1
|
Reda AT, Park JY, Park YT. Zinc Oxide-Based Nanomaterials for Microbiostatic Activities: A Review. J Funct Biomater 2024; 15:103. [PMID: 38667560 PMCID: PMC11050959 DOI: 10.3390/jfb15040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The world is fighting infectious diseases. Therefore, effective antimicrobials are required to prevent the spread of microbes and protect human health. Zinc oxide (ZnO) nano-materials are known for their antimicrobial activities. Because of their distinctive physical and chemical characteristics, they can be used in medical and environmental applications. ZnO-based composites are among the leading sources of antimicrobial research. They are effective at killing (microbicidal) and inhibiting the growth (microbiostatic) of numerous microorganisms, such as bacteria, viruses, and fungi. Although most studies have focused on the microbicidal features, there is a lack of reviews on their microbiostatic effects. This review provides a detailed overview of available reports on the microbiostatic activities of ZnO-based nano-materials against different microorganisms. Additionally, the factors that affect the efficacy of these materials, their time course, and a comparison of the available antimicrobials are highlighted in this review. The basic properties of ZnO, challenges of working with microorganisms, and working mechanisms of microbiostatic activities are also examined. This review underscores the importance of further research to better understand ZnO-based nano-materials for controlling microbial growth.
Collapse
Affiliation(s)
| | | | - Yong Tae Park
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea; (A.T.R.)
| |
Collapse
|
2
|
Salas-Orozco MF, Lorenzo-Leal AC, de Alba Montero I, Marín NP, Santana MAC, Bach H. Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102715. [PMID: 37907198 DOI: 10.1016/j.nano.2023.102715] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023]
Abstract
The emergency of antibiotic-resistant bacteria in severe infections is increasing, especially in nosocomial environments. The ESKAPE group is of special importance in the groups of multi-resistant bacteria due to its high capacity to generate resistance to antibiotics and bactericides. Therefore, metal-based nanomaterials are an attractive alternative to combat them because they have been demonstrated to damage biomolecules in the bacterial cells. However, there is a concern about bacteria developing resistance to NPs and their harmful effects due to environmental accumulation. Therefore, this systematic review aims to report the clinically relevant bacteria that have developed resistance to the NPs. According to the results of this systematic review, various mechanisms to counteract the antimicrobial activity of various NP types have been proposed. These mechanisms can be grouped into the following categories: production of extracellular compounds, metal efflux pumps, ROS response, genetic changes, DNA repair, adaptative morphogenesis, and changes in the plasma membrane.
Collapse
Affiliation(s)
- Marco Felipe Salas-Orozco
- Facultad de Estomatología, Doctorado en Ciencias Odontológicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Ana Cecilia Lorenzo-Leal
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Nuria Patiño Marín
- Facultad de Estomatología, Laboratorio de Investigación Clinica, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Miguel Angel Casillas Santana
- Maestría en Estomatología con Opcion Terminal en Ortodoncia, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Su W, Li Z, Gong T, Wang F, Jin M, Wang Y, Lu Z. An alternative ZnO with large specific surface area: Preparation, physicochemical characterization and effects on growth performance, diarrhea, zinc metabolism and gut barrier function of weaning piglets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163558. [PMID: 37075996 DOI: 10.1016/j.scitotenv.2023.163558] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
High-dose ZnO is widely used to prevent diarrhea and promote growth of weaning piglets, which has led to serious problems of animal toxicity, bacterial resistance and environmental pollution. In this study, a novel alternative ZnO (AZO) was prepared and its physicochemical properties were characterized. Animal experiments were further conducted to evaluate the effects of the ZnO forms, the dose of AZO and the combinations with AZO on the growth performance, diarrhea, zinc metabolism and gut barrier function of weaning piglets. The results showed that the AZO, compared with ordinary ZnO (OZO), nano ZnO (NZO) and porous ZnO (PZO), had the largest surface area and reduced the release of Zn2+ into the gastric fluid. AZO showed better antibacterial activity on Escherichia coli K88, Staphylococcus aureus and Salmonella enteritidis but lower cytotoxicity on porcine intestinal epithelial cells. Animal experiments suggested that low-dose AZO, NZO and PZO (300 mg/kg) improved growth performance and reduced diarrhea in weaning piglets as well as high-dose OZO (3000 mg/kg). Notably, low-dose AZO had the lowest diarrhea incidence. Additionally, low-dose AZO in combination with probiotics improved digestibility and digestive enzyme activities. Low-dose AZO in combination with probiotics also upregulated the expression of the intestinal zinc transporter proteins ZIP4 and DMT1, increased zinc bioavailability, reduced faecal zinc emissions, and avoided zinc overload in the liver and oxidative damage caused by high-dose ZnO. Moreover, low-dose AZO in combination with probiotics improved the gut barrier function of weaning piglets by promoting the expression of tight junction proteins, mucins and antimicrobial peptides and increasing gut microbiota diversity and beneficial Lactobacillus. This study proposed a novel strategy to replace high-dose ZnO and antibiotics with low-dose AZO and probiotics in weaning piglets, which effectively improved growth performance and prevented diarrhea while reducing animal toxicity, bacterial resistance, heavy metal residues and zinc emission pollution.
Collapse
Affiliation(s)
- Weifa Su
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Zhixue Li
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Tao Gong
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Fengqin Wang
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Mingliang Jin
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Yizhen Wang
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Zeqing Lu
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Chang CH, Tsai LH, Lee YC, Yao WC, Lin JJ. Synergistic Effects of Silicate-Platelet Supporting Ag and ZnO, Offering High Antibacterial Activity and Low Cytotoxicity. Int J Mol Sci 2023; 24:ijms24087024. [PMID: 37108187 PMCID: PMC10138669 DOI: 10.3390/ijms24087024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Silver nanoparticles (AgNPs) are remarkably able to eliminate microorganisms, but induce cytotoxicity in mammalian cells, and zinc oxide nanoparticles (ZnONPs) are considered to have a wide bactericidal effect with weak cytotoxicity. In this study, both zinc oxide nanoparticles and silver nanoparticles were co-synthesized on a nano-silicate platelet (NSP) to prepare a hybrid of AgNP/ZnONP/NSP. Ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize the formation of nanoparticles on the NSP. Synthesized ZnONP/NSP (ZnONP on NSP) was confirmed by the absorption peaks on UV-Vis and XRD. AgNP synthesized on ZnONP/NSP was also characterized by UV-Vis, and ZnONP/NSP showed no interference with synthesis. The images of TEM demonstrated that NSP provides physical support for the growth of nanoparticles and could prevent the inherent aggregation of ZnONP. In antibacterial tests, AgNP/ZnONP/NSP exhibited more efficacy against Staphylococcus aureus (S. aureus) than ZnONP/NSP (ZnONP was synthesized on NSP) and AgNP/NSP (AgNP was synthesized on NSP). In cell culture tests, 1/10/99 (weight ratio) of AgNP/ZnONP/NSP exhibited low cytotoxicity for mammalian cells (>100 ppm). Therefore, AgNP/ZnONP/NSP, containing both AgNP and ZnONP, with both strong antibacterial qualities and low cytotoxicity, showed potentially advantageous medical utilizations due to its antibacterial properties.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Orthopedics, National Taiwan University Hospital Jin-Shan Branch, New Taipei City 20844, Taiwan
- Department of Orthopedics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Li-Hui Tsai
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Chen Lee
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, Taoyuan 330, Taiwan
| | - Jiang-Jen Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Pino P, Pellegrino G, Ronchetti S, Mollea C, Bosco F, Onida B. Antibacterial β-Glucan/Zinc Oxide Nanocomposite Films for Wound Healing. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractAdvanced antimicrobial biomaterials for wound healing applications are an active field of research for their potential in addressing severe and infected wounds and overcoming the threat of antimicrobial resistance. Beta-glucans have been used in the preparation of these materials for their bioactive properties, but very little progress has been made so far in producing biomedical devices entirely made of beta-glucans and in their integration with effective antimicrobial agents. In this work, a simple and eco-friendly method is used to produce flexible beta-glucan/nanostructured zinc oxide films, using glucans derived from the yeast Saccharomyces cerevisiae. The properties of the films are characterized through scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, infrared and UV–visible spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and water absorption tests. Finally, the antibacterial properties of the nanostructured zinc oxide and of the composite films are assessed against Staphylococcus epidermidis and Escherichia coli, showing a marked effectiveness against the former. Overall, this study demonstrates how a novel bionanocomposite can be obtained towards the development of advanced wound healing devices.
Collapse
|
6
|
Li B, Zhou M, Cheng M, Liu J, Xu X, Xie X. Rapid preparation of ZnO nanocomposite hydrogels by frontal polymerization of a ternary DES and performance study. RSC Adv 2022; 12:12871-12877. [PMID: 35496327 PMCID: PMC9048588 DOI: 10.1039/d2ra01626e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/17/2022] [Indexed: 11/21/2022] Open
Abstract
A deep eutectic solvent (DES) was synthesized from urea (U), acrylamide (AM), and choline chloride (ChCl). ZnO was dispersed in the DES as a filler, and nanocomposite hydrogels (ZnO/P(U-AM-ChCl)) were successfully prepared by frontal polymerization (FP). The hydrogels were verified by Fourier infrared spectroscopy to contain ZnO nanoparticles (ZnO-NPs). The swelling behaviour, conductivity, and antibacterial properties of the ZnO nanocomposite hydrogels were investigated. The results showed that the ZnO/P(U-AM-ChCl) hydrogels had excellent antibacterial properties and exhibited super high inhibition rates of 81.87% and 88.42% against two basic colonies of Gram-negative and Gram-positive bacteria, respectively. The equilibrium swelling of the hydrogels was found to increase significantly from 9.30 to 12.29 with the addition of ZnO, while the ZnO/P(U-AM-ChCl) hydrogel conductivity exhibited good UV sensitivity. This study provides a rapid and low-energy method for the preparation of nanocomposite hydrogels with excellent antibacterial properties.
Collapse
Affiliation(s)
- Bin Li
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Mengjing Zhou
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Ming Cheng
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Jizhen Liu
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Xiaojia Xu
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Xiangyu Xie
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology Wuhan Hubei 430070 China
| |
Collapse
|
7
|
Lim KY, Foo KY. One-step synthesis of carbonaceous adsorbent from soybean bio-residue by microwave heating: Adsorptive, antimicrobial and antifungal behavior. ENVIRONMENTAL RESEARCH 2022; 204:112044. [PMID: 34516977 DOI: 10.1016/j.envres.2021.112044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
In this work, the transformation of soybean industrial bio-residue with limited practical applications, into a multifunctional carbonaceous adsorbent (SBAC) via one-step microwave-irradiation has been succeeded. The surface porosity, chemical compositions, functionalities and surface chemistry were featured by microscopic pore-textural analysis, elemental constitution analysis, morphological characterization and Fourier transform infra-red spectroscopy. The adsorptive performance of SBAC was evaluated in a batch experiment by adopting different classes of water pollutants, specifically methylene blue (MB), acetaminophen and 2,4-dichlorophenoxyacetic acid (2,4-D). The equilibrium uptakes were analyzed with respect to the non-linearized Langmuir, Freundlich and Temkin isotherm equations. The unique features of SBAC, specifically the antimicrobial and antifungal efficacies were examined against gram-positive/negative bacteria and fungi species. An ordered microporous-mesoporous structure of SBAC, with the BET surface area and total pore volume of 1696 m2/g and 0.94 m3/g, respectively, has been achieved. The equilibrium data of MB and acetaminophen were found to be in good agreement with the Langmuir isotherm model, with the monolayer adsorption capacities (Qo) of 434.57 mg/g and 393.31 mg/g, respectively. The adsorptive experiment of 2,4-D was best fitted to the Freundlich isotherm equation, with the Qo of 253.17 mg/g. The regeneration performance of the spent SBAC under microwave-irradiation could maintain at 69.42-79.31%, even after five (5) adsorption-regeneration cycles. SBAC exhibited excellent inhibition efficiencies against gram-positive/negative bacteria and fungi species, with the inhibition zones at 14.0-28.0 mm. This newly developed SBAC appears to be a new powerful candidate for the remediation of different classes of water contaminants, and novel antibacterial and antifungal agents against biological contaminations. The novel concept of "turn waste into wealth" in a cost-effective and energy saving manner for environmental preservation has been successfully accomplished.
Collapse
Affiliation(s)
- Kah Yee Lim
- River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia (USM), Engineering Campus, Seri Ampangan, 14300, Nibong Tebal, Penang, Malaysia.
| | - Keng Yuen Foo
- River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia (USM), Engineering Campus, Seri Ampangan, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
8
|
Facile synthesis of silver modified zinc oxide nanocomposite: An efficient visible light active nanomaterial for bacterial inhibition and dye degradation. Photodiagnosis Photodyn Ther 2021; 36:102619. [PMID: 34748999 DOI: 10.1016/j.pdpdt.2021.102619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
The present study reports the synthesis of silver (Ag) decorated zinc oxide (ZnO) nanocomposite via green synthesis method by using Acacia arabica plant leaves extract as both reducing and capping agent. The results clearly indicate a uniform distribution of Ag nanoparticles (NPs) over ZnO surface. Various analytical and spectroscopic techniques were used for investigating the formation and morphology of as-synthesized Ag/ZnO nanocomposites. Emergence of SPR at 424 and 378 nm confirmed the synthesis of AgNPs and ZnO respectively. The confirmation of elemental composition and crystal structure of prepared nanomaterials (NMs) was carried out via EDX and XRD analysis. Results obtained from HRTEM and SEM analysis indicated small sized spherically shaped NMs. The as-synthesized was checked for its photocatalytic activity towards degradation of MB in the presence as well as absence of light irradiation. Results of degradation study revealed that Ag/ZnO exhibits remarkable photocatalytic activity in the presence of light whereby removing 90% of MB within 80 min. Moreover, the antibacterial activity of synthesized nanocomposite was examined in both visible light and dark conditions. The experiment showed that nanomaterial depicts enhanced antibacterial activity in light in comparison to dark. The results showed that the inhibition diameter of Ag/ZnO nanocomposite in light was found to be 18 (±0.2), 22 (±0.3) against E. coli and S. aureus respectively. The inhibition zone of the said nanomaterial against E. coli and S. aureus in dark was 11 (±0.3), 14 (±0.5) respectively. These results conclude that activity is delivered both in the presence of visible light and dark but efficiency of antibacterial activity is found to be more in visible light in comparison.
Collapse
|
9
|
Pino P, Ronchetti S, Mollea C, Sangermano M, Onida B, Bosco F. Whey Proteins-Zinc Oxide Bionanocomposite as Antibacterial Films. Pharmaceutics 2021; 13:1426. [PMID: 34575502 PMCID: PMC8466345 DOI: 10.3390/pharmaceutics13091426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
The use of toxic crosslinking agents and reagents in the fabrication of hydrogels is a frequent issue which is particularly concerning for biomedical or food packaging applications. In this study, novel antibacterial bionanocomposite films were obtained through a simple solvent casting technique without using any crosslinking substance. Films were made from a flexible and transparent whey protein matrix containing zinc oxide nanoparticles synthesised via a wet chemical precipitation route. The physicochemical and functional properties of the ZnO nanoparticles and of the composite films were characterised, and their antibacterial activity was tested against S. epidermidis and E. coli. The synthesised ZnO nanoparticles had an average size of about 30 nm and a specific surface area of 49.5 m2/g. The swelling ratio of the bionanocomposite films increased at basic pH, which is an appealing feature in relation to the absorption of chronic wound exudate. A n-ZnO concentration-dependent antibacterial effect was observed for composite films. In particular, marked antibacterial activity was observed against S. epidermidis. Overall, these findings suggest that this novel material can be a promising and sustainable alternative in the design of advanced solutions for wound dressing or food packaging.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Onida
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (P.P.); (S.R.); (C.M.); (M.S.); (F.B.)
| | | |
Collapse
|
10
|
Naik EI, Naik HB, Sarvajith M, Pradeepa E. Co-precipitation synthesis of cobalt doped ZnO nanoparticles: Characterization and their applications for biosensing and antibacterial studies. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Structural and thermal properties of pure and chromium doped zinc oxide nanoparticles. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04682-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
Pure ZnO and Cr-doped ZnO nanoparticles have been synthesized via a facile chemical co-precipitation route and their structural, thermal characteristics were discussed systematically. In the experimental producer, the doping concentration has varied the range, 0.05–0.1 M, while calcined at 600 °C. The influence of Cr-doping on the physical characteristics of ZnO nanoparticles was investigated and addressed. As-prepared samples were analyzed via XRD, FTIR, TGA/DTA, BET, and ICP-MS. XRD analysis shows that ZnO and Cr doped ZnO nanoparticles with average particle sizes between 23 and 39 nm were successfully developed with hexagonal wurtzite structure. The FTIR spectroscopy analysis confirms the existence of chromium in the doped ZnO nanoparticles and the formation of ZnO. The TGA/DTA analysis shows that Cr–ZnO nanoparticles are more thermally stable than ZnO nanoparticles. Moreover, the dopant concentration has been analyzed via ICP-MS and showed a good agreement with the expected chromium concentration. The BET surface area measurement shows that 176.25 m2/g and 287.17 m2/g for un-doped ZnO, and 0.1 M Cr-doped ZnO nanoparticles, respectively. Hence, doping of Cr enhances the surface area and thermal stability. Thus, Cr–ZnO nanoparticles show good thermal stability, and high surface area, which is an excellent characteristices of nanomaterials.
Graphic abstract
Collapse
|
12
|
Ahmed J, Gultekinoglu M, Bayram C, Kart D, Ulubayram K, Edirisinghe M. Alleviating the toxicity concerns of antibacterial cinnamon-polycaprolactone biomaterials for healthcare-related biomedical applications. MedComm (Beijing) 2021; 2:236-246. [PMID: 34766144 PMCID: PMC8491196 DOI: 10.1002/mco2.71] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 01/06/2023] Open
Abstract
Fibrous constructs with incorporated cinnamon-extract have previously been shown to have potent antifungal abilities. The question remains to whether these constructs are useful in the prevention of bacterial infections in fiber form and what the antimicrobial effects means in terms of toxicity to the native physiological cells. In this work, cinnamon extract containing poly (ε-caprolactone) (PCL) fibers were successfully manufactured by pressurized gyration and had an average size of ∼2 μm. Cinnamon extract containing PCL fibers were tested against Escherichia coli, Staphylococcus aureus, Methicillin resistant staphylococcus aureus, and Enterococcus faecalis bacterial species to assess their antibacterial capacity; it was found that these fibers were able to reduce viable cell numbers of the bacterial species up to two orders of magnitude lower than the control group. The results of the antibacterial tests were assessed by scanning electron microscopy (SEM). The constructs were also tested under indirect MTT tests where they showed little to no toxicity, similar to the control groups. Additionally, cell viability fluorescent imaging displayed no significant toxicity issues with the fibers, even at their highest tested concentration. Here we present a viable method for the production the non-toxic and naturally abundant cinnamon extracted fibers for numerous biomedical applications.
Collapse
Affiliation(s)
- Jubair Ahmed
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical SciencesFaculty of PharmacyHacettepe UniversityAnkaraTurkey
| | - Cem Bayram
- Department of Nanotechnology & Nanomedicine DivisionInstitute for Graduate Studies in Science & Engineering Hacettepe UniversityAnkaraTurkey
| | - Didem Kart
- Department of Pharmaceutical MicrobiologyFaculty of PharmacyHacettepe UniversityAnkaraTurkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical SciencesFaculty of PharmacyHacettepe UniversityAnkaraTurkey
- Department of Nanotechnology & Nanomedicine DivisionInstitute for Graduate Studies in Science & Engineering Hacettepe UniversityAnkaraTurkey
| | - Mohan Edirisinghe
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
13
|
Simon SM, George G, Chandran A, Valparambil P, Shamsudeen S, Saritha AC, Biju PR, Thomas S, Joseph C, Vishwambharan UN. Robust polymer incorporated
TiO
2
‐ZrO
2
microsphere coatings by electrospraying technique with excellent and durable self cleaning, antibacterial and photocatalytic functionalities. J Appl Polym Sci 2021. [DOI: 10.1002/app.50880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sanu Mathew Simon
- School of Pure and Applied Physics Mahatma Gandhi University Kottayam India
| | - Gejo George
- School of Pure and Applied Physics Mahatma Gandhi University Kottayam India
| | | | | | - Sajna Shamsudeen
- School of Pure and Applied Physics Mahatma Gandhi University Kottayam India
- Department of Optoelectronics University of Kerala Trivandrum India
| | - A. C. Saritha
- School of Pure and Applied Physics Mahatma Gandhi University Kottayam India
| | - P. R. Biju
- School of Pure and Applied Physics Mahatma Gandhi University Kottayam India
| | - Sabu Thomas
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
- International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN) Mahatma Gandhi University Kottayam India
| | - Cyriac Joseph
- School of Pure and Applied Physics Mahatma Gandhi University Kottayam India
| | | |
Collapse
|
14
|
Navarro-López DE, Garcia-Varela R, Ceballos-Sanchez O, Sanchez-Martinez A, Sanchez-Ante G, Corona-Romero K, Buentello-Montoya DA, Elías-Zuñiga A, López-Mena ER. Effective antimicrobial activity of ZnO and Yb-doped ZnO nanoparticles against Staphylococcus aureus and Escherichia coli. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112004. [PMID: 33812624 DOI: 10.1016/j.msec.2021.112004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
Abstract
Nanostructured Zn1-xYbxO (0.0 ≤ x ≤ 0.1) powders were prepared by the solution method using polyvinyl alcohol (PVA) and sucrose. The effect of the ytterbium doping content on the structural, morphological, optical and antimicrobial properties was analyzed. X-ray diffraction (XRD) analysis revealed that the hexagonal wurtzite structure was retained, and no secondary phases due to doping were observed. The crystallite size was under 20 nm for all the Zn1-xYbxO (0.0 ≤ x ≤ 0.1) powders. The optical band gap was calculated, and the results revealed that this value increased with the ytterbium content, and the Eg values varied from 3.06 to 3.10 eV. The surface chemistry of the powders was analyzed using X-ray photoelectron spectroscopy (XPS), and the results confirmed the oxidation state of ytterbium as 3+ for all the samples. Zn1-xYbxO (0.0 ≤ x ≤ 0.1) nanoparticles were tested as antimicrobial agents against Staphylococcus aureus and Escherichia coli, resulting in a potential antimicrobial effect at most of the tested concentrations. These results were used in an artificial neural network (ANN). The results showed that it is possible to generate a model capable of forecasting the absorbance with good precision (error of 1-2%).
Collapse
Affiliation(s)
- Diego Eloyr Navarro-López
- Tecnologico de Monterrey, Campus Guadalajara, Av. Gral Ramón Corona No 2514, Colonia Nuevo México, 45201 Zapopan, Jal, Mexico
| | - Rebeca Garcia-Varela
- Tecnologico de Monterrey, Campus Guadalajara, Av. Gral Ramón Corona No 2514, Colonia Nuevo México, 45201 Zapopan, Jal, Mexico
| | - O Ceballos-Sanchez
- Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial los Belenes, Zapopan, Jalisco 45157, Mexico.
| | - A Sanchez-Martinez
- CONACYT-Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Carretera Zacatecas - Guadalajara Km 6, Ejido La Escondida, 98160, Zacatecas, Zacatecas, Mexico
| | - Gildardo Sanchez-Ante
- Universidad Politecnica de Yucatan, Carretera Merida-Tetiz, Km. 4.5, Ucu, YUC 97357, Mexico
| | - Kaled Corona-Romero
- Tecnologico de Monterrey, Campus Guadalajara, Av. Gral Ramón Corona No 2514, Colonia Nuevo México, 45201 Zapopan, Jal, Mexico
| | - D A Buentello-Montoya
- Tecnologico de Monterrey, Campus Guadalajara, Av. Gral Ramón Corona No 2514, Colonia Nuevo México, 45201 Zapopan, Jal, Mexico
| | - Alex Elías-Zuñiga
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Edgar R López-Mena
- Tecnologico de Monterrey, Campus Guadalajara, Av. Gral Ramón Corona No 2514, Colonia Nuevo México, 45201 Zapopan, Jal, Mexico.
| |
Collapse
|
15
|
Danial EN, Hjiri M, Abdel-wahab M, Alonizan N, El Mir L, Aida M. Antibacterial activity of In-doped ZnO nanoparticles. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Smerkova K, Dolezelikova K, Bozdechova L, Heger Z, Zurek L, Adam V. Nanomaterials with active targeting as advanced antimicrobials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1636. [PMID: 32363802 DOI: 10.1002/wnan.1636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
With a growing health threat of bacterial resistance to antibiotics, the nanomaterials have been extensively studied as an alternative. It is assumed that antimicrobial nanomaterials can affect bacteria by several mechanisms simultaneously and thereby overcome antibiotic resistance. Another promising potential use is employing nanomaterials as nanocarriers for antibiotics in order to overcome bacterial defense mechanisms. The passive targeting of nanomaterials is the often used strategy for bacterial treatment, including intracellular infections of macrophages. Furthermore, the specific targeting enhances the efficacy of antimicrobials and reduces side effects. This review aims to discuss advantages, disadvantages, and challenges of nanomaterials in the context of the targeting strategies for antimicrobials as advanced tools for treatments of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Lucie Bozdechova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Center for Zoonoses, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
17
|
Figueroa-Lopez KJ, Torres-Giner S, Enescu D, Cabedo L, Cerqueira MA, Pastrana LM, Lagaron JM. Electrospun Active Biopapers of Food Waste Derived Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) with Short-Term and Long-Term Antimicrobial Performance. NANOMATERIALS 2020; 10:nano10030506. [PMID: 32168913 PMCID: PMC7153266 DOI: 10.3390/nano10030506] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/01/2023]
Abstract
This research reports about the development by electrospinning of fiber-based films made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from fermented fruit waste, so-called bio-papers, with enhanced antimicrobial performance. To this end, different combinations of oregano essential oil (OEO) and zinc oxide nanoparticles (ZnONPs) were added to PHBV solutions and electrospun into mats that were, thereafter, converted into homogeneous and continuous films of ~130 μm. The morphology, optical, thermal, mechanical properties, crystallinity, and migration into food simulants of the resultant PHBV-based bio-papers were evaluated and their antimicrobial properties were assessed against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in both open and closed systems. It was observed that the antimicrobial activity decreased after 15 days due to the release of the volatile compounds, whereas the bio-papers filled with ZnONPs showed high antimicrobial activity for up to 48 days. The electrospun PHBV biopapers containing 2.5 wt% OEO + 2.25 wt% ZnONPs successfully provided the most optimal activity for short and long periods against both bacteria.
Collapse
Affiliation(s)
- Kelly J. Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain;
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain;
- Correspondence: (S.T.-G.); (J.M.L.); Tel.: +34-963-900-022 (S.T.-G.); +34-963-900-022 (J.M.L.)
| | - Daniela Enescu
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (D.E.); (M.A.C.); (L.M.P.)
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain;
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (D.E.); (M.A.C.); (L.M.P.)
| | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (D.E.); (M.A.C.); (L.M.P.)
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain;
- Correspondence: (S.T.-G.); (J.M.L.); Tel.: +34-963-900-022 (S.T.-G.); +34-963-900-022 (J.M.L.)
| |
Collapse
|
18
|
Mahamuni-Badiger PP, Patil PM, Badiger MV, Patel PR, Thorat- Gadgil BS, Pandit A, Bohara RA. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110319. [DOI: 10.1016/j.msec.2019.110319] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/19/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
|
19
|
Zhang R, Wang Y, Ma D, Ahmed S, Qin W, Liu Y. Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. ULTRASONICS SONOCHEMISTRY 2019; 59:104731. [PMID: 31442767 DOI: 10.1016/j.ultsonch.2019.104731] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 08/11/2019] [Indexed: 05/04/2023]
Abstract
Nanofibrous composite membranes consisting of polyvinyl alcohol (PVA), graphene oxide (GO), and zinc oxide nanoparticles (ZnO NPs) were prepared by and ultrasonic processing, and electrospinning. The performance of the membranes containing different GO-to-ZnO NP mass ratios was comprehensively investigated in terms of density, mechanical properties, water vapor permeability, optical property, biodegradability and antimicrobial properties. The results showed that an appropriate sonication time (30 min) improved the membrane performance; the composite nanofibrous membrane with a GO-to-ZnO NP mass ratio of 3:7 and 30 min sonication exhibited the best performance with a water vapor permeability of (0.62 ± 0.01) × 10-2 g·h-1 m-2 pa-1, and strain and stress values of 307.84 ± 2.96% and 12.82 ± 0.56 MPa, respectively. Particularly, the UV barrier property of the composite nanofibrous membrane was enhanced. Furthermore, the membrane exhibited strong antibacterial activity against foodborne pathogenic and spoilage bacteria. Thu, it can thus be used as an active food packaging material to ensure the safety of food products and to extend their shelf-life.
Collapse
Affiliation(s)
- Rong Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yihao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Donghui Ma
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Synthesis, characterization, in vitro biocompatibility and antibacterial properties study of nanocomposite materials based on hydroxyapatite-biphasic ZnO micro- and nanoparticles embedded in Alginate matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109965. [PMID: 31499965 DOI: 10.1016/j.msec.2019.109965] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023]
Abstract
The paper presents the results of studies of biocompatibility and antibacterial properties of multiphase nanocomposite materials based on HA-Alg-ZnO (hydroxyapatite‑sodium alginate-biphasic zinc oxide) and HA-ZnO (hydroxyapatite‑zinc oxide), which were synthesized from the analytically pure calcium nitrate tetrahydrate, ammonium hydrophosphate, hydrous ammonia, zinc nitrate hexahydrate and calcium chloride. The samples' antimicrobial activity assessment was carried out on Gram-negative (E. coli, P. aeruginosa) and Gram-positive bacteria (S. aureus and S. epidermidis) test cultures by the co-incubation and modified "agar diffusion" methods. The murine fibroblast cells were used for the biocompatibility tests and cytotoxicity evaluation. It was shown that synthesized nanocomposite material has a multiphase nanoscale architecture, where ZnO nanocrystals are represented by two lattices: cubic and hexagonal. The possible explanation of ZnO nanocrystals' phase transition is given. At the same time, a partial replacement of Ca2+ ions by Zn2+ ions in the HA lattice possibly occurs due to processing of composite by US radiation. The replacement was evidenced by the non-stoichiometric Ca/P ratio < 2.16, OPO lines' shifting on FTIR spectrum and TEM analysis. The studied composite demonstrate a pronounced antibacterial activity due to the incorporation of ZnO particles into sodium alginate and moistened powder of hydroxyapatite. Both forms of HA-ZnO (suspension) and HA-Alg-ZnO (beads) are biocompatible. An interpretation of the process of Zn ions' embedding into hydroxyapatite and alginate matrix is given, as well as their influence on the biomimetic composite properties is discussed in details. STATEMENT OF SIGNIFICANCE: A number of studies have shown that Zn effectively inhibits the growth and development of bacteria and yeast fungi. Zinc plays an important role in the creation of new antimicrobial agents, and zinc-doped hydroxyapatite will find further application in biomedicine. In this regard, the phase states of zinc oxide, as well as the processes of calcium replacement by zinc in calcium apatite and in alginate should be explored fully. Nowadays we have lack of information and the study's results about those interactions. The present study provides data of the multiphase morphology, antimicrobial activity, biocompatibility and cytotoxicity of the biomimetic nanostructured composite materials, such as sodium alginate/hydroxyapatite/ZnO based granules and hydroxyapatite/ZnO based hydrogel, and the establishing Zn ions' behavior patterns with another composite components.
Collapse
|
21
|
Anžlovar A, Primožič M, Švab I, Leitgeb M, Knez Ž, Žagar E. Polyolefin/ZnO Composites Prepared by Melt Processing. Molecules 2019; 24:molecules24132432. [PMID: 31269674 PMCID: PMC6651218 DOI: 10.3390/molecules24132432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 11/24/2022] Open
Abstract
Composites of polyolefin matrices (HDPE and PP) were prepared by melt processing using two commercially available nano ZnO powders (Zinkoxyd aktiv and Zano 20). The mechanical and thermal properties, UV-Vis stability, and antibacterial activity of composites were studied. Tensile testing revealed that both nano ZnO types have no particular effect on the mechanical properties of HDPE composites, while some positive trends are observed for the PP-based composites, but only when Zano 20 was used as a nanofiller. Minimal changes in mechanical properties of composites are supported by an almost unaffected degree of crystallinity of polymer matrix. All polyolefin/ZnO composites exposed to artificial sunlight for 8–10 weeks show more pronounced color change than pure matrices. This effect is more evident for the HDPE than for the PP based composites. Color change also depends on the ZnO concentration and type; composites with Zano 20 show more intense color changes than those prepared with Zinkoxyd aktiv. Results of the antibacterial properties study show very high activity of polyolefin/ZnO composites against Staphylococcus aureus regardless of the ZnO surface modification, while antibacterial activity against Escherichia coli shows only the composites prepared with unmodified ZnO. This phenomenon is explained by different membrane structure of gram-positive (S. aureus) and gram-negative (E. coli) bacteria.
Collapse
Affiliation(s)
- Alojz Anžlovar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Iztok Švab
- ISOKON d.o.o., Industrijska cesta 16, SI-3210 Slovenske Konjice, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
22
|
Phenotypic plasticity of Escherichia coli upon exposure to physical stress induced by ZnO nanorods. Sci Rep 2019; 9:8575. [PMID: 31189961 PMCID: PMC6561948 DOI: 10.1038/s41598-019-44727-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/23/2019] [Indexed: 11/17/2022] Open
Abstract
Evolution of bacteria to selective chemical pressure (e.g. antibiotics) is well studied in contrast to the influence of physical stressors. Here we show that instantaneous physical stress in a homogeneous environment (without concentration gradient) induces fast adaptation of Escherichia coli. We exposed E. coli to a large number of collisions of around 105 per bacterium per second with sharp ZnO nanorods. The pressure exerted on the bacterial cell wall was up to 10 GPa and induced phenotype changes. The bacteria’s shape became more spherical, the density of their periplasm increased by around 15% and the average thickness of the cell wall by 30%. Such E. coli cells appeared almost as Gram-positive bacteria in the standard Gram staining. Additionally, we observed a combination of changes occurring at the genomic level (mutations identified in form of single nucleotide polymorphisms) and down-regulation of expression of 61 genes encoding proteins involved in β-oxidation of fatty acids, glycolysis, the citric acid cycle, as well as uptake of amino acids and enzyme cofactors. Thus, we show that bacteria undergo phenotypic changes upon instantaneous, acute physical stress without any obviously available time for gradual adaptation.
Collapse
|
23
|
Khandelwal P, Singh DK, Poddar P. Advances in the Experimental and Theoretical Understandings of Antibiotic Conjugated Gold Nanoparticles for Antibacterial Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201900083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Puneet Khandelwal
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Pune - 411008 India
| | - Dheeraj K. Singh
- Department of PhysicsInstitute of Infrastructure Technology Research & Management Ahmedabad - 380026 India
| | - Pankaj Poddar
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Pune - 411008 India
| |
Collapse
|
24
|
Horky P, Skalickova S, Urbankova L, Baholet D, Kociova S, Bytesnikova Z, Kabourkova E, Lackova Z, Cernei N, Gagic M, Milosavljevic V, Smolikova V, Vaclavkova E, Nevrkla P, Knot P, Krystofova O, Hynek D, Kopel P, Skladanka J, Adam V, Smerkova K. Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure. J Anim Sci Biotechnol 2019; 10:17. [PMID: 30805185 PMCID: PMC6373129 DOI: 10.1186/s40104-019-0319-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/09/2019] [Indexed: 11/10/2022] Open
Abstract
Background Development of new nanomaterials that inhibit or kill bacteria is an important and timely research topic. For example, financial losses due to infectious diseases, such as diarrhea, are a major concern in livestock productions around the world. Antimicrobial nanoparticles (NPs) represent a promising alternative to antibiotics and may lower antibiotic use and consequently spread of antibiotic resistance traits among bacteria, including pathogens. Results Four formulations of zinc nanoparticles (ZnA, ZnB, ZnC, and ZnD) based on phosphates with spherical (ZnA, ZnB) or irregular (ZnC, ZnD) morphology were prepared. The highest in vitro inhibitory effect of our NPs was observed against Staphylococcus aureus (inhibitory concentration values, IC50, ranged from 0.5 to 1.6 mmol/L), followed by Escherichia coli (IC50 0.8-1.5 mmol/L). In contrast, methicillin resistant S. aureus (IC50 1.2-4.7 mmol/L) was least affected and this was similar to inhibitory patterns of commercial ZnO-based NPs and ZnO. After the successful in vitro testing, the in vivo study with rats based on dietary supplementation with zinc NPs was conducted. Four groups of rats were treated by 2,000 mg Zn/kg diet of ZnA, ZnB, ZnC, and ZnD, for comparison two groups were supplemented by 2,000 mg Zn/kg diet of ZnO-N and ZnO, and one group (control) was fed only by basal diet. The significantly higher (P < 0.05) Zn level in liver and kidney of all treated groups was found, nevertheless Zn NPs did not greatly influence antioxidant status of rats. However, the total aerobic and coliform bacterial population in rat feces significantly decreased (P < 0.05) in all zinc groups after 30 d of the treatment. Furthermore, when compared to the ZnO group, ZnA and ZnC nanoparticles reduced coliforms significantly more (P < 0.05). Conclusions Our results demonstrate that phosphate-based zinc nanoparticles have the potential to act as antibiotic agents.
Collapse
Affiliation(s)
- Pavel Horky
- 1Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Sylvie Skalickova
- 1Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Lenka Urbankova
- 1Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Daria Baholet
- 1Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Silvia Kociova
- 2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Zuzana Bytesnikova
- 2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Eliska Kabourkova
- 2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Zuzana Lackova
- 2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,3Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Natalia Cernei
- 2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,3Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Milica Gagic
- 2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vedran Milosavljevic
- 2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,3Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Vendula Smolikova
- 2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,3Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Eva Vaclavkova
- 4Institute of Animal Science, Komenskeho 1239, CZ-517 41 Kostelec nad Orlici, Czech Republic
| | - Pavel Nevrkla
- 5Department of Animal Breeding, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Pavel Knot
- 1Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Olga Krystofova
- 2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,3Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - David Hynek
- 2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,3Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Pavel Kopel
- 2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,3Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Jiri Skladanka
- 1Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- 2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,3Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Kristyna Smerkova
- 2Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,3Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
25
|
Malhotra JS, Sharma A, Singh AK, Kumar S, Rana BS, Kumar S. Investigations on Photocatalytic, Antimicrobial and Magnetic Properties of Sol–Gel-Synthesized Ga-Doped ZnO Nanoparticles. INTERNATIONAL JOURNAL OF NANOSCIENCE 2019. [DOI: 10.1142/s0219581x1850014x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gallium (Ga)-doped zinc oxide (ZnO) nanoparticles were synthesized using simple and cost-effective sol–gel method. X-ray powder diffraction studies illustrated the crystalline nature of Ga-doped ZnO nanoparticles with hexagonal wurtzite structure. Fourier-transform infrared spectroscopy and energy dispersive X-ray fluorescence confirmed the Ga[Formula: see text] incorporation in ZnO. The photocatalytic activities of all the synthesized samples were performed on methylene blue dye solution exposed under UV light. The antibacterial activities of the synthesized nanoparticles were investigated against Aeromonas liquefaciens and Shigella flexeneri gram-negative pathogenic strains. The experimental results clearly demonstrated significant enhancement in photocatalytic and antimicrobial activity of ZnO nanoparticles doped with optimum concentration of Ga. Room temperature vibrating sample magnetometer measurements illustrated weak ferromagnetism in all the Ga-doped ZnO samples.
Collapse
Affiliation(s)
| | - Arnav Sharma
- Electronics and Communications Engineering Department, PEC University of Technology, Chandigarh 160012, India
| | - Arun Kumar Singh
- Electronics and Communications Engineering Department, PEC University of Technology, Chandigarh 160012, India
| | - Sanjeev Kumar
- Department of Physics, G.G.D.S.D. College, Sector-32, Chandigarh 160032, India
| | - Bhupendra Singh Rana
- Department of Radiodiagnosis and Imaging, PGIMER, Sector-12, Chandigarh 160012, India
| | - Sanjeev Kumar
- Applied Sciences Department, PEC University of Technology, Chandigarh 160012, India
| |
Collapse
|
26
|
Goyal P, Chakraborty S, Misra SK. Multifunctional Fe3O4-ZnO nanocomposites for environmental remediation applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Olivera S, Hu C, Nagananda GS, Reddy N, Venkatesh K, Muralidhara HB, Inamuddin, Asiri AM. The adsorptive removal of Cr(VI) ions and antibacterial activity studies on hydrothermally synthesized iron oxide and zinc oxide nanocomposite. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.07.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Du J, Tang J, Xu S, Ge J, Dong Y, Li H, Jin M. ZnO nanoparticles: recent advances in ecotoxicity and risk assessment. Drug Chem Toxicol 2018; 43:322-333. [DOI: 10.1080/01480545.2018.1508218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jia Du
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Junhong Tang
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Shaodan Xu
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Jingyuan Ge
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Yuwei Dong
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Huanxuan Li
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Meiqing Jin
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| |
Collapse
|
29
|
Wu W, Liu T, He H, Wu X, Cao X, Jin J, Sun Q, Roy VAL, Li RKY. Rhelogical and antibacterial performance of sodium alginate/zinc oxide composite coating for cellulosic paper. Colloids Surf B Biointerfaces 2018; 167:538-543. [PMID: 29730575 DOI: 10.1016/j.colsurfb.2018.04.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
Coating of antibacterial layer on the surface of cellulosic paper has numerous potential applications. In the present work, sodium alginate (SA) served as a binder to disperse Zn2+ and the prepared zinc oxide (ZnO) particles were used as antibacterial agents. The rheology test revealed that there were cross-linking between Zn2+ and SA molecular chains in the aqueous solution, resulting in the viscosity of ZnO/SA composite coating increased in the low shear rate region and decreased in the high shear rate region as compared with pure SA. SEM and EDS mapping images showed that the ZnO particles were prepared successfully at 120 °C and dispersed homogeneously on the surface of cellulose fibers and the pores of cellulosic papers. The thermal stabilities of the coated papers decreased as compared to the original blank cellulosic paper, which was ascribed to the low thermal stability of SA and the catalytic effect of ZnO on SA. The tensile stress and Young's modulus of ZnO/SA composite coated paper increased up 39.5% and 30.7%, respectively, as compared with those of blank cellulosic paper. The antibacterial activity tests indicated that the ZnO/SA composite coating endowed the cellulosic paper with effectively growth inhibition of both Gram-negative bacteria E. coli and Gram-positive bacteria S. aureu.
Collapse
Affiliation(s)
- Wei Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong
| | - Tao Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong
| | - Haibing He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong; Department of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xihu Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong
| | - Xianwu Cao
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Jia Jin
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qijun Sun
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong
| | - Vellaisamy A L Roy
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong.
| | - Robert K Y Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong.
| |
Collapse
|
30
|
Xiang Y, Li J, Liu X, Cui Z, Yang X, Yeung KWK, Pan H, Wu S. Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629062 DOI: 10.1016/j.msec.2017.05.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating were successfully prepared on the surface of Ti metallic implants using a hydrothermal method and subsequent spin-coating of mixtures of poly(lactic-co-glycolic acid) and silver nanoparticles. The poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating exhibited excellent antibacterial efficacy of over 96% against both Staphylococcus aureus and Escherichia coli when the initial content of Ag nanoparticles was over 3wt%. In addition, the release of both silver and zinc could last for over a hundred days due to the enwrapping of poly(lactic-co-glycolic acid). Proliferation of mouse calvarial cells exhibited minimal cytotoxicity on the poly(lactic-co-glycolic acid)/Ag/ZnO coating with an initial content of Ag nanoparticles of 1wt% and 3wt%, while it inhibited cell proliferation once this value was increased to 6wt%. The results revealed that this poly(lactic-co-glycolic acid)/Ag/ZnO composite could provide a long-lasting antibacterial approach and good cytocompatibility, thus exhibiting considerable potential for biomedical application in orthopedic and dental implants with excellent self-antibacterial activity and good biocompatibility.
Collapse
Affiliation(s)
- Yiming Xiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Jun Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Xianjin Yang
- School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - K W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuilin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
31
|
Bomila R, Srinivasan S, Venkatesan A, Bharath B, Perinbam K. Structural, optical and antibacterial activity studies of Ce-doped ZnO nanoparticles prepared by wet-chemical method. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/14328917.2017.1324379] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- R. Bomila
- Department of Physics, Presidency College, Chennai, India
| | - S. Srinivasan
- Department of Physics, Presidency College, Chennai, India
| | - A. Venkatesan
- Department of Physics, Panimalar Engineering College, Chennai, India
| | - B. Bharath
- Department of Botany, Govt. Arts College for Men, Chennai, India
| | - K. Perinbam
- Department of Botany, Govt. Arts College for Men, Chennai, India
| |
Collapse
|
32
|
Matuła K, Richter Ł, Adamkiewicz W, Åkerström B, Paczesny J, Hołyst R. Influence of nanomechanical stress induced by ZnO nanoparticles of different shapes on the viability of cells. SOFT MATTER 2016; 12:4162-4169. [PMID: 27074722 DOI: 10.1039/c6sm00336b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There is growing interest in nanostructures interacting with living organisms. However, there are still no general rules for the design of biocompatible nanodevices. Here, we present a step towards understanding the interactions between nanostructures and living cells. We study the influence of nanomechanical stress induced by zinc oxide (ZnO) nanostructures of different shapes on the viability of both prokaryotic (Gram-negative bacteria: Escherichia coli and Enterobacter aerogenes, and Gram-positive bacteria: Staphylococcus epidermidis and Corynebacterium glutamicum) and eukaryotic cells (yeast Saccharomyces cerevisiae and liver cancer cell line HepG2). Nanoparticles (NPs) and nanorods (NRs) of matching crystallographic structure (P63mc) and active surface area (in the order of 5 × 10(-2)μm(2)) are almost non-toxic for cells under static conditions. However, under conditions that enable collisions between ZnO nanostructures and cells, NRs appear to be more damaging compared to NPs. This is due to the increased probability of mechanical damage caused by nanorods upon puncturing of the cell wall and membranes. Gram-positive bacteria, which have thicker cell walls, are more resistant to nanomechanical stress induced by NRs compared to Gram-negative strains and eukaryotic cells. The presented results may be exploited to improve the properties of nanotechnology based products such as implants, drug delivery systems, antibacterial emulsions and cosmetics.
Collapse
Affiliation(s)
- Kinga Matuła
- Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
33
|
Bogdan J, Zarzyńska J, Pławińska-Czarnak J. Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach. NANOSCALE RESEARCH LETTERS 2015; 10:1023. [PMID: 26239879 PMCID: PMC4523504 DOI: 10.1186/s11671-015-1023-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/27/2015] [Indexed: 05/20/2023]
Abstract
Nanotechnology contributes towards a more effective eradication of pathogens that have emerged in hospitals, veterinary clinics, and food processing plants and that are resistant to traditional drugs or disinfectants. Since new methods of pathogens eradication must be invented and implemented, nanotechnology seems to have become the response to that acute need. A remarkable achievement in this field of science was the creation of self-disinfecting surfaces that base on advanced oxidation processes (AOPs). Thus, the phenomenon of photocatalysis was practically applied. Among the AOPs that have been most studied in respect of their ability to eradicate viruses, prions, bacteria, yeasts, and molds, there are the processes of TiO2/UV and ZnO/UV. Titanium dioxide (TiO2) and zinc oxide (ZnO) act as photocatalysts, after they have been powdered to nanoparticles. Ultraviolet (UV) radiation is an agent that determines their excitation. Methods using photocatalytic properties of nanosized TiO2 and ZnO prove to be highly efficient in inactivation of infectious agents. Therefore, they are being applied on a growing scale. AOP-based disinfection is regarded as a very promising tool that might help overcome problems in food hygiene and public health protection. The susceptibility of infectious agents to photocatalylic processes can be generally arranged in the following order: viruses > prions > Gram-negative bacteria > Gram-positive bacteria > yeasts > molds.
Collapse
Affiliation(s)
- Janusz Bogdan
- Department of Food Hygiene and Public Health Protection Faculty of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Joanna Zarzyńska
- Department of Food Hygiene and Public Health Protection Faculty of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Joanna Pławińska-Czarnak
- Department of Food Hygiene and Public Health Protection Faculty of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
34
|
Poongodi G, Anandan P, Kumar RM, Jayavel R. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 148:237-243. [PMID: 25897717 DOI: 10.1016/j.saa.2015.03.134] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 01/22/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO.
Collapse
Affiliation(s)
- G Poongodi
- Department of Physics, Quaid-e-Millath Govt. College for Women, Chennai 600 002, India; Department of Physics, Presidency College, Chennai 600 005, India
| | - P Anandan
- Department of Physics, Thiruvalluvar College of Engineering and Technology, Vandavasi 604505, India
| | - R Mohan Kumar
- Department of Physics, Presidency College, Chennai 600 005, India.
| | - R Jayavel
- Centre for Nanoscience and Technology, Anna University, Chennai 600 025, India
| |
Collapse
|
35
|
Sampath Kumar TS, Madhumathi K, Rubaiya Y, Doble M. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections. Front Bioeng Biotechnol 2015; 3:59. [PMID: 25984512 PMCID: PMC4416447 DOI: 10.3389/fbioe.2015.00059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/17/2015] [Indexed: 12/02/2022] Open
Abstract
Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP) bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA) nanoparticles has been developed. Antibacterial ions such as zinc, silver, and strontium have been incorporated into CDHA at concentrations of 6, 0.25–0.75, and 2.5–7.5 at. %, respectively. The samples were found to be phase pure, acicular nanoparticles of length 40–50 nm and width 5–6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for 5 days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on Staphylococcus aureus and Escherichia coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria, while SrCDHA was weakly active against S. aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity, and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent drug resistant infection.
Collapse
Affiliation(s)
- T S Sampath Kumar
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras , Chennai , India
| | - K Madhumathi
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras , Chennai , India
| | - Y Rubaiya
- Department of Biotechnology, Indian Institute of Technology Madras , Chennai , India
| | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology Madras , Chennai , India
| |
Collapse
|
36
|
Djurišić AB, Leung YH, Ng AMC, Xu XY, Lee PKH, Degger N, Wu RSS. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:26-44. [PMID: 25303765 DOI: 10.1002/smll.201303947] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 08/20/2014] [Indexed: 05/22/2023]
Abstract
Metal oxide nanomaterials are widely used in practical applications and represent a class of nanomaterials with the highest global annual production. Many of those, such as TiO2 and ZnO, are generally considered non-toxic due to the lack of toxicity of the bulk material. However, these materials typically exhibit toxicity to bacteria and fungi, and there have been emerging concerns about their ecotoxicity effects. The understanding of the toxicity mechanisms is incomplete, with different studies often reporting contradictory results. The relationship between the material properties and toxicity appears to be complex and diifficult to understand, which is partly due to incomplete characterization of the nanomaterial, and possibly due to experimental artefacts in the characterization of the nanomaterial and/or its interactions with living organisms. This review discusses the comprehensive characterization of metal oxide nanomaterials and the mechanisms of their toxicity.
Collapse
|
37
|
Sharan C, Khandelwal P, Poddar P. Biomilling of rod-shaped ZnO nanoparticles: a potential role of Saccharomyces cerevisiae extracellular proteins. RSC Adv 2015. [DOI: 10.1039/c4ra10077h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Break-down of chemically synthesized ZnO nanorods into small quasi-spherical ZnO NPs possibly due to the proteins secreted by Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Chandrashekhar Sharan
- Physical & Material Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research
| | - Puneet Khandelwal
- Physical & Material Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research
| | - Pankaj Poddar
- Physical & Material Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
38
|
Tallósy SP, Janovák L, Ménesi J, Nagy E, Juhász Á, Balázs L, Deme I, Buzás N, Dékány I. Investigation of the antibacterial effects of silver-modified TiO2 and ZnO plasmonic photocatalysts embedded in polymer thin films. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11155-11167. [PMID: 24497305 DOI: 10.1007/s11356-014-2568-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Nanosilver-modified TiO2 and ZnO photocatalysts were studied against methicillin-resistant Staphylococcus aureus on the surface and against naturally occurring airborne microorganisms. The photocatalysts/polymer nanohybrid films were prepared by spray coating technique on the surface of glass plates and on the inner surface of the reactive light source. The photoreactive surfaces were activated with visible light emitting LED light at λ = 405 nm. The optical properties of the prepared photocatalyst/polymer nanohybrid films were characterized by diffuse reflectance measurements. The photocatalytic properties were verified with the degradation of ethanol by gas chromatography measurements. The destruction of the bacterial cell wall component was examined with transmission electron microscope. The antibacterial effect of the photocatalyst/polymer nanohybrid films was tested with different methods and with the associated standard ISO 27447:2009. With the photoreactive coatings, an extensive disinfectant film was developed and successfully prepared. The cell wall component of S. aureus was degraded after 1 h of illumination. The antibacterial effect of the nanohybrid films has been proven by measuring the decrease of the number of methicillin-resistant S. aureus on the surface and in the air as the function of illumination time. The photocatalyst/polymer nanohybrid films could inactivate 99.9 % of the investigated bacteria on different thin films after 2 h of illumination with visible light source. The reactive light source with the inner-coated photocatalyst could kill 96 % of naturally occurring airborne microorganisms after 48 h of visible light illumination in indoor air sample. The TEM results and the microbiological measurements were completed with toxicity tests carried out with Vibrio fischeri bioluminescence bacterium.
Collapse
Affiliation(s)
- Szabolcs Péter Tallósy
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis str. 6, Szeged, 6725, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shen X, Hu Y, Xu G, Chen W, Xu K, Ran Q, Ma P, Zhang Y, Li J, Cai K. Regulation of the biological functions of osteoblasts and bone formation by Zn-incorporated coating on microrough titanium. ACS APPLIED MATERIALS & INTERFACES 2014; 6:16426-40. [PMID: 25148131 DOI: 10.1021/am5049338] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
To improve the biological performance of titanium implant, a series of Zn-incorporated coatings were fabricated on the microrough titanium (Micro-Ti) via sol-gel method by spin-coating technique. The successful fabrication of the coating was verified by combined techniques of scanning electron microscopy, surface profiler, X-ray diffraction, X-ray photoelectron spectroscopy, and water contact angle measurements. The incorporated zinc existed as ZnO, which released Zn ions in a sustained manner. The Zn-incorporated samples (Ti-Zn0.08, Ti-Zn0.16, and Ti-Zn0.24) efficiently inhibited the adhesion of both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. The in vitro evaluations including cell activity, alkaline phosphatase (ALP), mineralization, osteogenic genes expressions (Runx2, ALP, OPG, Col I, OPN, and OC), and tartrate-resistant acid phosphatase, confirmed that Ti-Zn0.16 sample was the optimal one to regulate the proliferation or differentiation for both osteoblasts and osteoclasts. More importantly, in vivo evaluations including Micro-CT analysis, push-out test, and histological observations verified that Ti-Zn0.16 implants could efficiently promote new bone formation after implantation for 4 and 12 weeks, respectively. The resulting material thus has potential application in orthopedic field.
Collapse
Affiliation(s)
- Xinkun Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University , Chongqing 400044, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Minetto D, Libralato G, Volpi Ghirardini A. Ecotoxicity of engineered TiO2 nanoparticles to saltwater organisms: an overview. ENVIRONMENT INTERNATIONAL 2014; 66:18-27. [PMID: 24509165 DOI: 10.1016/j.envint.2014.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 06/03/2023]
Abstract
The innovative properties of nanomaterials make them suitable for various applications in many fields. In particular, TiO2 nanoparticles (nTiO2) are widely used in paints, in cosmetics and in sunscreens that are products accessible to the mass market. Despite the great increase in the use of such nanomaterials, there is a paucity of general information about their potential effects to the aquatic species, especially to saltwater ones. Moreover, the difficulties of determining the effective exposure scenario make the acquired information low comparable. In this work, questions about the complexity of the real exposure scenario determination are discussed. The state of the art, concerning the experimental activities with nTiO2 toward the saltwater organisms is firstly illustrated, providing statistical information about the different matrices, organisms and nanoparticles employed. A comparison of the nTiO2 ecotoxicity effects, grouped by taxonomic classes, is provided illustrating their relative experimental conditions. Findings show the need to develop specific protocols for toxicity tests with ENPs to control the variability of experimental conditions. Some advices are finally proposed for the future experimental activities.
Collapse
Affiliation(s)
- D Minetto
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Campo della Celestia 2737/b, 30122 Venice, Italy.
| | - G Libralato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Campo della Celestia 2737/b, 30122 Venice, Italy; ECSIN - European Center for the Sustainable Impact of Nanotechnology - Veneto Nanotech S.C.p.A., Viale Porta Adige 45, I-45100 Rovigo, Italy
| | - A Volpi Ghirardini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Campo della Celestia 2737/b, 30122 Venice, Italy.
| |
Collapse
|
41
|
Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids Surf B Biointerfaces 2014; 117:233-9. [PMID: 24657608 DOI: 10.1016/j.colsurfb.2014.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/09/2014] [Accepted: 02/09/2014] [Indexed: 11/20/2022]
Abstract
ZnO nanostructures (ZnO-NSs) of different morphologies are synthesized with the amino acids L-alanine, L-threonine, and L-glutamine as capping agents. X-ray diffraction (XRD) shows the formation of a crystalline wurtzite phase of ZnO-NSs. The surface modification of ZnO-NSs due to the capping agents is confirmed using Fourier transform infrared (FTIR) spectroscopy. Photoluminescence spectroscopy reveals that the concentration of surface defects correlates positively with the number of polar facets in ZnO-NSs. The antimicrobial activity of the ZnO-NSs has been tested against Escherichia coli and the common pathogens Staphylococcus aureus, Klebsiella pneumoniae, and Bacillus subtilis. Culture-based methods in rich medium show up to 90% growth inhibition, depending on the ZnO-NSs. Flow cytometry analyses indicate that the reactive oxygen species (ROS) generated by ZnO-NSs contribute mostly to the antibacterial activity. Control experiments in minimal medium show that amino acids and other reducing agents in Luria-Bertani (LB) medium quench ROS, thereby decreasing the antimicrobial activity of the ZnO-NSs.
Collapse
|
42
|
Al-Fori M, Dobretsov S, Myint MTZ, Dutta J. Antifouling properties of zinc oxide nanorod coatings. BIOFOULING 2014; 30:871-882. [PMID: 25115521 DOI: 10.1080/08927014.2014.942297] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In laboratory experiments, the antifouling (AF) properties of zinc oxide (ZnO) nanorod coatings were investigated using the marine bacterium Acinetobacter sp. AZ4C, larvae of the bryozoan Bugula neritina and the microalga Tetraselmis sp. ZnO nanorod coatings were fabricated on microscope glass substrata by a simple hydrothermal technique using two different molar concentrations (5 and 10 mM) of zinc precursors. These coatings were tested for 5 h under artificial sunlight (1060 W m(-2) or 530 W m(-2)) and in the dark (no irradiation). In the presence of light, both the ZnO nanorod coatings significantly reduced the density of Acinetobacter sp. AZ4C and Tetraselmis sp. in comparison to the control (microscope glass substratum without a ZnO coating). High mortality and low settlement of B. neritina larvae was observed on ZnO nanorod coatings subjected to light irradiation. In darkness, neither mortality nor enhanced settlement of larvae was observed. Larvae of B. neritina were not affected by Zn(2+) ions. The AF effect of the ZnO nanorod coatings was thus attributed to the reactive oxygen species (ROS) produced by photocatalysis. It was concluded that ZnO nanorod coatings effectively prevented marine micro and macrofouling in static conditions.
Collapse
Affiliation(s)
- Marwan Al-Fori
- a Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences , Sultan Qaboos University , PO Box 17, Postal Code - 123, Al Khoud, Muscat , Sultanate of Oman
| | | | | | | |
Collapse
|
43
|
Athauda TJ, Ozer RR, Chalker JM. Investigation of cotton functionalized with ZnO nanorods and its interaction with E. coli. RSC Adv 2013. [DOI: 10.1039/c3ra41231h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|