1
|
Zhang M, Xu F, Cao J, Dou Q, Wang J, Wang J, Yang L, Chen W. Research advances of nanomaterials for the acceleration of fracture healing. Bioact Mater 2024; 31:368-394. [PMID: 37663621 PMCID: PMC10474571 DOI: 10.1016/j.bioactmat.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
The bone fracture cases have been increasing yearly, accompanied by the increased number of patients experiencing non-union or delayed union after their bone fracture. Although clinical materials facilitate fracture healing (e.g., metallic and composite materials), they cannot fulfill the requirements due to the slow degradation rate, limited osteogenic activity, inadequate osseointegration ability, and suboptimal mechanical properties. Since early 2000, nanomaterials successfully mimic the nanoscale features of bones and offer unique properties, receiving extensive attention. This paper reviews the achievements of nanomaterials in treating bone fracture (e.g., the intrinsic properties of nanomaterials, nanomaterials for bone defect filling, and nanoscale drug delivery systems in treating fracture delayed union). Furthermore, we discuss the perspectives on the challenges and future directions of developing nanomaterials to accelerate fracture healing.
Collapse
Affiliation(s)
- Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Fan Xu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jingcheng Cao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Qingqing Dou
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Lei Yang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| |
Collapse
|
2
|
Sun L, Xu Y, Han Y, Cui J, Jing Z, Li D, Liu J, Xiao C, Li D, Cai B. Collagen-Based Hydrogels for Cartilage Regeneration. Orthop Surg 2023; 15:3026-3045. [PMID: 37942509 PMCID: PMC10694028 DOI: 10.1111/os.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 11/10/2023] Open
Abstract
Cartilage regeneration remains difficult due to a lack of blood vessels. Degradation of the extracellular matrix (ECM) causes cartilage defects, and the ECM provides the natural environment and nutrition for cartilage regeneration. Until now, collagen hydrogels are considered to be excellent material for cartilage regeneration due to the similar structure to ECM and good biocompatibility. However, collagen hydrogels also have several drawbacks, such as low mechanical strength, limited ability to induce stem cell differentiation, and rapid degradation. Thus, there is a demanding need to optimize collagen hydrogels for cartilage regeneration. In this review, we will first briefly introduce the structure of articular cartilage and cartilage defect classification and collagen, then provide an overview of the progress made in research on collagen hydrogels with chondrocytes or stem cells, comprehensively expound the research progress and clinical applications of collagen-based hydrogels that integrate inorganic or organic materials, and finally present challenges for further clinical translation.
Collapse
Affiliation(s)
- Lihui Sun
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Yan Xu
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Yu Han
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of StomatologyJilin UniversityChangchunChina
| | - Zheng Jing
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Dongbo Li
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Jianguo Liu
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Dongsong Li
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Bo Cai
- Department of Ultrasound DiagnosisThe 964 Hospital of Chinese People's Liberation ArmyChangchunPeople's Republic of China
| |
Collapse
|
3
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
4
|
Li D, Xu K, Zhang Y. A Review on Research Progress in Plasma-Controlled Superwetting Surface Structure and Properties. Polymers (Basel) 2022; 14:3759. [PMID: 36145911 PMCID: PMC9505013 DOI: 10.3390/polym14183759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Superwetting surface can be divided into (super) hydrophilic surface and (super) hydrophobic surface. There are many methods to control superwetting surface, among which plasma technology is a safe and convenient one. This paper first summarizes the plasma technologies that control the surface superwettability, then analyzes the influencing factors from the micro point of view. After that, it focuses on the plasma modification methods that change the superwetting structure on the surface of different materials, and finally, it states the specific applications of the superwetting materials. In a word, the use of plasma technology to obtain a superwetting surface has a wide application prospect.
Collapse
Affiliation(s)
- Dayu Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, China
| | | | | |
Collapse
|
5
|
Nabizadeh Z, Nasrollahzadeh M, Daemi H, Baghaban Eslaminejad M, Shabani AA, Dadashpour M, Mirmohammadkhani M, Nasrabadi D. Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:363-389. [PMID: 35529803 PMCID: PMC9039523 DOI: 10.3762/bjnano.13.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/24/2022] [Indexed: 05/12/2023]
Abstract
Osteoarthritis, which typically arises from aging, traumatic injury, or obesity, is the most common form of arthritis, which usually leads to malfunction of the joints and requires medical interventions due to the poor self-healing capacity of articular cartilage. However, currently used medical treatment modalities have reported, at least in part, disappointing and frustrating results for patients with osteoarthritis. Recent progress in the design and fabrication of tissue-engineered microscale/nanoscale platforms, which arises from the convergence of stem cell research and nanotechnology methods, has shown promising results in the administration of new and efficient options for treating osteochondral lesions. This paper presents an overview of the recent advances in osteochondral tissue engineering resulting from the application of micro- and nanotechnology approaches in the structure of biomaterials, including biological and microscale/nanoscale topographical cues, microspheres, nanoparticles, nanofibers, and nanotubes.
Collapse
Affiliation(s)
- Zahra Nabizadeh
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Mirmohammadkhani
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Davood Nasrabadi
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
6
|
Elídóttir KL, Scott L, Lewis R, Jurewicz I. Biomimetic approach to articular cartilage tissue engineering using carbon nanotube-coated and textured polydimethylsiloxane scaffolds. Ann N Y Acad Sci 2022; 1513:48-64. [PMID: 35288951 PMCID: PMC9545810 DOI: 10.1111/nyas.14769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
There is a significant need to understand the complexity and heterogeneity of articular cartilage to develop more effective therapeutic strategies for diseases such as osteoarthritis. Here, we show that carbon nanotubes (CNTs) are excellent candidates as a material for synthetic scaffolds to support the growth of chondrocytes—the cells that produce and maintain cartilage. Chondrocyte morphology, proliferation, and alignment were investigated as nanoscale CNT networks were applied to macroscopically textured polydimethylsiloxane (PDMS) scaffolds. The application of CNTs to the surface of PDMS‐based scaffolds resulted in an up to 10‐fold increase in cell adherence and 240% increase in proliferation, which is attributable to increased nanoscale roughness and hydrophilicity. The introduction of macroscale features to PDMS induced alignment of chondrocytes, successfully mimicking the cell behavior observed in the superficial layer of cartilage. Raman spectroscopy was used as a noninvasive, label‐free method to monitor extracellular matrix production and chondrocyte phenotype. Chondrocytes on these scaffolds successfully produced collagen, glycosaminoglycan, and aggrecan. This study demonstrates that introducing physical features at different length scales allows for a high level of control over tissue scaffold design and, thus, cell behavior. Ultimately, these textured scaffolds can serve as platforms to improve the understanding of osteoarthritis and for early‐stage therapeutic testing.
Collapse
Affiliation(s)
- Katrín Lind Elídóttir
- Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK.,Department of Veterinary Pre-Clinical Sciences, University of Surrey, Guildford, UK
| | - Louie Scott
- Department of Veterinary Pre-Clinical Sciences, University of Surrey, Guildford, UK
| | - Rebecca Lewis
- Department of Veterinary Pre-Clinical Sciences, University of Surrey, Guildford, UK
| | - Izabela Jurewicz
- Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
7
|
Kohls A, Maurer Ditty M, Dehghandehnavi F, Zheng SY. Vertically Aligned Carbon Nanotubes as a Unique Material for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6287-6306. [PMID: 35090107 PMCID: PMC9254017 DOI: 10.1021/acsami.1c20423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vertically aligned carbon nanotubes (VACNTs), a unique classification of CNT, highly oriented and normal to the respective substrate, have been heavily researched over the last two decades. Unlike randomly oriented CNT, VACNTs have demonstrated numerous advantages making it an extremely desirable nanomaterial for many biomedical applications. These advantages include better spatial uniformity, increased surface area, greater susceptibility to functionalization, improved electrocatalytic activity, faster electron transfer, higher resolution in sensing, and more. This Review discusses VACNT and its utilization in biomedical applications particularly for sensing, biomolecule filtration systems, cell stimulation, regenerative medicine, drug delivery, and bacteria inhibition. Furthermore, comparisons are made between VACNT and its traditionally nonaligned, randomly oriented counterpart. Thus, we aim to provide a better understanding of VACNT and its potential applications within the community and encourage its utilization in the future.
Collapse
|
8
|
Yu M, Zhao S, Yang L, Ji N, Wang Y, Xiong L, Sun Q. Preparation of a superhydrophilic SiO 2 nanoparticles coated chitosan-sodium phytate film by a simple ethanol soaking process. Carbohydr Polym 2021; 271:118422. [PMID: 34364563 DOI: 10.1016/j.carbpol.2021.118422] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022]
Abstract
The development of environmentally friendly and transparent superhydrophilic food packaging materials is essential in our daily lives. The objective of this study was to develop a simple method of preparing a superhydrophilic, transparent, and biodegradable composite film. The composite film was obtained by soaking a chitosan-sodium phytate film in an ethanol solution of SiO2 nanoparticles. The results showed that when the chitosan-sodium phytate film was coated with SiO2 nanoparticles that were dissolved in 75% ethanol, its water contact angle (WCA) was reduced from 100° to 3°, and the film surface was changed from a hydrophobic to a superhydrophilic. Furthermore, the oxygen transmission rate (OTR) was significantly reduced, and the mechanical properties of the film were improved. The method is easy to carry out and can be used for the potential production of superhydrophilic materials.
Collapse
Affiliation(s)
- Mengting Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Shuangshuang Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lu Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
9
|
Pryadko A, Surmeneva MA, Surmenev RA. Review of Hybrid Materials Based on Polyhydroxyalkanoates for Tissue Engineering Applications. Polymers (Basel) 2021; 13:1738. [PMID: 34073335 PMCID: PMC8199458 DOI: 10.3390/polym13111738] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
This review is focused on hybrid polyhydroxyalkanoate-based (PHA) biomaterials with improved physico-mechanical, chemical, and piezoelectric properties and controlled biodegradation rate for applications in bone, cartilage, nerve and skin tissue engineering. PHAs are polyesters produced by a wide range of bacteria under unbalanced growth conditions. They are biodegradable, biocompatible, and piezoelectric polymers, which make them very attractive biomaterials for various biomedical applications. As naturally derived materials, PHAs have been used for multiple cell and tissue engineering applications; however, their widespread biomedical applications are limited due to their lack of toughness, elasticity, hydrophilicity and bioactivity. The chemical structure of PHAs allows them to combine with other polymers or inorganic materials to form hybrid composites with improved structural and functional properties. Their type (films, fibers, and 3D printed scaffolds) and properties can be tailored with fabrication methods and materials used as fillers. Here, we are aiming to fill in a gap in literature, revealing an up-to-date overview of ongoing research strategies that make use of PHAs as versatile and prospective biomaterials. In this work, a systematic and detailed review of works investigating PHA-based hybrid materials with tailored properties and performance for use in tissue engineering applications is carried out. A literature survey revealed that PHA-based composites have better performance for use in tissue regeneration applications than pure PHA.
Collapse
Affiliation(s)
| | | | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050, Russia; (A.P.); (M.A.S.)
| |
Collapse
|
10
|
Mohammadalizadeh Z, Karbasi S, Arasteh S. Physical, mechanical and biological evaluation of poly (3-hydroxybutyrate)-chitosan/MWNTs as a novel electrospun scaffold for cartilage tissue engineering applications. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1647244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Z. Mohammadalizadeh
- Department of Biomaterials and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S. Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S. Arasteh
- Nanobiotechnology Research Center, Avicenna Research Institute, Tehran, Iran
| |
Collapse
|
11
|
Sánchez-Téllez DA, Téllez-Jurado L, Rodríguez-Lorenzo LM. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers (Basel) 2017; 9:E671. [PMID: 30965974 PMCID: PMC6418920 DOI: 10.3390/polym9120671] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
The aims of this paper are: (1) to review the current state of the art in the field of cartilage substitution and regeneration; (2) to examine the patented biomaterials being used in preclinical and clinical stages; (3) to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1) the use of cell-free biomaterials; and (2) the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids), matrices (hydrogel-based), growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.
Collapse
Affiliation(s)
- Daniela Anahí Sánchez-Téllez
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
| | - Lucía Téllez-Jurado
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
| | - Luís María Rodríguez-Lorenzo
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
- Department Polymeric Nanomaterials and Biomaterials, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
12
|
King AAK, Matta-Domjan B, Large MJ, Matta C, Ogilvie SP, Bardi N, Byrne HJ, Zakhidov A, Jurewicz I, Velliou E, Lewis R, La Ragione R, Dalton AB. Pristine carbon nanotube scaffolds for the growth of chondrocytes. J Mater Chem B 2017; 5:8178-8182. [PMID: 32264461 DOI: 10.1039/c7tb02065a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effective growth of chondrocytes and the formation of cartilage is demonstrated on scaffolds of aligned carbon nanotubes; as two dimensional sheets and on three dimensional textiles. Raman spectroscopy is used to confirm the presence of chondroitin sulfate, which is critical in light of the unreliability of traditional dye based assays for carbon nanomaterial substrates. The textile exhibits a very high affinity for chondrocyte growth and could present a route to implantable, flexible cartilage scaffolds with tuneable mechanical properties.
Collapse
|
13
|
Otitoju T, Ahmad A, Ooi B. Superhydrophilic (superwetting) surfaces: A review on fabrication and application. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.12.016] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Feng J, Zhang D, Zhu M, Gao C. Poly(l-lactide) melt spun fiber-aligned scaffolds coated with collagen or chitosan for guiding the directional migration of osteoblasts in vitro. J Mater Chem B 2017; 5:5176-5188. [DOI: 10.1039/c7tb00601b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PLLA melt spun fiber-aligned scaffolds coated with collagen or chitosan enhance the viability, spreading, alignment and mobility of osteoblasts.
Collapse
Affiliation(s)
- Jianyong Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Meifang Zhu
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
15
|
Silva E, Vasconcellos LMRD, Rodrigues BVM, Dos Santos DM, Campana-Filho SP, Marciano FR, Webster TJ, Lobo AO. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:31-39. [PMID: 28183613 DOI: 10.1016/j.msec.2016.11.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/24/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
Abstract
Herein, we developed honeycomb-like scaffolds by combining poly (d, l-lactic acid) (PDLLA) with a high amount of graphene/multi-walled carbon nanotube oxides (MWCNTO-GO, 50% w/w). From pristine multi-walled carbon nanotubes (MWCNT) powders, we produced MWCNTO-GO via oxygen plasma etching (OPE), which promoted their exfoliation and oxidation. Initially, we evaluated PDLLA and PDLLA/MWCNTO-GO scaffolds for tensile strength tests, cell adhesion and cell viability (with osteoblast-like MG-63 cells), alkaline phosphatase (ALP, a marker of osteoblast differentiation) activity and mineralized nodule formation. In vivo tests were carried out using PDLLA and PDLLA/MWCNTO-GO scaffolds as fillers for critical defects in the tibia of rats. MWCNTO-GO loading was responsible for decreasing the tensile strength and elongation-at-break of PDLLA scaffolds, although the high mechanical performance observed (~600MPa) assures their application in bone tissue regeneration. In vitro results showed that the scaffolds were not cytotoxic and allowed for osteoblast-like cell interactions and the formation of mineralized matrix nodules. Furthermore, MG-63 cells grown on PDLLA/MWCNTO-GO significantly enhanced osteoblast ALP activity compared to controls (cells alone), while the PDLLA group showed similar ALP activity when compared to controls and PDLLA/MWCNTO-GO. Most impressively, in vivo tests suggested that compared to PDLLA scaffolds, PDLLA/MWCNTO-GO had a superior influence on bone cell activity, promoting greater new bone formation. In summary, the results of this study highlighted that this novel scaffold (MWCNTO-GO, 50% w/w) is a promising alternative for bone tissue regeneration and, thus, should be further studied.
Collapse
Affiliation(s)
- Edmundo Silva
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, State University of Sao Paulo (UNESP), Av. Engenheiro Francisco Jose Longo, 777, Sao Jose dos Campos 12245-000, SP, Brazil
| | - Bruno V M Rodrigues
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil; Laboratory of Biomedical Nanotechnology, Biomedical Engineering Innovation Center, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, Brazil
| | - Danilo Martins Dos Santos
- Chemistry Institute of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-Carlense, 400, 13566-590 Sao Carlos, SP, Brazil
| | - Sergio P Campana-Filho
- Chemistry Institute of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-Carlense, 400, 13566-590 Sao Carlos, SP, Brazil
| | - Fernanda Roberta Marciano
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil; Laboratory of Biomedical Nanotechnology, Biomedical Engineering Innovation Center, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, Brazil; Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Anderson Oliveira Lobo
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil; Laboratory of Biomedical Nanotechnology, Biomedical Engineering Innovation Center, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, Brazil; Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Qu C, Kaitainen S, Kröger H, Lappalainen R, Lammi MJ. Behavior of Human Bone Marrow-Derived Mesenchymal Stem Cells on Various Titanium-Based Coatings. MATERIALS 2016; 9:ma9100827. [PMID: 28773947 PMCID: PMC5456604 DOI: 10.3390/ma9100827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022]
Abstract
The chemical composition and texture of titanium coatings can influence the growth characteristics of the adhered cells. An enhanced proliferation of the human mesenchymal stem cells (hMSCs) would be beneficial. The present study was aimed to investigate whether titanium deposited at different atmospheres would affect the cell growth properties, cellular morphology, and expression of surface markers of hMSCs. Titanium-based coatings were deposited on silicon wafers under oxygen, nitrogen, or argon atmospheres by ultra-short pulsed laser deposition using two different gas pressures followed by heating at 400 °C for 2 h. The characteristics of the coated surfaces were determined via contact angle, zeta potential, and scanning electron microscopy (SEM) techniques. Human MSCs were cultivated on differently coated silicon wafers for 48 h. Subsequently, the cell proliferation rates were analyzed with an MTT assay. The phenotype of hMSCs was checked via immunocytochemical stainings of MSC-associated markers CD73, CD90, and CD105, and the adhesion, spreading, and morphology of hMSCs on coated materials via SEM. The cell proliferation rates of the hMSCs were similar on all coated silicon wafers. The hMSCs retained the MSC phenotype by expressing MSC-associated markers and fibroblast-like morphology with cellular projections. Furthermore, no significant differences could be found in the size of the cells when cultured on all various coated surfaces. In conclusion, despite certain differences in the contact angles and the zeta potentials of various titanium-based coatings, no single coating markedly improved the growth characteristics of hMSCs.
Collapse
Affiliation(s)
- Chengjuan Qu
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio 70210, Finland.
- Department of Integrative Medical Biology, Umeå University, Umeå 90187, Sweden.
| | - Salla Kaitainen
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland.
| | - Heikki Kröger
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio 70210, Finland.
| | - Reijo Lappalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland.
| | - Mikko J Lammi
- Department of Integrative Medical Biology, Umeå University, Umeå 90187, Sweden.
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health of Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
17
|
Siqueira IAWB, Oliveira CAGS, Zanin H, Grinet MAVM, Granato AEC, Porcionatto MA, Marciano FR, Lobo AO. Bioactivity behaviour of nano-hydroxyapatite/freestanding aligned carbon nanotube oxide composite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:113. [PMID: 25665850 DOI: 10.1007/s10856-015-5450-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/29/2014] [Indexed: 06/04/2023]
Abstract
Bioactive and low cytotoxic three dimensional nano-hydroxyapatite (nHAp) and aligned carbon nanotube oxide (a-CNTO) composite has been investigated. First, freestanding aligned carbon nanotubes porous scaffold was prepared by large-scale thermal chemical vapour deposition and functionalized by oxygen plasma treatment, forming a-CNTO. The a-CNTO was covered with plate-like nHAp crystals prepared by in situ electrodeposition techniques, forming nHAp/a-CNTO composite. After that nHAp/a-CNTO composite was immersed in simulated body fluid for composite consolidation. This novel nanobiomaterial promotes mesenchymal stem cell adhesion with the active formation of membrane projections, cell monolayer formation and high cell viability.
Collapse
Affiliation(s)
- Idalia A W B Siqueira
- Laboratory of Biomedical Nanotechnology, Institute of Research and Development (IP&D), University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, São Paulo, CEP/12224-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Calikoglu Koyuncu AC, Gurel Pekozer G, Ramazanoglu M, Torun Kose G, Hasirci V. Cartilage tissue engineering on macroporous scaffolds using human tooth germ stem cells. J Tissue Eng Regen Med 2015; 11:765-777. [PMID: 25556544 DOI: 10.1002/term.1975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 07/20/2014] [Accepted: 10/30/2014] [Indexed: 12/20/2022]
Abstract
The main objective was to study cartilage regeneration through differentiation of human tooth germ stem cells (HTGSCs) into chondrocytes on different three-dimensional (3D) scaffolds (PCL, PLLA and PCL-PLLA). Scaffold topographies were studied by scanning electron microscopy and it was found that the scaffolds had interconnected macroporous structures. HTGSCs were isolated from impacted third molar tooth germs of young adult patients and grown for 3 weeks on the scaffolds in chondrogenic differentiation medium. Cell proliferation on the scaffolds was determined by MTS assay and it was observed that all scaffolds supported cell proliferation. Immunostaining was carried out for morphological and differentiation analyses. Immunohistochemical analyses revealed that the cells attached onto the scaffolds and deposited cartilage-specific extracellular matrix (ECM). Real-time PCR was performed to determine the expression levels of cartilage-specific genes. After 21 days of incubation in cartilage differentiation medium, expression of collagen type II increased only in the cells seeded onto PCL-PLLA blend scaffolds. Similarly, aggrecan expression was the highest on PCL-PLLA scaffolds after 3 weeks. These results suggest that all the scaffolds, and especially PCL-PLLA, were suitable for chondrogenic differentiation of HTGSCs. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - G Gurel Pekozer
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - M Ramazanoglu
- Department of Oral Surgery, Istanbul University, Istanbul, Turkey
| | - G Torun Kose
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey.,BIOMATEN, Centre of Excellence in Biomaterials and Tissue Engineering, METU, Ankara, Turkey
| | - V Hasirci
- BIOMATEN, Centre of Excellence in Biomaterials and Tissue Engineering, METU, Ankara, Turkey.,Departments of Biological Sciences, Biotechnology and Biomedical Engineering, METU, Ankara, Turkey
| |
Collapse
|