1
|
Silva CF, Felzemburgh VDA, Moreno AD, Meneses JVL, Barbosa ADA, Barreto IC, Miguel FB. Experimental protocol for evaluation of biomaterials in an in-vivo silicone implant coverage. Acta Cir Bras 2024; 39:e396724. [PMID: 39356935 PMCID: PMC11441155 DOI: 10.1590/acb396724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
PURPOSE To describe an experimental surgical model in rats using a dual-plane technique for evaluation of biomaterials in an in-vivo silicone implant coverage. METHODS This study was developed following the ISO 10993-6 standard. In this study, 40 male Wistar rats weighing between 250 and 350 g were used, distributed into two groups: experimental, biomaterial superimposed on the minimammary prosthesis (MP); and control, MP without implantation of the biomaterial, with eight animals at each biological point: 1, 2, 4, 12, and 26 weeks. Thus, at the end of biological points (1, 2, 4, 12, and 26 weeks; n = 8 animals per week), the tissue specimens achieved were fixed in buffered formalin and stained with hematoxylin-eosin. RESULTS Macroscopically, throughout the study, no postoperative complications were apparent. In the histological analysis, it was possible to observe the evolution of the inflammatory response, tissue repair, and fibrous capsule during the biological points. CONCLUSIONS The experimental model described in this study proved to be suitable for evaluating the biomaterial used in the coverage of breast silicone implants.
Collapse
Affiliation(s)
- Chenia Frutuoso Silva
- Universidade Federal da Bahia – Institute of Health Sciences – Laboratory of Tissue Bioengineering and Biomaterials – Salvador (BA) – Brazil
- Universidade Federal da Bahia – Post-graduation Program in Interactive Processes of the Organs and Systems – Salvador (BA) – Brazil
| | - Victor de Araújo Felzemburgh
- Universidade Federal da Bahia – Institute of Health Sciences – Laboratory of Tissue Bioengineering and Biomaterials – Salvador (BA) – Brazil
| | - Amanda Dourado Moreno
- Universidade Federal da Bahia – Institute of Health Sciences – Laboratory of Tissue Bioengineering and Biomaterials – Salvador (BA) – Brazil
| | | | | | - Isabela Cerqueira Barreto
- Universidade Federal da Bahia – Institute of Health Sciences – Laboratory of Tissue Bioengineering and Biomaterials – Salvador (BA) – Brazil
- Universidade Federal da Bahia – Post-graduation Program in Interactive Processes of the Organs and Systems – Salvador (BA) – Brazil
| | - Fúlvio Borges Miguel
- Universidade Federal da Bahia – Institute of Health Sciences – Laboratory of Tissue Bioengineering and Biomaterials – Salvador (BA) – Brazil
- Universidade Federal da Bahia – Post-graduation Program in Interactive Processes of the Organs and Systems – Salvador (BA) – Brazil
| |
Collapse
|
2
|
Wu Y, Chen X, Song P, Li R, Zhou Y, Wang Q, Shi J, Qiao W, Dong N. Functional Oxidized Hyaluronic Acid Cross-Linked Decellularized Heart Valves for Improved Immunomodulation, Anti-Calcification, and Recellularization. Adv Healthc Mater 2024; 13:e2303737. [PMID: 38560921 DOI: 10.1002/adhm.202303737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Tissue engineering heart valves (TEHVs) are expected to address the limitations of mechanical and bioprosthetic valves used in clinical practice. Decellularized heart valve (DHV) is an important scaffold of TEHVs due to its natural three-dimensional structure and bioactive extracellular matrix, but its mechanical properties and hemocompatibility are impaired. In this study, DHV is cross-linked with three different molecular weights of oxidized hyaluronic acid (OHA) by a Schiff base reaction and presented enhanced stability and hemocompatibility, which could be mediated by the molecular weight of OHA. Notably, DHV cross-linked with middle- and high-molecular-weight OHA could drive the macrophage polarization toward the M2 phenotype in vitro. Moreover, DHV cross-linked with middle-molecular-weight OHA scaffolds are further modified with RGD-PHSRN peptide (RPF-OHA/DHV) to block the residual aldehyde groups of the unreacted OHA. The results show that RPF-OHA/DHV not only exhibits anti-calcification properties, but also facilitates endothelial cell adhesion and proliferation in vitro. Furthermore, RPF-OHA/DHV shows excellent performance under an in vivo hemodynamic environment with favorable recellularization and immune regulation without calcification. The optimistic results demonstrate that OHA with different molecular weights has different cross-linking effects on DHV and that RPF-OHA/DHV scaffold with enhanced immune regulation, anti-calcification, and recellularization properties for clinical transformation.
Collapse
Affiliation(s)
- Yunlong Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| | - Peng Song
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Rui Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qin Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
3
|
Bibbo C, Yüksel KÜ. Decellularized Human Dermis for Orthoplastic Extremity Reconstruction. Bioengineering (Basel) 2024; 11:422. [PMID: 38790291 PMCID: PMC11117772 DOI: 10.3390/bioengineering11050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
The reconstruction of patients who possess multi morbid medical histories remains a challenge. With the ever-increasing number of patients with diabetes, infections, and trauma, there is a consistent need for promotion of soft tissue healing and a reliable substrate to assist with every aspect of soft tissue reconstruction, as well as the loss of fascial domain. Several proprietary products filled some of these needs but have failed to fulfill the needs of the clinician when faced with reconstructing multiple soft tissue systems, such as the integument and the musculoskeletal system. In this paper we discuss the use of decellularized human dermis (DermaPure®, Tissue Regenix, Universal City, TX, USA) through which a unique human tissue processing technique (dCELL® technology, Tissue Regenix, Universal City, TX, USA) and the creation of multiple product forms have proven to exhibit versatility in a wide range of clinical needs for successful soft tissue reconstruction. The background of human tissue processing, basic science, and early clinical studies are detailed, which has translated to the rationale for the success of this unique soft tissue substrate in orthoplastic reconstruction, which is also provided here in detail.
Collapse
Affiliation(s)
- Christopher Bibbo
- Rubin Institute for Advanced Orthopaedics, International Center for Limb Lengthening, Sinai Hospital of Baltimore, 2401 West Belvedere Avenue, Baltimore, MD 21215, USA
| | - K. Ümit Yüksel
- Independent Scientific Researcher, Kennesaw, GA 30144, USA
| |
Collapse
|
4
|
Shi S, Hu M, Peng X, Cheng C, Feng S, Pu X, Yu X. Double crosslinking decellularized bovine pericardium of dialdehyde chondroitin sulfate and zwitterionic copolymer for bioprosthetic heart valves with enhanced antithrombogenic, anti-inflammatory and anti-calcification properties. J Mater Chem B 2024; 12:3417-3435. [PMID: 38525920 DOI: 10.1039/d4tb00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Due to the increasing aging population and the advancements in transcatheter aortic valve replacement (TAVR), the use of bioprosthetic heart valves (BHVs) in patients diagnosed with valvular disease has increased substantially. Commercially available glutaraldehyde (GA) cross-linked biological valves suffer from reduced durability due to a combination of factors, including the high cell toxicity of GA, subacute thrombus, inflammation and calcification. In this study, oxidized chondroitin sulfate (OCS), a natural polysaccharide derivative, was used to replace GA to cross-link decellularized bovine pericardium (DBP), carrying out the first crosslinking of DBP to obtain OCS-BP. Subsequently, the zwitterion radical copolymerization system was introduced in situ to perform double cross-linking to obtain double crosslinked BHVs with biomimetic modification (P(APM/MPC)-OCS-BP). P(APM/MPC)-OCS-BP presented enhanced mechanical properties, collagen stability and enzymatic degradation resistance due to double crosslinking. The ex vivo AV-shunt assay and coagulation factors test suggested that P(APM/MPC)-OCS-BP exhibited excellent anticoagulant and antithrombotic properties due to the introduction of P(APM/MPC). P(APM/MPC)-OCS-BP also showed good HUVEC-cytocompatibility due to the substantial reduction of its residual aldehyde group. The subcutaneous implantation also demonstrated that P(APM/MPC)-OCS-BP showed a weak inflammatory response due to the anti-inflammatory effect of OCS. Finally, in vivo and in vitro results revealed that P(APM/MPC)-OCS-BP exhibited an excellent anti-calcification property. In a word, this simple cooperative crosslinking strategy provides a novel solution to obtain BHVs with good mechanical properties, and HUVEC-cytocompatibility, anti-coagulation, anti-inflammatory and anti-calcification properties. It might be a promising alternative to GA-fixed BP and exhibited good prospects in clinical applications.
Collapse
Affiliation(s)
- Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
5
|
Silva CF, Felzemburgh VA, Vasconcelos LQ, Nunes VLC, Barbosa Júnior AA, Giglioti AF, Araújo RPC, Miguel FB, Meneses JVL, Rosa FP. Histomorphological evaluation of acellularized bovine pericardium in breast implant coverage. BRAZ J BIOL 2023; 83:e276220. [PMID: 38126640 DOI: 10.1590/1519-6984.276220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Bovine pericardium (BP) has been used as a biomaterial for several decades in many medical applications particularly due to its mechanical properties and the high collagen content. In the acellular form it favors faster tissue repair, providing a three-dimensional support for cellular and vascular events observed during tissue repair and due, to a low elastin content, may favor its use as a breast implant cover, resulting in a low possibility of contracture of the biomaterial, preventing the appearance of irregularities during the reconstruction process. Thus, the aim of this study was to evaluate, histomorphologically, the behavior of acellularized bovine pericardium (ABP) as a mammary implant cover in rats. For this purpose, 16 animals were divided into two groups, with eight animals at each biological point: 7 and 15 days after surgery. Of the 16 animals, 32 specimens were obtained: 16 in the experimental group (EG) and 16 in the control group (CG). Throughout this study, none of the studied groups had postoperative complications. Results: The histomorphological results showed, in the two biological points, both in the EG and in the CG, chronic inflammatory infiltrate, leukocyte fibrin exudate, formation of granulation tissue and deposition of collagen fibers, more evident in the EG, regressive along the biological points. At 15 days, the implanted ABP showed initial biointegration with the fibrous capsule and surrounding tissues of the recipient bed. Conclusion: These results indicate that the due to the observed favorable tissue response ABP may be of potential use as a breast implant cover.
Collapse
Affiliation(s)
- C Frutuoso Silva
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - V A Felzemburgh
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - L Q Vasconcelos
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - V L C Nunes
- Universidade Federal da Bahia - UFBA, Faculdade de Medicina da Bahia - FMB, Salvador, BA, Brasil
| | | | - A F Giglioti
- Braile Biomédica, São José do Rio Preto, SP, Brasil
| | - R P C Araújo
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - F B Miguel
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - J V L Meneses
- Sociedade Brasileira de Cirurgia Plástica - SBCP, São Paulo, SP, Brasil
| | - F P Rosa
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| |
Collapse
|
6
|
Mao C, He H, Chen C, Gu X. Synergistic effect of collagen cross-linking and remineralization for improving resin-dentin bond durability. Eur J Oral Sci 2023; 131:e12928. [PMID: 36931874 DOI: 10.1111/eos.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 02/17/2023] [Indexed: 03/19/2023]
Abstract
In this study, the synergistic effect of glutaraldehyde-cross-linking and remineralization on the strength and durability of resin-dentin bonds was investigated. Dentin surfaces were etched with 35% phosphoric acid. The control specimens were bonded with Adper Single Bond 2 using wet bonding without pretreatment. The experimental specimens were pretreated with 5% (v/v) glutaraldehyde solution for 3 min and placed in a remineralizing solution for 0, 12, and 24 h, followed by dry bonding. After performing composite build-ups on the specimens, they were longitudinally sectioned, immediately, and after aging for 3 h with sodium hypochlorite (NaOCl), to evaluate microtensile bond strength (µTBS). The cross-linked specimens exhibited µTBS values comparable with those of the control group, but the µTBS decreased significantly after NaOCl aging. The cross-linked dentin remineralized for 24 h exhibited an increase in µTBS. After aging in NaOCl, the µTBS of the specimens remineralized for 24 h did not decrease and was significantly higher than for the other experimental groups. Cross-linking with dry bonding maintained µTBS in specimens before aging in NaOCl, but the bonding durability was compromised. Remineralization of cross-linked dentin for 24 h followed by dry bonding increased the immediate µTBS and improved bond durability. Therefore, combining cross-linking with remineralization of collagen fibrils progressively increased resistance to degradation, improving bond durability.
Collapse
Affiliation(s)
- Caiyun Mao
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Huihui He
- Zhejiang University School of Stomatology, Hangzhou, Zhejiang Province, P.R. China
| | - Chaoqun Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
7
|
Stabilized human amniotic membrane for enhanced sustainability and biocompatibility. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
8
|
Ordóñez-Chávez GDC, Rodríguez-Fuentes N, Peñaloza-Cuevas R, Cervantes-Uc JM, Alcántara-Quintana LE, Maya-García IA, Herrera-Valencia VA, Mendiburu-Zavala CE. In vitro evaluation of crosslinked bovine pericardium as potential scaffold for the oral cavity. Biomed Mater Eng 2023; 34:561-575. [PMID: 37545206 PMCID: PMC10657658 DOI: 10.3233/bme-230027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Bovine pericardium (BP) is a scaffold widely used in soft tissues regeneration; however, its calcification in contact with glutaraldehyde, represent an opportunity for its application in hard tissues, such as bone in the oral cavity. OBJECTIVE To develop and to characterize decellularized and glutaraldehyde-crosslinked bovine pericardium (GC-BP) as a potential scaffold for guided bone regeneration GBR. METHODS BP samples from healthy animals of the bovine zebu breed were decellularized and crosslinked by digestion with detergents and glutaraldehyde respectively. The resulting cell-free scaffold was physical, chemical, mechanical, and biologically characterized thought hematoxylin and eosin staining, DNA quantification, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), uniaxial tensile test, cell viability and live and dead assay in cultures of dental pulp stem cells (DPSCs). RESULTS The decellularization and crosslinking of BP appeared to induce conformational changes of the CLG molecules, which led to lower mechanical properties at the GC-BP scaffold, at the same time that promoted cell adhesion and viability of DPSCs. CONCLUSION This study suggests that the decellularized and GC-BP is a scaffold with the potential to be used promoting DPSCs recruitment, which has a great impact on the dental area.
Collapse
Affiliation(s)
| | - Nayeli Rodríguez-Fuentes
- CONACYT-Centro de Investigación Científica de Yucatán, Yucatan, Mexico
- Centro de Investigación Científica de Yucatán, Yucatan, Mexico
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang Y, Mei L, Zhao S, Xing X, Wu G. Effect of chitosan-oleuropein nanoparticles on dentin collagen cross-linking. Technol Health Care 2023; 31:647-659. [PMID: 36093647 DOI: 10.3233/thc-220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The integrity and stability of collagen are crucial for the dentin structure and bonding strength at dentin-resin interface. Natural plant-derived polypehenols have been used as collagen crosslinkers. OBJECTIVE The aims of the study were to develop novel chitosan oleuropein nanoparticles (CS-OL-NPs), and to investigate the CS-OL-NPs treated dentin's the resistance to enzymatic degradation and mechanic property. METHODS CS-OL-NPs were developed using the ionotropic gelation method. Release and biocompatibility of the CS-OL-NPs were tested. Twenty demineralized dentin collage specimens were randomized into four interventions groups: A, Deionized Water (DW); B, 5% glutaraldehyde solution (GA); C, 1 mg/ml chitosan (CS); and D, 100 mg/L CS-OL-NPs. After 1-min interventions, dentin matrix were evaluated by the micro-Raman spectroscopy for the modulus of elasticity test. Collagen degradation was assessed using hydroxyproline (HYP) assay. RESULTS CS-OL-NPs were spherical core-shape with a size of 161.29 ± 8.19 nm and Zeta potential of 19.53 ± 0.26 mV. After a burst release of oleuropein in the initial 6 h, there was a long-lasting steady slow release. CS-OL-NPs showed a good biocompatibility for the hPDLSCs. The modulus of elasticity in the crosslinked groups were significantly higher than that in the control group (P< 0.05 for all). The specimens treated with CS-OL-NP showed a greater modulus of elasticity than those treated with GA and CS (P< 0.05 for both). The release of HYP in the crosslinked group was significantly lower than that in the non-crosslinked groups (P< 0.05 for all). CONCLUSION CS-OL-NPs enhanced the dentin mechanical property and resistance to biodegradation, with biocompatibility and potential for clinical application.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Li Mei
- Discipline of Orthodontics, Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Shuya Zhao
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xianghui Xing
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Guofeng Wu
- Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Li S, Lang S, Chen Z, Chen J, Zhuang W, Du Y, Yao Y, Liu G, Chen M. Polyphenol based hybrid nano-aggregates modified collagen fibers of biological valve leaflets to achieve enhanced mechanical, anticoagulation and anti-calcification properties. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractGlutaraldehyde (Glut)-crosslinked porcine pericardium and bovine pericardium are mainly consisted of collagen and widely used for the preparation of heterogenous bioprosthetic heart valves (BHV), which play an important role in the replacement therapy of severe valvular heart disease, while their durability is limited by degeneration due to calcification, thrombus, endothelialization difficulty and prosthetic valve endocarditis. Herein, we develop a novel BHV, namely, TPly-BP, based on natural tannic acid and polylysine to improve the durability of Glut crosslinked bovine pericardium (Glut-BP). Impressively, tannic acid and polylysine could form nanoaggregates via multiple hydrogen bonds and covalent bonds, and the introduction of nanoaggregates not only improved the mechanical properties and collagen stability but also endowed TPly-BP with good biocompatibility and hemocompatibility. Compared to Glut-BP, TPly-BP showed significantly reduced cytotoxicity, improved endothelial cell adhesion, a low hemolysis ratio and obviously reduced platelet adhesion. Importantly, TPly-BP exhibited great antibacterial and in vivo anti-calcification ability, which was expected to improve the in vivo durability of BHVs. These results suggested that TPly-BP would be a potential candidate for BHV.
Graphical abstract
Collapse
|
11
|
Inflammation-triggered dual release of nitroxide radical and growth factor from heparin mimicking hydrogel-tissue composite as cardiovascular implants for anti-coagulation, endothelialization, anti-inflammation, and anti-calcification. Biomaterials 2022; 289:121761. [DOI: 10.1016/j.biomaterials.2022.121761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022]
|
12
|
Zhang Y, Zhang W, Snow T, Ju Y, Liu Y, Smith AJ, Prabakar S. Minimising Chemical Crosslinking for Stabilising Collagen in Acellular Bovine Pericardium: Mechanistic Insights via Structural Characterisations. Acta Biomater 2022; 152:113-123. [DOI: 10.1016/j.actbio.2022.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/01/2022]
|
13
|
Jiang Z, Wu Z, Deng D, Li J, Qi X, Song M, Liu Y, Wu Q, Xie X, Chen Z, Tang Z. Improved Cytocompatibility and Reduced Calcification of Glutaraldehyde-Crosslinked Bovine Pericardium by Modification With Glutathione. Front Bioeng Biotechnol 2022; 10:844010. [PMID: 35662844 PMCID: PMC9160462 DOI: 10.3389/fbioe.2022.844010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/18/2022] [Indexed: 12/16/2022] Open
Abstract
Bioprosthetic heart valves (BHVs) used in clinics are fabricated via glutaraldehyde (GLUT) crosslinking, which results in cytotoxicity and causes eventual valve calcification after implantation into the human body; therefore, the average lifetime and application of BHVs are limited. To address these issues, the most commonly used method is modification with amino acids, such as glycine (GLY), which is proven to effectively reduce toxicity and calcification. In this study, we used the l-glutathione (GSH) in a new modification treatment based on GLUT-crosslinked bovine pericardium (BP) as the GLUT + GSH group, BPs crosslinked with GLUT as GLUT-BP (control group), and GLY modification based on GLUT-BP as the GLUT + GLY group. We evaluated the characteristics of BPs in different treatment groups in terms of biomechanical properties, cell compatibility, aldehyde group content detection, and the calcification content. Aldehyde group detection tests showed that the GSH can completely neutralize the residual aldehyde group of GLUT-BP. Compared with that of GLUT-BP, the endothelial cell proliferation rate of the GLUT + GSH group increased, while its hemolysis rate and the inflammatory response after implantation into the SD rat were reduced. The results show that GSH can effectively improve the cytocompatibility of the GLUT-BP tissue. In addition, the results of the uniaxial tensile test, thermal shrinkage temperature, histological and SEM evaluation, and enzyme digestion experiments proved that GSH did not affect the ECM stability and biomechanics of the GLUT-BP. The calcification level of GLUT-BP modified using GSH technology decreased by 80%, indicating that GSH can improve the anti-calcification performance of GLUT-BP. Compared with GLUT-GLY, GLUT + GSH yielded a higher cell proliferation rate and lower inflammatory response and calcification level. GSH can be used as a new type of anti-calcification agent in GLUT crosslinking biomaterials and is expected to expand the application domain for BHVs in the future.
Collapse
Affiliation(s)
- Zhenlin Jiang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- *Correspondence: Zhongshi Wu, ; Zhenjie Tang,
| | - Dengpu Deng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiemin Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoke Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingzhe Song
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinlong Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zeguo Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory of Cardiovascular Biomaterials, Changsha, China
- *Correspondence: Zhongshi Wu, ; Zhenjie Tang,
| |
Collapse
|
14
|
Iglesias-Mejuto A, García-González CA. 3D-Printed, Dual Crosslinked and Sterile Aerogel Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14061211. [PMID: 35335542 PMCID: PMC8951756 DOI: 10.3390/polym14061211] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
The fabrication of bioactive three-dimensional (3D) hydrogel scaffolds from biocompatible materials with a complex inner structure (mesoporous and macroporous) and highly interconnected porosity is crucial for bone tissue engineering (BTE). 3D-printing technology combined with aerogel processing allows the fabrication of functional nanostructured scaffolds from polysaccharides for BTE with personalized geometry, porosity and composition. However, these aerogels are usually fragile, with fast biodegradation rates in biological aqueous fluids, and they lack the sterility required for clinical practice. In this work, reinforced alginate-hydroxyapatite (HA) aerogel scaffolds for BTE applications were obtained by a dual strategy that combines extrusion-based 3D-printing and supercritical CO2 gel drying with an extra crosslinking step. Gel ageing in CaCl2 solutions and glutaraldehyde (GA) chemical crosslinking of aerogels were performed as intermediate and post-processing reinforcement strategies to achieve highly crosslinked aerogel scaffolds. Nitrogen adsorption–desorption (BET) and SEM analyses were performed to assess the textural parameters of the resulting alginate-HA aerogel scaffolds. The biological evaluation of the aerogel scaffolds was performed regarding cell viability, hemolytic activity and bioactivity for BTE. The impact of scCO2-based post-sterilization treatment on scaffold properties was also assessed. The obtained aerogels were dual porous, bio- and hemocompatible, as well as endowed with high bioactivity that is dependent on the HA content. This work is a step forward towards the optimization of the physicochemical performance of advanced biomaterials and their sterilization.
Collapse
|
15
|
Wang J, Kong L, Gafur A, Peng X, Kristi N, Xu J, Ma X, Wang N, Humphry R, Durkan C, Zhang H, Ye Z, Wang G. Photooxidation crosslinking to recover residual stress in decellularized blood vessel. Regen Biomater 2021; 8:rbaa058. [PMID: 33738112 PMCID: PMC7955719 DOI: 10.1093/rb/rbaa058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 12/01/2022] Open
Abstract
Decellularization method based on trypsin-digestion is widely used to construct small diameter vascular grafts. However, this method will reduce the opening angle of the blood vessel and result in the reduction of residual stress. Residual stress reduced has an adverse effect on the compliance and permeability of small diameter vascular grafts. To improve the situation, acellular blood vessels were treated with glutaraldehyde and photooxidation crosslinking respectively, and the changes of opening angle, circumferential residual strain of native blood vessels, decellularized arteries and crosslinked blood vessels were measured by means of histological examination, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in this study. The opening angle of decellularized arteries significantly restored after photooxidation crosslinking (P = 0.0216), while that of glutaraldehyde crosslinking blood vessels reduced. The elastic fibers inside the blood vessels became densely rearranged after photooxidation crosslinking. The results of finite element simulation showed that the residual stress increased with the increase of opening angle. In this study, we found at the first time that photooxidation crosslinking method could significantly increase the residual stress of decellularized vessels, which provides biomechanical support for the development of new biomaterials of vascular grafts.
Collapse
Affiliation(s)
- Jintao Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing 400014, China
| | - Alidha Gafur
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaobo Peng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Natalia Kristi
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jing Xu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xingshuang Ma
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Rose Humphry
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Haijun Zhang
- National Local Joint Engineering Laboratory for Biomedical Material Modification, Dezhou, Shandong 251100, China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
16
|
Alizadeh M, Rezakhani L, Khodaei M, Soleimannejad M, Alizadeh A. Evaluating the effects of vacuum on the microstructure and biocompatibility of bovine decellularized pericardium. J Tissue Eng Regen Med 2020; 15:116-128. [PMID: 33175476 DOI: 10.1002/term.3150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/27/2020] [Accepted: 11/04/2020] [Indexed: 11/09/2022]
Abstract
The aim of this study was evaluating the effects of vacuum on microstructure and biocompatibility of bovine decellularized pericardium. So the bovine pericardia were decellularized and then the vacuum was applied for two periods of time; 90 and 180 min. DNA, glucose amino glycan, collagen and elastin content assay, scanning electron microscopy (SEM) examination, hematoxylin and eosin (H&E) and Masson's trichrome stainings performed to evaluate microstructure of tissues. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, subcutaneous implantation, and tensile test were used to assay biocompatibility and mechanical properties of decellularized tissues. The results showed that applying vacuum reduced residual DNA significantly. Vacuum after 180 min reduced more residual DNA. There were no significant differences in the content of glucose amino glycan (GAG), collagen, and elastin between the vacuumed and control groups. SEM examination was revealed that vacuum for 180 min increased pore size and porosity more than 90 min and control groups. H&E and Masson's trichrome stainings revealed extracellular matrix preservation after decellularization in all groups. Cell viability was increased in vacuumed samples significantly after 72 h in vaccumed samples. H&E staining and tensile test after implantation of tissues were showed less inflammation in the vacuum applied tissues and increased durability. The vacuum increased DNA removal, pore size, porosity, and biocompatibility in vitro and in vivo and durability of bovine decellularized pericardium in vivo. Considering the important role of time, more studies should be performed to optimize time, intensity, and method of application of vacuum in decellularization of different tissues as well as bovine pericardium.
Collapse
Affiliation(s)
- Morteza Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Khodaei
- Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran
| | - Mostafa Soleimannejad
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
17
|
Laker L, Dohmen PM, Smit FE. The sequential effects of a multifactorial detergent based decellularization process on bovine pericardium. Biomed Phys Eng Express 2020; 6. [PMID: 35066494 DOI: 10.1088/2057-1976/abb5e9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 11/12/2022]
Abstract
Decellularization is a promising method for obtaining extracellular matrix scaffolds (ECM) to be used as replacement material in reconstructive procedures. The effectiveness of decellularization and the alterations to the ECM vary, depending on several factors, including the tissue source, composition and density. With an optimized decellularization process, decellularized scaffolds can preserve the spatial and temporal ECM microenvironment, which play an integral role in modulating cell migration, proliferation and differentiation. The exploration of a variety of decellularization protocols has led to mixed outcomes and comparisons between decellularization protocols could not attribute these differences to any single step in a multiple-step process. This study aimed to characterize the effects of each step of a multifactorial decellularization method on the scaffold structure and mechanical integrity of bovine pericardium. Each step of the decellularization process and the effect on the tissue was assessed using hematoxylin and eosin staining, electron microscopy, total protein, ECM protein and triglyceride quantification. The biomechanical properties were assessed using uniaxial tensile strength testing. Cell lysis occurred mainly during the detergent and alcohol steps. Collagen structural damage occurred during the detergent and alcohol steps, with no significant decreased in collagen concentration. No significant damage to elastin could be shown throughout the process, however glycosaminoglycans were significantly removed by detergent treatment. Triglycerides were removed mostly by the alcohol treatment. The strength of the pericardium decreased somewhat after each step of the protocol. It is important to characterize each decellularization protocol with regards to the decellularization efficiency and the effect on the ECM proteins structure and function to accurately evaluatein vivooutcomes.
Collapse
Affiliation(s)
- L Laker
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State (UFS), Bloemfontein, South Africa
| | - P M Dohmen
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State (UFS), Bloemfontein, South Africa.,Department of Cardiac Surgery, Heart Centre Rostock, University of Rostock, Rostock, Germany
| | - F E Smit
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State (UFS), Bloemfontein, South Africa
| |
Collapse
|
18
|
Inci I, Norouz Dizaji A, Ozel C, Morali U, Dogan Guzel F, Avci H. Decellularized inner body membranes for tissue engineering: A review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1287-1368. [DOI: 10.1080/09205063.2020.1751523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ilyas Inci
- Vocational School of Health Services, Department of Dentistry Services, Dental Prosthetics Technology, Izmir Democracy University, Izmir, Turkey
| | - Araz Norouz Dizaji
- Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Ceren Ozel
- Application and Research Center (ESTEM), Cellular Therapy and Stem Cell Production, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ugur Morali
- Faculty of Engineering and Architecture, Department of Chemical Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Fatma Dogan Guzel
- Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Huseyin Avci
- Faculty of Engineering and Architecture, Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
19
|
Grebenik EA, Gafarova ER, Istranov LP, Istranova EV, Ma X, Xu J, Guo W, Atala A, Timashev PS. Mammalian Pericardium-Based Bioprosthetic Materials in Xenotransplantation and Tissue Engineering. Biotechnol J 2020; 15:e1900334. [PMID: 32077589 DOI: 10.1002/biot.201900334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Bioprosthetic materials based on mammalian pericardium tissue are the gold standard in reconstructive surgery. Their application range covers repair of rectovaginal septum defects, abdominoplastics, urethroplasty, duraplastics, maxillofacial, ophthalmic, thoracic and cardiovascular reconstruction, etc. However, a number of factors contribute to the success of their integration into the host tissue including structural organization, mechanical strength, biocompatibility, immunogenicity, surface chemistry, and biodegradability. In order to improve the material's properties, various strategies are developed, such as decellularization, crosslinking, and detoxification. In this review, the existing issues and long-term achievements in the development of bioprosthetic materials based on the mammalian pericardium tissue, aimed at a wide-spectrum application in reconstructive surgery are analyzed. The basic technical approaches to preparation of biocompatible forms providing continuous functioning, optimization of biomechanical and functional properties, and clinical applicability are described.
Collapse
Affiliation(s)
- Ekaterina A Grebenik
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Elvira R Gafarova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Leonid P Istranov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Elena V Istranova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Jing Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Weisheng Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Institute of Photonic Technologies, Research center "Crystallography and Photonics" RAS, Moscow, 142190, Russia.,N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
20
|
Decellularized Lymph Node Scaffolding as a Carrier for Dendritic Cells to Induce Anti-Tumor Immunity. Pharmaceutics 2019; 11:pharmaceutics11110553. [PMID: 31717826 PMCID: PMC6920996 DOI: 10.3390/pharmaceutics11110553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
In recent decades, the decellularized extracellular matrix (ECM) has shown potential as a promising scaffold for tissue regeneration. In this study, an organic acid decellularized lymph node (dLN) was developed as a carrier for dendritic cells (DCs) to induce antitumor immunity. The dLNs were prepared by formic acid, acetic acid, or citric acid treatment. The results showed highly efficient removal of cell debris from the lymph node and great preservation of ECM architecture and biomolecules. In addition, bone marrow dendritic cells (BMDCs) grown preferably inside the dLN displayed the maturation markers CD80, CD86, and major histocompatibility complex (MHC)-II, and they produced high levels of interleukin (IL)-1β, IL-6, and IL-12 cytokines when stimulated with ovalbumin (OVA) and CpG oligodeoxynucleotides (CPG-ODN). In an animal model, the BMDC-dLN completely rejected the E.G7-OVA tumor. Furthermore, the splenocytes from BMDC-dLN-immunized mice produced more interferon gamma, IL-4, IL-6, and IL-2, and they had a higher proliferation rate than other groups when re-stimulated with OVA. Hence, BMDC-dLN could be a promising DC-based scaffold for in vivo delivery to induce potent antitumor immunity.
Collapse
|
21
|
Grebenik EA, Istranov LP, Istranova EV, Churbanov SN, Shavkuta BS, Dmitriev RI, Veryasova NN, Kotova SL, Kurkov AV, Shekhter AB, Timashev PS. Chemical cross‐linking of xenopericardial biomeshes: A bottom‐up study of structural and functional correlations. Xenotransplantation 2019; 26:e12506. [DOI: 10.1111/xen.12506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Ekaterina A. Grebenik
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
| | - Leonid P. Istranov
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
| | - Elena V. Istranova
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
| | - Semyon N. Churbanov
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
- Research Center “Crystallography and Photonics” Institute of Photonic Technologies, Russian Academy of Sciences Moscow Russia
| | - Boris S. Shavkuta
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
- Research Center “Crystallography and Photonics” Institute of Photonic Technologies, Russian Academy of Sciences Moscow Russia
| | - Ruslan I. Dmitriev
- School of Biochemistry and Cell Biology University College Cork Cork Ireland
| | - Nadezhda N. Veryasova
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
| | - Svetlana L. Kotova
- Research Center “Crystallography and Photonics” Institute of Photonic Technologies, Russian Academy of Sciences Moscow Russia
| | - Alexander V. Kurkov
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
| | - Anatoly B. Shekhter
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
- Research Center “Crystallography and Photonics” Institute of Photonic Technologies, Russian Academy of Sciences Moscow Russia
- Department of Polymers and Composites N.N.Semenov Institute of Chemical Physics Moscow Russia
| |
Collapse
|
22
|
Guo G, Jin L, Jin W, Chen L, Lei Y, Wang Y. Radical polymerization-crosslinking method for improving extracellular matrix stability in bioprosthetic heart valves with reduced potential for calcification and inflammatory response. Acta Biomater 2018; 82:44-55. [PMID: 30326277 DOI: 10.1016/j.actbio.2018.10.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/04/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023]
Abstract
In recent years, the number of heart valve replacements has multiplied with valve diseases because of aging populations and the surge in rheumatic heart disease in young people. Among them, bioprosthetic heart valves (BHVs) have become increasingly popular. Transcatheter aortic valve implantation (TAVI) valve as an emerging BHV has been increasingly applied to patients. However, the current commercially used BHVs treated with glutaraldehyde (Glut) still face the problem of durability. BHVs derived from Glut-treated xenogenetic tissues would undergo structural degeneration and calcification sometimes even as short as less than 10 years. This issue has already become a big challenge considering more and more young patients at the age of 50-60 s are receiving the BHV replacement. In our study, an approach that is totally different from the previous techniques named by us as the radical polymerization-crosslinking (RPC) method was developed to improve extracellular matrix stability, prevent calcification, and reduce inflammatory response in BHVs. The porcine pericardium (PP) tissue was decellularized, functionalized with methacryloyl groups, and subsequently crosslinked by radical polymerization. We found that high-density RPC treatment remarkably improved the stability of collagen and elastin of PP, enhanced its endothelialization potential, and provided reliable biomechanical performance as compared to Glut treatment. The in vivo rat model also confirmed the increased componential stability and the reduced inflammatory response of RPC-treated PP. Moreover, the RPC-treated PP showed better in vivo anticalcification potential than Glut-treated PP. STATEMENT OF SIGNIFICANCE: Bioprosthetic heart valves (BHVs) manufactured from glutaraldehyde (Glut)-treated xenogeneic tissues have been used to treat valve-related diseases for several decades. However, the durability of BHVs remains unresolved and becomes more pronounced particularly in younger patients. Although a number of new alternative methods for Glut crosslinking have been proposed, their overall performance is still far from ready to use in humans. In this study, radical polymerization was investigated for crosslinking the porcine pericardium (PP). This treatment was found to have advantages compared to Glut-treated PP in terms of stability, biocompatibility, and anticalcification potential with the hope of addressing the needs of more robust biomaterials for the fabrication of BHVs.
Collapse
|
23
|
Artificial Cardiac Muscle with or without the Use of Scaffolds. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8473465. [PMID: 28875152 PMCID: PMC5569873 DOI: 10.1155/2017/8473465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/31/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
During the past several decades, major advances and improvements now promote better treatment options for cardiovascular diseases. However, these diseases still remain the single leading cause of death worldwide. The rapid development of cardiac tissue engineering has provided the opportunity to potentially restore the contractile function and retain the pumping feature of injured hearts. This conception of cardiac tissue engineering can enable researchers to produce autologous and functional biomaterials which represents a promising technique to benefit patients with cardiovascular diseases. Such an approach will ultimately reshape existing heart transplantation protocols. Notable efforts are accelerating the development of cardiac tissue engineering, particularly to create larger tissue with enhanced functionality. Decellularized scaffolds, polymer synthetics fibrous matrix, and natural materials are used to build robust cardiac tissue scaffolds to imitate the morphological and physiological patterns of natural tissue. This ultimately helps cells to implant properly to obtain endogenous biological capacity. However, newer designs such as the hydrogel scaffold-free matrix can increase the applicability of artificial tissue to engineering strategies. In this review, we summarize all the methods to produce artificial cardiac tissue using scaffold and scaffold-free technology, their advantages and disadvantages, and their relevance to clinical practice.
Collapse
|
24
|
Aguiari P, Iop L, Favaretto F, Fidalgo CML, Naso F, Milan G, Vindigni V, Spina M, Bassetto F, Bagno A, Vettor R, Gerosa G. In vitro
comparative assessment of decellularized bovine pericardial patches and commercial bioprosthetic heart valves. Biomed Mater 2017; 12:015021. [DOI: 10.1088/1748-605x/aa5644] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Shahabipour F, Banach M, Johnston TP, Pirro M, Sahebkar A. Novel approaches toward the generation of bioscaffolds as a potential therapy in cardiovascular tissue engineering. Int J Cardiol 2017; 228:319-326. [DOI: 10.1016/j.ijcard.2016.11.210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/06/2016] [Indexed: 12/18/2022]
|
26
|
Abstract
Recently, organ construction has been attempted using decellularized organs. In this study, we used decellularized rat liver to construct liver tissue by recellularization. The right lobe of the rat liver was decellularized with 4% Triton X-100 solution, recellularized with 107 rat hepatocytes, and albumin synthesis in the recellularized right lobe was observed. Therefore, we introduce a method of decellularizing rat liver, which retains its fine vascular structure after removal of all the cells, perform organogenesis using the decellularized liver, and evaluate the structural and functional properties of the products.
Collapse
Affiliation(s)
- Nana Shirakigawa
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
27
|
Rallapalli S, Liman AM, Guhathakurta S. Hemocompatibility and surface properties of bovine pericardial patches: Effects of gamma sterilization. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cmrp.2016.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Chen C, Mao C, Sun J, Chen Y, Wang W, Pan H, Tang R, Gu X. Glutaraldehyde-induced remineralization improves the mechanical properties and biostability of dentin collagen. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:657-665. [DOI: 10.1016/j.msec.2016.05.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/22/2016] [Accepted: 05/18/2016] [Indexed: 01/09/2023]
|
29
|
Early Results of Novel Bovine Pericardial Patch Using Comprehensive Anticalcification Procedure in a Swine Model. ASAIO J 2016; 62:100-5. [DOI: 10.1097/mat.0000000000000296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
30
|
Jalili-Firoozinezhad S, Rajabi-Zeleti S, Marsano A, Aghdami N, Baharvand H. Influence of decellularized pericardium matrix on the behavior of cardiac progenitors. J Appl Polym Sci 2015. [DOI: 10.1002/app.43255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sasan Jalili-Firoozinezhad
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Departments of Surgery and Biomedicine; University Hospital Basel, University of Basel; Basel CH-4031 Switzerland
| | - Sareh Rajabi-Zeleti
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Anna Marsano
- Departments of Surgery and Biomedicine; University Hospital Basel, University of Basel; Basel CH-4031 Switzerland
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| |
Collapse
|
31
|
Abstract
Heart disease, including valve pathologies, is the leading cause of death worldwide. Despite the progress made thanks to improving transplantation techniques, a perfect valve substitute has not yet been developed: once a diseased valve is replaced with current technologies, the newly implanted valve still needs to be changed some time in the future. This situation is particularly dramatic in the case of children and young adults, because of the necessity of valve growth during the patient's life. Our review focuses on the current status of heart valve (HV) therapy and the challenges that must be solved in the development of new approaches based on tissue engineering. Scientists and physicians have proposed tissue-engineered heart valves (TEHVs) as the most promising solution for HV replacement, especially given that they can help to avoid thrombosis, structural deterioration and xenoinfections. Lastly, TEHVs might also serve as a model for studying human valve development and pathologies.
Collapse
|
32
|
Jahnavi S, Kumary T, Bhuvaneshwar G, Natarajan T, Verma R. Engineering of a polymer layered bio-hybrid heart valve scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 51:263-73. [DOI: 10.1016/j.msec.2015.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 11/17/2022]
|
33
|
Liu T, Dan N, Dan W. The effect of crosslinking agent on sustained release of bFGF–collagen microspheres. RSC Adv 2015. [DOI: 10.1039/c5ra00991j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Initial burst release and loss of bioactivity of drugs are the shortcomings of drug delivery systems (DDSs) used for in vivo treatment.
Collapse
Affiliation(s)
- Ting Liu
- Department of Biomass Chemistry and Engineering
- Sichuan University
- Chengdu
- China
- Research Center of Biomedical Engineering
| | - Nianhua Dan
- Department of Biomass Chemistry and Engineering
- Sichuan University
- Chengdu
- China
- Research Center of Biomedical Engineering
| | - Weihua Dan
- Department of Biomass Chemistry and Engineering
- Sichuan University
- Chengdu
- China
- Research Center of Biomedical Engineering
| |
Collapse
|
34
|
Bhaarathy V, Venugopal J, Gandhimathi C, Ponpandian N, Mangalaraj D, Ramakrishna S. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:268-77. [PMID: 25280706 DOI: 10.1016/j.msec.2014.08.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/26/2014] [Accepted: 08/02/2014] [Indexed: 12/19/2022]
Abstract
Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(l-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering.
Collapse
Affiliation(s)
- V Bhaarathy
- Centre for Nanofibers & Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576, Singapore; Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046, India; Lee Kong Chian School of Medicine, Nanyang Technological University, 138673, Singapore
| | - J Venugopal
- Centre for Nanofibers & Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576, Singapore.
| | - C Gandhimathi
- Centre for Nanofibers & Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576, Singapore
| | - N Ponpandian
- Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046, India
| | - D Mangalaraj
- Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046, India
| | - S Ramakrishna
- Centre for Nanofibers & Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576, Singapore
| |
Collapse
|
35
|
Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 2014. [DOI: 10.1039/c3ra45991h] [Citation(s) in RCA: 571] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
36
|
Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M, Khayyatan F, Vahdat S, Nikeghbalian S, Khademhosseini A, Baharvand H, Aghdami N. The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials 2014; 35:970-82. [DOI: 10.1016/j.biomaterials.2013.10.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023]
|