of Chemistry, Jagiellonian University in Kraków Gronostajowa 2 30-387 Kraków Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 3333 +48 22 343 3325
| |
Collapse
|
11
|
Bioactive Calcium Phosphate-Based Composites for Bone Regeneration. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5090227] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Calcium phosphates (CaPs) are widely accepted biomaterials able to promote the regeneration of bone tissue. However, the regeneration of critical-sized bone defects has been considered challenging, and the development of bioceramics exhibiting enhanced bioactivity, bioresorbability and mechanical performance is highly demanded. In this respect, the tuning of their chemical composition, crystal size and morphology have been the matter of intense research in the last decades, including the preparation of composites. The development of effective bioceramic composite scaffolds relies on effective manufacturing techniques able to control the final multi-scale porosity of the devices, relevant to ensure osteointegration and bio-competent mechanical performance. In this context, the present work provides an overview about the reported strategies to develop and optimize bioceramics, while also highlighting future perspectives in the development of bioactive ceramic composites for bone tissue regeneration.
Collapse
|
12
|
Chemical design of onion-like carbon-silicon diimide polymer composites. EXPERIMENTAL RESULTS 2021. [DOI: 10.1017/exp.2021.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract
Herein, we report the synthesis and characterization of a novel class of polymer composites based on onion-like carbons (OLCs)-silicon diimide by a salt-free polycondensation reaction. The pyridine-catalyzed polymerization reaction was carried out in the presence of various contents (0.1, 0.5, 1, and 2 wt%) of carboxyl-functionalized OLCs in argon atmosphere to provide composites with well-dispersed and covalently incorporated 0D nanocarbons throughout the 3D matrix of silicon diimide polymer. A strong dependency of the optical properties (UV absorbance and the photoluminescence spectra) on the content of functionalized OLCs incorporated within the polymer matrix was observed. The novel polymer composites are suitable precursors for the design of advanced and multifunctional 0D-nanocarbon–containing Si3N4-based ceramic nanocomposites.
Collapse
|
13
|
Krishnan V, Pandey GR, Babu KA, Paramasivam S, Kumar SS, Balasubramanian S, Ravichandiran V, Pazhani GP, Veerapandian M. Chitosan grafted butein: A metal-free transducer for electrochemical genosensing of exosomal CD24. Carbohydr Polym 2021; 269:118333. [PMID: 34294343 DOI: 10.1016/j.carbpol.2021.118333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022]
Abstract
Metal-free cost-efficient biocompatible molecules are beneficial for opto-electrochemical bioassays. Herein, chitosan (CS) conjugated butein is prepared via graft polymerization. Structural integrity between radical active sites of CS and its probable conjugation routes with reactive OH group of butein during grafting were comprehensively studied using optical absorbance/emission property, NMR, FT-IR and XPS analysis. Fluorescence emission of CS-conjugated butein (CSB) was studied in dried flaky state as well as in drop casted form. Cyclic voltammetric study of CSB modified glassy carbon electrode exhibits 2e-/2H+ transfer reaction in phosphate buffered saline electrolyte following a surface-confined process with a correlation coefficient of 0.99. Unlike pristine butein, CSB modified electrode display a highly reversible redox behavior under various pH ranging from 4 to 9. For the proof-of-concept CSB-modified flexible screen printed electrodes were processed for electrochemical biosensing of exosomal CD24 specific nucleic acid at an ultralow sample concentration, promising for ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Vinoth Krishnan
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India
| | - Gaurav R Pandey
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Kannadasan Anand Babu
- Dr. A.P.J Abdul Kalam Centre of Excellence in Innovation and Entrepreneurship, Dr. M.G.R Educational and Research Institute, Chennai 600 095, Tamil Nadu, India
| | - Selvaraj Paramasivam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Shanmugam Senthil Kumar
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Subramanian Balasubramanian
- Electroplating and Metal Finishing Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700 054, India
| | - Gururaja Perumal Pazhani
- Chettinad School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Rajiv Gandhi Salai, (OMR), Kelambakkam 603 103, Tamil Nadu, India
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
14
|
Abdelgalil SA, Soliman NA, Abo-Zaid GA, Abdel-Fattah YR. Dynamic consolidated bioprocessing for innovative lab-scale production of bacterial alkaline phosphatase from Bacillus paralicheniformis strain APSO. Sci Rep 2021; 11:6071. [PMID: 33727590 PMCID: PMC7966758 DOI: 10.1038/s41598-021-85207-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022] Open
Abstract
To meet the present and forecasted market demand, bacterial alkaline phosphatase (ALP) production must be increased through innovative and efficient production strategies. Using sugarcane molasses and biogenic apatite as low-cost and easily available raw materials, this work demonstrates the scalability of ALP production from a newfound Bacillus paralicheniformis strain APSO isolated from a black liquor sample. Mathematical experimental designs including sequential Plackett–Burman followed by rotatable central composite designs were employed to select and optimize the concentrations of the statistically significant media components, which were determined to be molasses, (NH4)2NO3, and KCl. Batch cultivation in a 7-L stirred-tank bioreactor under uncontrolled pH conditions using the optimized medium resulted in a significant increase in both the volumetric and specific productivities of ALP; the alkaline phosphatase throughput 6650.9 U L−1, and µ = 0.0943 h−1; respectively, were obtained after 8 h that, ameliorated more than 20.96, 70.12 and 94 folds compared to basal media, PBD, and RCCD; respectively. However, neither the increased cell growth nor enhanced productivity of ALP was present under the pH-controlled batch cultivation. Overall, this work presents novel strategies for the statistical optimization and scaling up of bacterial ALP production using biogenic apatite.
Collapse
Affiliation(s)
- Soad A Abdelgalil
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Alexandria, Egypt. .,New Borg El-Arab City, Universities and Research Institutes Zone, PostAlexandria, 21934, Egypt.
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Alexandria, Egypt
| | - Gaber A Abo-Zaid
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Alexandria, Egypt
| | - Yasser R Abdel-Fattah
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
15
|
Li C, Zhang R, Ma C, Shang H, McClements DJ, White JC, Xing B. Food-Grade Titanium Dioxide Particles Decreased the Bioaccessibility of Vitamin D 3 in the Simulated Human Gastrointestinal Tract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2855-2863. [PMID: 33625220 DOI: 10.1021/acs.jafc.0c06644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Food-grade titanium dioxide (E171) particles, as a "whiteness" additive, are often co-ingested with lipid-rich foods. Therefore, we explored the impact of E171 on lipid digestion and vitamin D3 (VD3) bioaccessibility encapsulated within oil-in-water emulsions in a simulated human gastrointestinal tract (GIT) model. VD3 bioaccessibility significantly decreased from 80 to 74% when raising E171 from 0 to 0.5 wt %. The extent of lipid digestion was reduced by E171 addition in a dose-dependent manner. VD3 bioaccessibility was positively correlated with the final amount of free fatty acids (FFAs) produced by lipid digestion (R2 = 0.95), suggesting that the reduction in VD3 bioaccessibility was due to the inhibition of lipid digestion by E171. Further experiments showed that E171 interacted with lipase and calcium ions, thereby interfering with lipid digestion. The findings of this study enhance our understanding toward the potential impact of E171 on the nutritional attributes of foods for human digestion health.
Collapse
Affiliation(s)
- Chunyang Li
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ruojie Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chuanxin Ma
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Heping Shang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
16
|
Ion transfer channel network formed by flower and rod shape crystals of hair hydrolysate in poly(vinyl alcohol) matrix and its application as anion exchange membrane in fuel cells. J Colloid Interface Sci 2020; 587:214-228. [PMID: 33360894 DOI: 10.1016/j.jcis.2020.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/13/2020] [Accepted: 12/05/2020] [Indexed: 11/21/2022]
Abstract
Ion transfer phenomena occurring in nature are known to be most efficient. Many efforts have been made to mimic such phenomena, especially in the area of energy transfer. Proteins consisting of various amino acids are known to be the fundamental materials behind these phenomena. In the current study, an effort was made to extract proteinaceous material from human hair bio-waste by a green chemical-free thermal hydrolysis process. A simple heat treatment of the human hairs in presence of water led to the formation of a water soluble material, which was called hair hydrolysate (HH), contains 70 wt% proteinaceous material. It was utilized for the fabrication of poly(vinyl alcohol) (PVA) matrix-based anion exchange membrane (AEM). Presence of 27 wt% charged amino acids and 19 wt% polarizable amino acids in the HH provided effective charge transfer sites. 7 wt% arginine present in the HH, having continuous delocalized net positive charge helped the membrane to be stable in highly alkaline conditions, which was confirmed by an indirect analysis of alkaline stability. Formation of rod and flower shaped crystal morphology by the HH in glutaraldehyde crosslinked PVA matrix, created a continuous channel network at higher loadings, which provided a simple path for ion transfer, achieving OH- conductivity of 7.46 mS/cm at 70 °C. Swelling of the PVA matrix was minimized by annealing of the HH loaded sample, which resulted in reduction of ionic conductivity to 6.16 mS/cm (at 70 °C). At the same time, improvement in the properties like increase in thermal, mechanical and thermo-mechanical stability, reduction in water uptake, %swelling and methanol permeability was observed. The selectivity of the membrane was increased to almost a decimal place. Thus, the HH obtained from simple green thermal hydrolysis of human hair bio-waste is a cheap material, which is found to be suitable as ion conductive material for alkaline fuel cells.
Collapse
|
17
|
Gawali SL, Shelar SB, Gupta J, Barick KC, Hassan PA. Immobilization of protein on Fe 3O 4 nanoparticles for magnetic hyperthermia application. Int J Biol Macromol 2020; 166:851-860. [PMID: 33161076 DOI: 10.1016/j.ijbiomac.2020.10.241] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/02/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
We report a facile approach for the preparation of protein conjugated glutaric acid functionalized Fe3O4 magnetic nanoparticles (Pro-Glu-MNPs), having improved colloidal stability and heating efficacy. The Pro-Glu-MNPs were prepared by covalent conjugation of BSA protein onto the surface of glutaric acid functionalized Fe3O4 magnetic nanoparticles (Glu-MNPs) obtained through thermal decomposition. XRD and TEM analyses confirmed the formation of crystalline Fe3O4 nanoparticles of average size ~5 nm, whereas the conjugation of BSA protein to them was evident from XPS, FTIR, TGA, DLS and zeta-potential measurements. These Pro-Glu-MNPs showed good colloidal stability in different media (water, phosphate buffer saline, cell culture medium) and exhibited room temperature superparamagnetism with good magnetic field responsivity towards the external magnet. The induction heating studies revealed that the heating efficacy of these Pro-Glu-MNPs was strongly reliant on the particle concentration and their stabilizing media. In addition, they showed enhanced heating efficacy over Glu-MNPs as surface passivation by protein offers colloidal stability to them as well as prevents their aggregation under AC magnetic field. Further, Pro-Glu-MNPs are biocompatible towards normal cells and showed substantial cellular internalization in cancerous cells, suggesting their potential application in hyperthermia therapy.
Collapse
Affiliation(s)
- Santosh L Gawali
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sandeep B Shelar
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Jagriti Gupta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
18
|
3D nanoporous hybrid nanoflower for enhanced non-faradaic redox-free electrochemical impedimetric biodetermination. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
20
|
Shaw GS, Dash RA, Samavedi S. Evaluating the protective role of carrier microparticles in preserving protein secondary structure within electrospun meshes. J Appl Polym Sci 2020. [DOI: 10.1002/app.50016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gauri Shankar Shaw
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Hyderabad India
| | - Ricky A. Dash
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Hyderabad India
| | - Satyavrata Samavedi
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Hyderabad India
| |
Collapse
|
21
|
Manigandan A, Vimalanadhan M, Dhandapani R, Bagewadi S, Kannan V, Sethuraman S, Subramanian A. Marigold-like tyrosinase-embedded nanostructures-a nano-in-micro system. Dalton Trans 2020; 49:11329-11335. [PMID: 32760996 DOI: 10.1039/d0dt02358b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marigold-like tyrosinase-entrenched nanostructures were developed by a facile method using a metal cofactor to overcome the limitations of conventional enzyme immobilization techniques. The protein-copper complex promotes the hierarchical self-assembly of nanopetals into marigold-like microstructures through a sequential germination process. Nanopetals, which originated from bead-like tiny projections, showed budding over the surface and promoted the anisotropic growth of copper phosphate nanocrystals upon co-ordination with the active functional groups in protein. This organic-inorganic hybrid showed excellent re-usability, comparable catalytic efficiency, faster reaction rate, improved storage, and thermal stability without affecting the enzyme activity.
Collapse
Affiliation(s)
- Amrutha Manigandan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Mangalagowri Vimalanadhan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Ramya Dhandapani
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Shambhavi Bagewadi
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Vishal Kannan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Anuradha Subramanian
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
22
|
Ustriyana P, Harmon E, Chen K, Michel FM, Sahai N. Oligo(l-glutamic acids) in Calcium Phosphate Precipitation: Chain Length Effect. J Phys Chem B 2020; 124:6278-6287. [PMID: 32600043 DOI: 10.1021/acs.jpcb.0c01689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The understanding of calcium phosphate precipitation is of major interest in different fields of science, including medicine, biomaterials, and physical chemistry. The presence of additive biomacromolecules has been known to influence various stages of the precipitation process from nucleation to crystal growth. In the current work, well-defined sequences of short, negatively charged peptides, oligo(l-glutamic acids), were utilized as a model, inspired by contiguous sequences of acidic amino acids in natural biomineralization proteins. The precipitate morphology and phases, the element time profile in solution and in the precipitates, as well as the kinetics during the precipitation process were analyzed to explain the effect of these short peptides on calcium phosphate precipitation. The results show that peptides can delay the phase transformation of an amorphous precursor phase to hydroxyapatite and that there is an optimal chain length for this effect at a given concentration of peptide. This study is the first part of a two-part series and is followed by a subsequent work to reveal the mechanism by which these short peptides influence the calcium phosphate precipitation.
Collapse
Affiliation(s)
- Putu Ustriyana
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Emma Harmon
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Kexun Chen
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - F Marc Michel
- Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Nita Sahai
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States.,Department of Geosciences, The University of Akron, Akron, Ohio 44325, United States.,Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
23
|
Hashemi A, Ezati M, Mohammadnejad J, Houshmand B, Faghihi S. Chitosan Coating of TiO2 Nanotube Arrays for Improved Metformin Release and Osteoblast Differentiation. Int J Nanomedicine 2020; 15:4471-4481. [PMID: 32606689 PMCID: PMC7319596 DOI: 10.2147/ijn.s248927] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/06/2020] [Indexed: 01/01/2023] Open
Abstract
Background Ineffective integration has been recognized as one of the major causes of early orthopedic failure of titanium-based implants. One strategy to address this problem is to develop modified titanium surfaces that promote osteoblast differentiation. This study explored titanium surfaces modified with TiO2 nanotubes (TiO2 NTs) capable of localized drug delivery into bone and enhanced osteoblast cell differentiation. Materials and Methods Briefly, TiO2 NTs were subjected to anodic oxidation and loaded with Metformin, a widely used diabetes drug. To create surfaces with sustainable drug-eluting characteristics, TiO2 NTs were spin coated with a thin layer of chitosan. The surfaces were characterized via scanning electron microscopy, atomic force microscopy, and contact angle measurements. The surfaces were then exposed to mesenchymal bone marrow stem cells (MSCs) to evaluate cell adhesion, growth, differentiation, and morphology on the modified surfaces. Results A noticeable increase in drug release time (3 days vs 20 days) and a decrease in burst release characteristics (85% to 7%) was observed in coated samples as compared to uncoated samples, respectively. Chitosan-coated TiO2 NTs exhibited a considerable enhancement in cell adhesion, proliferation, and genetic expression of type I collagen, and alkaline phosphatase activity as compared to uncoated TiO2 NTs. Conclusion TiO2 NT surfaces with a chitosan coating are capable of delivering Metformin to a bone site over a sustained period of time with the potential to enhance MSCs cell attachment, proliferation, and differentiation.
Collapse
Affiliation(s)
- Amir Hashemi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Masoumeh Ezati
- Tissue Engineering and Biomaterials Research Center, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Behzad Houshmand
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Shahab Faghihi
- Tissue Engineering and Biomaterials Research Center, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| |
Collapse
|
24
|
Pisarek M, Krawczyk M, Hołdyński M, Lisowski W. Plasma Nitriding of TiO 2 Nanotubes: N-Doping in Situ Investigations Using XPS. ACS OMEGA 2020; 5:8647-8658. [PMID: 32337428 PMCID: PMC7178339 DOI: 10.1021/acsomega.0c00094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/26/2020] [Indexed: 05/07/2023]
Abstract
The nitrogen doping of titanium dioxide nanotubes (TiO2 NTs) was investigated as a result of well-controlled plasma nitriding of TiO2 NTs at a low temperature. This way of nitrogen doping is proposed as an alternative to chemical/electrochemical methods. The plasma nitriding process was performed in a preparation chamber connected to an X-ray photoelectron spectroscopy (XPS) spectrometer, and the nitrogen-doped TiO2 NTs were next investigated in situ by XPS in the same ultrahigh vacuum (UHV) system. The collected high-resolution (HR) XPS spectra of N 1s, Ti 2p, O 1s, C 1s, and valence band (VB) revealed the formation of chemical bonds between titanium, nitrogen, and oxygen atoms as substitutional or interstitial species. Moreover, the results provided a characterization of the electronic states of N-TiO2 NTs generated by various plasma nitriding and annealing treatments. The VB XPS spectrum showed a reduction in the TiO2 band gap of about 0.6 eV for optimal nitriding and heat-treated conditions. The TiO2 NTs annealed at 450 or 650 °C in air (ex situ) and nitrided under UHV conditions were used as reference materials to check the formation of Ti-N bonds in the TiO2 lattice with a well-defined structure (anatase or a mixture of anatase and rutile). Scanning electron microscopy microscopic observations of the received materials were used to evaluate the morphology of the TiO2 NTs after each step of the nitriding and annealing treatments.
Collapse
|
25
|
TiO 2 Nanotubes with Pt and Pd Nanoparticles as Catalysts for Electro-Oxidation of Formic Acid. MATERIALS 2020; 13:ma13051195. [PMID: 32155943 PMCID: PMC7085067 DOI: 10.3390/ma13051195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022]
Abstract
In the present work, the magnetron sputtering technique was used to prepare new catalysts of formic acid electrooxidation based on TiO2 nanotubes decorated with Pt (platinum), Pd (palladium) or Pd + Pt nanoparticles. TiO2 nanotubes (TiO2 NTs) with strictly defined geometry were produced by anodization of Ti foil and Ti mesh in a mixture of glycerol and water with ammonium fluoride electrolyte. The above mentioned catalytically active metal nanoparticles (NPs) were located mainly on the top of the TiO2 NTs, forming 'rings' and agglomerates. A part of metal nanoparticles decorated also TiO2 NTs walls, thus providing sufficient electronic conductivity for electron transportation between the metal nanoparticle rings and Ti current collector. The electrocatalytic activity of the TiO2 NTs/Ti foil, decorated by Pt, Pd and/or Pd + Pt NPs was investigated by cyclic voltammetry (CV) and new Pd/TiO2 NTs/Ti mesh catalyst was additionally tested in a direct formic acid fuel cell (DFAFC). The results so obtained were compared with commercial catalyst-Pd/Vulcan. CV tests have shown for carbon supported catalysts, that the activity of TiO2 NTs decorated with Pd was considerably higher than that one decorated with Pt. Moreover, for TiO2 NTs supported Pd catalyst specific activity (per mg of metal) was higher than that for well dispersed carbon supported commercial catalyst. The tests at DFAFC have revealed also that the maximum of specific power for 0.2 Pd/TiO2 catalyst was 70% higher than that of the commercial one, Pd/Vulcan. Morphological features, and/or peculiarities, as well as surface composition of the resulting catalysts have been studied by scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and chemical surface analytical methods (X-ray photoelectron spectroscopy-XPS; Auger electron spectroscopy-AES).
Collapse
|
26
|
Pham-Nguyen OV, Shin JU, Kim H, Yoo HS. Self-assembled cell sheets composed of mesenchymal stem cells and gelatin nanofibers for the treatment of full-thickness wounds. Biomater Sci 2020; 8:4535-4544. [DOI: 10.1039/d0bm00910e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gelatin-layered PCL nanofibrils for 3D cell sheet formation were composed with adipocyte-derived stem cells for wound healing.
Collapse
Affiliation(s)
- Oanh-Vu Pham-Nguyen
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon 24341
- Republic of Korea
| | - Ji Un Shin
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon 24341
- Republic of Korea
| | - Hyesung Kim
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon 24341
- Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon 24341
- Republic of Korea
- Institute of Molecular Science and Fusion Technology
| |
Collapse
|
27
|
Sarkar S, Mukherjee A, Parvin R, Das S, Roy U, Ghosh S, Chaudhuri P, Roychowdhury T, Mukherjee J, Bhattacharya S, Gachhui R. Removal of Pb (II), As (III), and Cr (VI) by nitrogen-starved Papiliotrema laurentii strain RY1. J Basic Microbiol 2019; 59:1016-1030. [PMID: 31430397 DOI: 10.1002/jobm.201900222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 11/08/2022]
Abstract
Heavy metals such as lead, chromium, and metalloid like arsenic dominate the pinnacle in posing a threat to life. Being environment-friendly, elucidating the mechanism by which microorganisms detoxify such elements has always been an active field of research hitherto. In the present study, we have investigated the capability of nitrogen-deprived Papiliotrema laurentii strain RY1 toward enhanced tolerance and neutralizing toxic elements. There were biosorption and bioprecipitation of lead and chromium at the cell surfaces. Bioprecipitation mechanisms included the formation of lead phosphates and pyromorphites from lead, grimaldite from chromium. Transcripts such as metallothionein, aquaporins, and arsenical pump-driving ATPase have been surmised to be involved in the detoxification of elements. Furthermore, activation of antioxidant defense mechanisms for the cells for each of the elements should contribute towards yeast's propagation. The efficiency of removal of elements for live cells and immobilized cells were high for lead and chromium. To the best of our knowledge, this is the first report of such high tolerance of lead, arsenic, and chromium for any yeast. The yeast showed such varied response under dual stress due to nitrogen starvation and in the presence of respective elements. The yeast possesses promising potentials in nitrogen deprived and enriched environments to aid in bioremediation sectors.
Collapse
Affiliation(s)
- Soumyadev Sarkar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Avishek Mukherjee
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Rubia Parvin
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Uttariya Roy
- Department of Chemical Engineering, Jadavpur University, Kolkata, India
| | - Somdeep Ghosh
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | | | | | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Semantee Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Ratan Gachhui
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
28
|
Tian LJ, Min Y, Wang XM, Chen JJ, Li WW, Ma JY, Yu HQ. Biogenic Quantum Dots for Sensitive, Label-Free Detection of Mercury Ions. ACS APPLIED BIO MATERIALS 2019; 2:2661-2667. [DOI: 10.1021/acsabm.9b00331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Li-Jiao Tian
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Min
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xue-Meng Wang
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jie-Jie Chen
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jing-Yuan Ma
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Han-Qing Yu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
29
|
Yadav N, Seidi F, Del Gobbo S, D'Elia V, Crespy D. Versatile functionalization of polymer nanoparticles with carbonate groups via hydroxyurethane linkages. Polym Chem 2019. [DOI: 10.1039/c9py00597h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthesis of polymer nanoparticles bearing pendant cyclic carbonate moieties is carried out to explore their potential as versatile supports for biomedical applications and catalysis.
Collapse
Affiliation(s)
- Neha Yadav
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Farzad Seidi
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Silvano Del Gobbo
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Valerio D'Elia
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
30
|
Pawlik A, Socha RP, Hubalek Kalbacova M, Sulka GD. Surface modification of nanoporous anodic titanium dioxide layers for drug delivery systems and enhanced SAOS-2 cell response. Colloids Surf B Biointerfaces 2018; 171:58-66. [PMID: 30007219 DOI: 10.1016/j.colsurfb.2018.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/13/2018] [Accepted: 07/05/2018] [Indexed: 01/13/2023]
Abstract
Nowadays, titanium and its alloys are the most commonly used implantable materials. The surface topography and chemistry of titanium-based implants are responsible for osseointegration. One of the methods to improve biocompatibility of Ti implants is a modification with sodium hydroxide (NaOH) or 3-aminopropyltriethoxysilane (APTES). In the present study, anodic titanium dioxide (ATO) layers were electrochemically fabricated, and then immersed in a NaOH solution or in NaOH and APTES solutions. The functionalized samples were characterized by using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). All samples were examined as drug delivery systems and scaffolds for cell culturing. Based on the parameters of the fitted desorption-desorption-diffusion (DDD) model parameters, it was concluded that the modification with NaOH increased the amount of released ibuprofen and inhibited the release process. Osteoblast-like cell line (SAOS-2) was used to investigate the cell response on the non-modified and modified ATO samples. The MTS test and immunofluorescent staining were carried out to examine cell adhesion and proliferation. The data showed that the modification of nanoporous TiO2 layers with small molecules such as APTES enhanced metabolic activity of adhered cells compared with the non-modified and NaOH-modified TiO2 layers. In addition, the cells had a polygonal-like morphology with distinct projecting actin filaments and were well dispersed over the whole analyzed surface.
Collapse
Affiliation(s)
- Anna Pawlik
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry Jagiellonian University in Krakow, Gronostajowa 2, 30387 Krakow, Poland
| | - Robert P Socha
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland
| | - Marie Hubalek Kalbacova
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, U nemocnice 5, 128 53 Prague, Czech Republic.
| | - Grzegorz D Sulka
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry Jagiellonian University in Krakow, Gronostajowa 2, 30387 Krakow, Poland.
| |
Collapse
|
31
|
Awad NK, Edwards SL, Morsi YS. A review of TiO2 NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1401-1412. [DOI: 10.1016/j.msec.2017.02.150] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/15/2016] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
|
32
|
Hamidi MFFA, Harun WSW, Samykano M, Ghani SAC, Ghazalli Z, Ahmad F, Sulong AB. A review of biocompatible metal injection moulding process parameters for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1263-1276. [PMID: 28575965 DOI: 10.1016/j.msec.2017.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 01/07/2023]
Abstract
Biocompatible metals have been revolutionizing the biomedical field, predominantly in human implant applications, where these metals widely used as a substitute to or as function restoration of degenerated tissues or organs. Powder metallurgy techniques, in specific the metal injection moulding (MIM) process, have been employed for the fabrication of controlled porous structures used for dental and orthopaedic surgical implants. The porous metal implant allows bony tissue ingrowth on the implant surface, thereby enhancing fixation and recovery. This paper elaborates a systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries. In this study, three biocompatible metals are reviewed-stainless steels, cobalt alloys, and titanium alloys. The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed thoroughly. This paper should be of value to investigators who are interested in state of the art of metal powder metallurgy, particularly the MIM technology for biocompatible metal implant design and development.
Collapse
Affiliation(s)
- M F F A Hamidi
- Institute of Postgraduate Studies, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - W S W Harun
- Green Research for Advanced Materials Laboratory, Human Engineering Group, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia.
| | - M Samykano
- Structural and Material Degradation Group, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
| | - S A C Ghani
- Green Research for Advanced Materials Laboratory, Human Engineering Group, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
| | - Z Ghazalli
- Green Research for Advanced Materials Laboratory, Human Engineering Group, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
| | - F Ahmad
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Malaysia
| | - A B Sulong
- Department of Mechanical & Materials Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Malaysia
| |
Collapse
|
33
|
Morphology of TiO2 nanotubes revealed through electron tomography. Micron 2017; 95:35-41. [DOI: 10.1016/j.micron.2016.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 11/18/2022]
|
34
|
Đošić M, Eraković S, Janković A, Vukašinović-Sekulić M, Matić IZ, Stojanović J, Rhee KY, Mišković-Stanković V, Park SJ. In vitro investigation of electrophoretically deposited bioactive hydroxyapatite/chitosan coatings reinforced by graphene. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Zhai J, Wang Q, Zeng J, Chen J, Yi X, Shi Z, Tan G, Yu P, Ning C. Spatial charge manipulated set-selective apatite deposition on micropatterned piezoceramic. RSC Adv 2017. [DOI: 10.1039/c7ra04226d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Apatite was selectively deposited with the manipulation of spatial charge on the micropatterned piezoelectric K0.5Na0.5NbO3.
Collapse
Affiliation(s)
- Jinxia Zhai
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Qiyou Wang
- Department of Spine Surgery
- The Third Affiliated Hospital of Sun Yat-sen University
- Guangzhou
- China
| | | | - Junqi Chen
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Xin Yi
- School of Medicine
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Zhifeng Shi
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Peng Yu
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Chengyun Ning
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| |
Collapse
|
36
|
Alves SA, Ribeiro AR, Gemini-Piperni S, Silva RC, Saraiva AM, Leite PE, Perez G, Oliveira SM, Araujo JR, Archanjo BS, Rodrigues ME, Henriques M, Celis JP, Shokuhfar T, Borojevic R, Granjeiro JM, Rocha LA. TiO2nanotubes enriched with calcium, phosphorous and zinc: promising bio-selective functional surfaces for osseointegrated titanium implants. RSC Adv 2017. [DOI: 10.1039/c7ra08263k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TiO2nanotubes enriched with Ca, P, and Zn by reverse polarization anodization, are promising bio-selective functional structures for osseointegrated titanium implants.
Collapse
|
37
|
Preparation of TiO 2 nanotubes/mesoporous calcium silicate composites with controllable drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:433-439. [DOI: 10.1016/j.msec.2016.05.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 04/13/2016] [Accepted: 05/11/2016] [Indexed: 11/20/2022]
|
38
|
Nanocrystalline β-Ta Coating Enhances the Longevity and Bioactivity of Medical Titanium Alloys. METALS 2016. [DOI: 10.3390/met6090221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Strąkowska P, Beutner R, Gnyba M, Zielinski A, Scharnweber D. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:624-635. [PMID: 26652416 DOI: 10.1016/j.msec.2015.10.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/23/2015] [Accepted: 10/20/2015] [Indexed: 01/30/2023]
Abstract
Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP expression was highest for the uncoated substrate.
Collapse
Affiliation(s)
- Paulina Strąkowska
- Gdańsk University of Technology, Mechanical Engineering Faculty, Poland; Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics, Poland
| | - René Beutner
- Max Bergmann Center, Technische Universität Dresden, Germany
| | - Marcin Gnyba
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics, Poland
| | - Andrzej Zielinski
- Gdańsk University of Technology, Mechanical Engineering Faculty, Poland
| | | |
Collapse
|
40
|
Legrand A, Moissette A, Hureau M, Casale S, Massiani P, Vezin H, Mamede AS, Batonneau-Gener I. Electron transfers in a TiO2-containing MOR zeolite: synthesis of the nanoassemblies and application using a probe chromophore molecule. Phys Chem Chem Phys 2015; 16:13145-55. [PMID: 24866869 DOI: 10.1039/c4cp01543f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New assemblies constituted by a microporous matrix of mordenite (MOR) zeolite on which TiO2 nanoclusters are deposited were synthesized using ionic oxalate complexes and TiCl3 titanium precursors. The samples were used to investigate the transfer of electrons produced by spontaneous or photo-induced ionization of a guest molecule (t-stilbene, t-St) occluded in the porous volume towards the conduction band of a conductive material placed nearby, in the pores or at least close to their entrance. The reaction mechanisms were compared in these Ti-rich solids and in a Ti-free mordenite sample. The characterization by XRD, N2 physisorption, TEM, XPS and DRIFT spectroscopy of the supramolecular TiO2/MOR systems before t-St adsorption showed the preservation of the crystalline structure after Ti addition and thermal activation treatments. They also revealed that titanium is mainly located at the external surface of the zeolite grains, in the form of highly dispersed and/or aggregated anatase. After incorporation of the guest molecule in the new assemblies, diffuse reflectance UV-visible and EPR spectroscopies indicate that the electron transfer processes are similar with and without TiO2 but strongly stabilized t-St˙(+) radicals are detected in the TiO2-MOR samples whereas such species were never detected earlier in TiO2-free mordenite using these techniques. The stabilization process is found to be more efficient in the sample prepared with TiCl3 as the precursor than with titanium oxalates. It is proposed that the proximity of TiO2 with the formed t-St˙(+) radicals provokes the stabilization of the radical through capture of the ejected electron by the semi-conductor and that confinement effects can also play a role.
Collapse
Affiliation(s)
- A Legrand
- LASIR, UMR 8516, Université Lille 1, Bât C8, 59655 Villeneuve d'Ascq cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu J, Liu L, Munroe P, Xie ZH. Promoting bone-like apatite formation on titanium alloys through nanocrystalline tantalum nitride coatings. J Mater Chem B 2015; 3:4082-4094. [DOI: 10.1039/c5tb00236b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study aims to advance the applicability of titanium alloys as bone implant materials by tackling some important aspects of surface robustness and bioactivity.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Material Science and Engineering
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- P. R. China
- School of Mechanical & Electrical Engineering
| | - Linlin Liu
- Department of Material Science and Engineering
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- P. R. China
| | - Paul Munroe
- School of Materials Science and Engineering
- University of New South Wales
- Australia
| | - Zong-Han Xie
- School of Mechanical Engineering
- University of Adelaide
- Australia
- School of Engineering
- Edith Cowan University
| |
Collapse
|
42
|
Photoinduced deposition of palladium nanoparticles on TiO2 nanotube electrode and investigation of its capability for formaldehyde oxidation. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.06.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
dos Santos A, Araujo JR, Landi SM, Kuznetsov A, Granjeiro JM, de Sena LÁ, Achete CA. A study of the physical, chemical and biological properties of TiO2 coatings produced by micro-arc oxidation in a Ca-P-based electrolyte. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1769-1780. [PMID: 24710979 DOI: 10.1007/s10856-014-5207-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 03/28/2014] [Indexed: 06/03/2023]
Abstract
In this work, a porous and homogeneous titanium dioxide layer was grown on commercially pure titanium substrate using a micro-arc oxidation (MAO) process and Ca-P-based electrolyte. The structure and morphology of the TiO2 coatings were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and profilometry. The chemical properties were studied using electron dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy. The wettability of the coating was evaluated using contact angle measurements. During the MAO process, Ca and P ions were incorporated into the oxide layer. The TiO2 coating was composed of a mixture of crystalline and amorphous structures. The crystalline part of the sample consisted of a major anatase phase and a minor rutile phase. A cross-sectional image of the coating-substrate interface reveals the presence of voids elongated along the interface. An osteoblast culture was performed to verify the cytocompatibility of the anodized surface. The results of the cytotoxicity tests show satisfactory cell viability of the titanium dioxide films produced in this study.
Collapse
Affiliation(s)
- Amanda dos Santos
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ, 25250-020, Brazil,
| | | | | | | | | | | | | |
Collapse
|
44
|
Tas AC. The use of physiological solutions or media in calcium phosphate synthesis and processing. Acta Biomater 2014; 10:1771-92. [PMID: 24389317 DOI: 10.1016/j.actbio.2013.12.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/02/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022]
Abstract
This review examined the literature to spot uses, if any, of physiological solutions/media for the in situ synthesis of calcium phosphates (CaP) under processing conditions (i.e. temperature, pH, concentration of inorganic ions present in media) mimicking those prevalent in the human hard tissue environments. There happens to be a variety of aqueous solutions or media developed for different purposes; sometimes they have been named as physiological saline, isotonic solution, cell culture solution, metastable CaP solution, supersaturated calcification solution, simulated body fluid or even dialysate solution (for dialysis patients). Most of the time such solutions were not used as the aqueous medium to perform the biomimetic synthesis of calcium phosphates, and their use was usually limited to the in vitro testing of synthetic biomaterials. This review illustrates that only a limited number of research studies used physiological solutions or media such as Earle's balanced salt solution, Bachra et al. solutions or Tris-buffered simulated body fluid solution containing 27mM HCO3(-) for synthesizing CaP, and these studies have consistently reported the formation of X-ray-amorphous CaP nanopowders instead of Ap-CaP or stoichiometric hydroxyapatite (HA, Ca10(PO4)6(OH)2) at 37°C and pH 7.4. By relying on the published articles, this review highlights the significance of the use of aqueous solutions containing 0.8-1.5 mMMg(2+), 22-27mM HCO3(-), 142-145mM Na(+), 5-5.8mM K(+), 103-133mM Cl(-), 1.8-3.75mM Ca(2+), and 0.8-1.67mM HPO4(2-), which essentially mimic the composition and the overall ionic strength of the human extracellular fluid (ECF), in forming the nanospheres of X-ray-amorphous CaP.
Collapse
Affiliation(s)
- A Cuneyt Tas
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
45
|
|
46
|
Pisarek M, Holdynski M, Roguska A, Kudelski A, Janik-Czachor M. TiO2 and Al2O3 nanoporous oxide layers decorated with silver nanoparticles—active substrates for SERS measurements. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-013-2375-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Huo K, Gao B, Fu J, Zhao L, Chu PK. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Adv 2014. [DOI: 10.1039/c4ra01458h] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent research activities on the surface modification and biomedical applications of TiO2 NTAs are reviewed.
Collapse
Affiliation(s)
- Kaifu Huo
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon, China
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology
| | - Biao Gao
- School of materials and metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081, China
| | - Jijiang Fu
- School of materials and metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology
- Department of Periodontology
- School of Stomatology
- The Fourth Military Medical University
- Xi'an 710032, China
| | - Paul K. Chu
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon, China
| |
Collapse
|
48
|
Minagar S, Berndt CC, Gengenbach T, Wen C. Fabrication and characterization of TiO2–ZrO2–ZrTiO4nanotubes on TiZr alloy manufactured via anodization. J Mater Chem B 2014; 2:71-83. [DOI: 10.1039/c3tb21204a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Cheng K, Wang T, Weng W, Yu M, Lin J, Wang H, Du P, Han G. Two step synthesis of CaP/TiO2 nanorod composite coatings with improved protein adsorption. THIN SOLID FILMS 2013; 544:206-211. [DOI: 10.1016/j.tsf.2013.03.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
50
|
Park HG, Yeo MK. Comparison of gene expression changes induced by exposure to Ag, Cu-TiO2, and TiO2 nanoparticles in zebrafish embryos. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0017-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|