1
|
Presley KF, Falcucci T, Shaidani S, Fitzpatrick V, Barry J, Ly JT, Dalton MJ, Grusenmeyer TA, Kaplan DL. Engineered porosity for tissue-integrating, bioresorbable lifetime-based phosphorescent oxygen sensors. Biomaterials 2023; 301:122286. [PMID: 37643490 DOI: 10.1016/j.biomaterials.2023.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Versatile silk protein-based material formats were studied to demonstrate bioresorbable, implantable optical oxygen sensors that can integrate with the surrounding tissues. The ability to continuously monitor tissue oxygenation in vivo is desired for a range of medical applications. Silk was chosen as the matrix material due to its excellent biocompatibility, its unique chemistry that facilitates interactions with chromophores, and the potential to tune degradation time without altering chemical composition. A phosphorescent Pd (II) benzoporphyrin chromophore was incorporated to impart oxygen sensitivity. Organic solvent-based processing methods using 1,1,1,3,3,3-hexafluoro-2-propanol were used to fabricate: 1) silk-chromophore films with varied thickness and 2) silk-chromophore sponges with interconnected porosity. All compositions were biocompatible and exhibited photophysical properties with oxygen sensitivities (i.e., Stern-Volmer quenching rate constants of 2.7-3.2 × 104 M-1) useful for monitoring physiological tissue oxygen levels and for detecting deviations from normal behavior (e.g., hyperoxia). The potential to tune degradation time without significantly impacting photophysical properties was successfully demonstrated. Furthermore, the ability to consistently monitor tissue oxygenation in vivo was established via a multi-week rodent study. Histological assessments indicated successful tissue integration for the sponges, and this material format responded more quickly to various oxygen challenges than the film samples.
Collapse
Affiliation(s)
- Kayla F Presley
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, Wright-Patterson AFB, Ohio, 45433, United States; UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH, 45432, United States.
| | - Thomas Falcucci
- Tufts University, Biomedical Engineering, 4 Colby Street, Medford, MA, 02155, United States
| | - Sawnaz Shaidani
- Tufts University, Biomedical Engineering, 4 Colby Street, Medford, MA, 02155, United States
| | - Vincent Fitzpatrick
- Tufts University, Biomedical Engineering, 4 Colby Street, Medford, MA, 02155, United States
| | - Jonah Barry
- Tufts University, Biomedical Engineering, 4 Colby Street, Medford, MA, 02155, United States
| | - Jack T Ly
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, Wright-Patterson AFB, Ohio, 45433, United States; UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH, 45432, United States
| | - Matthew J Dalton
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, Wright-Patterson AFB, Ohio, 45433, United States
| | - Tod A Grusenmeyer
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, Wright-Patterson AFB, Ohio, 45433, United States.
| | - David L Kaplan
- Tufts University, Biomedical Engineering, 4 Colby Street, Medford, MA, 02155, United States.
| |
Collapse
|
2
|
Dalfen I, Borisov SM. Porous matrix materials in optical sensing of gaseous oxygen. Anal Bioanal Chem 2022; 414:4311-4330. [PMID: 35352161 PMCID: PMC9142480 DOI: 10.1007/s00216-022-04014-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
Abstract
The review provides comparison of porous materials that act as a matrix for luminescent oxygen indicators. These include silica-gels, sol–gel materials based on silica and organically modified silica (Ormosils), aerogels, electrospun polymeric nanofibers, metal–organic frameworks, anodized alumina, and various other microstructured sensor matrices. The influence of material structure and composition on the efficiency of oxygen quenching and dynamic response times is compared and the advantages and disadvantages of the materials are summarized to give a guide for design and practical application of sensors with desired sensitivity and response time.
Collapse
Affiliation(s)
- I Dalfen
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - S M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria.
| |
Collapse
|
3
|
A Dual pH/O 2 Sensing Film Based on Functionalized Electrospun Nanofibers for Real-Time Monitoring of Cellular Metabolism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051586. [PMID: 35268687 PMCID: PMC8911770 DOI: 10.3390/molecules27051586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022]
Abstract
Real-time monitoring of dissolved oxygen (DO) and pH is of great significance for understanding cellular metabolism. Herein, a dual optical pH/O2 sensing membrane was prepared by the electrospinning method. Cellulose acetate (CA) and poly(ε-caprolactone) (PCL) nanofiber membrane blended with platinum (II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was used as the DO sensing matrix, upon which electrospun nanofiber membrane of chitosan (CS) coupled with fluorescein 5-isothiocyanate (FITC) was used as the pH sensing matrix. The electrospun sensing film prepared from biocompatible biomaterials presented good response to a wide range of DO concentrations and physiological pH. We used it to monitor the exracellular acidification and oxygen consumption levels of cells and bacteria. This sensing film can provide a luminescence signal change as the DO and pH change in the growth microenvironment. Due to its advantages of good biocompatibility and high stability, we believe that the dual functional film has a high value in the field of biotechnology research.
Collapse
|
4
|
|
5
|
Presley KF, Fan F, DiRando NM, Shahhosseini M, Rao JZ, Tedeschi A, Castro CE, Lannutti JJ. Injectable, dispersible polysulfone-polysulfone core-shell particles for optical oxygen sensing. J Appl Polym Sci 2021; 138:50603. [PMID: 36091476 PMCID: PMC9455784 DOI: 10.1002/app.50603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/31/2021] [Indexed: 11/12/2022]
Abstract
Injectable sensors can significantly improve the volume of critical biomedical information emerging from the human body in response to injury or disease. Optical oxygen sensors with rapid response times can be achieved by incorporating oxygen-sensitive luminescent molecules within polymeric matrices with suitably high surface area to volume ratios. In this work, electrospraying utilizes these advances to produce conveniently injectable, oxygen sensing particles made up of a core-shell polysulfone-polysulfone structure containing a phosphorescent oxygen-sensitive palladium porphyrin species within the core. Particle morphology is highly dependent on solvent identity and electrospraying parameters; DMF offers the best potential for the creation of uniform, sub-micron particles. Total internal reflection fluorescence (TIRF) microscopy confirms the existence of both core-shell structure and oxygen sensitivity. The dissolved oxygen response time is rapid (<0.30 s), ideal for continuous real-time monitoring of oxygen concentration. The incorporation of Pluronic F-127 surfactant enables efficient dispersion; selection of an appropriate electrospraying solvent (DMF) yields particles readily injected even through a <100 μm diameter needle.
Collapse
Affiliation(s)
- Kayla F Presley
- Department of Materials Science and Engineering, The Ohio State University, 116 W 19th Avenue, Columbus, OH 43210, USA
| | - Fan Fan
- Department of Materials Science and Engineering, The Ohio State University, 116 W 19th Avenue, Columbus, OH 43210, USA; Center for Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nicole M DiRando
- Department of Materials Science and Engineering, The Ohio State University, 116 W 19th Avenue, Columbus, OH 43210, USA
| | - Melika Shahhosseini
- Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, OH 43210, USA
| | - Jim Z Rao
- Department of Materials Science and Engineering, The Ohio State University, 116 W 19th Avenue, Columbus, OH 43210, USA
| | - Andrea Tedeschi
- Center for Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, 460W 12th Avenue, Columbus, OH 43210, USA
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, OH 43210, USA
| | - John J Lannutti
- Department of Materials Science and Engineering, The Ohio State University, 116 W 19th Avenue, Columbus, OH 43210, USA; Center for Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Dmitriev RI, Intes X, Barroso MM. Luminescence lifetime imaging of three-dimensional biological objects. J Cell Sci 2021; 134:1-17. [PMID: 33961054 PMCID: PMC8126452 DOI: 10.1242/jcs.254763] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major focus of current biological studies is to fill the knowledge gaps between cell, tissue and organism scales. To this end, a wide array of contemporary optical analytical tools enable multiparameter quantitative imaging of live and fixed cells, three-dimensional (3D) systems, tissues, organs and organisms in the context of their complex spatiotemporal biological and molecular features. In particular, the modalities of luminescence lifetime imaging, comprising fluorescence lifetime imaging (FLI) and phosphorescence lifetime imaging microscopy (PLIM), in synergy with Förster resonance energy transfer (FRET) assays, provide a wealth of information. On the application side, the luminescence lifetime of endogenous molecules inside cells and tissues, overexpressed fluorescent protein fusion biosensor constructs or probes delivered externally provide molecular insights at multiple scales into protein-protein interaction networks, cellular metabolism, dynamics of molecular oxygen and hypoxia, physiologically important ions, and other physical and physiological parameters. Luminescence lifetime imaging offers a unique window into the physiological and structural environment of cells and tissues, enabling a new level of functional and molecular analysis in addition to providing 3D spatially resolved and longitudinal measurements that can range from microscopic to macroscopic scale. We provide an overview of luminescence lifetime imaging and summarize key biological applications from cells and tissues to organisms.
Collapse
Affiliation(s)
- Ruslan I. Dmitriev
- Tissue Engineering and Biomaterials Group, Department of
Human Structure and Repair, Faculty of Medicine and Health Sciences,
Ghent University, Ghent 9000,
Belgium
| | - Xavier Intes
- Department of Biomedical Engineering, Center for
Modeling, Simulation and Imaging for Medicine (CeMSIM),
Rensselaer Polytechnic Institute, Troy, NY
12180-3590, USA
| | - Margarida M. Barroso
- Department of Molecular and Cellular
Physiology, Albany Medical College,
Albany, NY 12208, USA
| |
Collapse
|
7
|
Ratiometric Sensor Based on PtOEP-C6/Poly (St-TFEMA) Film for Automatic Dissolved Oxygen Content Detection. SENSORS 2020; 20:s20216175. [PMID: 33138300 PMCID: PMC7663556 DOI: 10.3390/s20216175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/04/2022]
Abstract
A ratiometric oxygen sensor based on a platinum octaethylporphyrin (PtOEP)–coumarin 6 (C6)/poly (styrene-trifluoroethyl methacrylate) (poly (St-TFEMA)) film was developed for automatic dissolved oxygen (DO) detection. The oxygen-sensing film according to the dynamic quenching mechanism was prepared by embedding platinum octaethylporphyrin (PtOEP) and coumarin 6 (C6) in poly (styrene-trifluoroethyl methacrylate) (poly (St-TFEMA)). The optical parameter (OP) was defined as the ratio of the oxygen-insensitive fluorescence from C6 to the oxygen-sensitive phosphorescence from PtOEP. A calibration equation expressing the correlation between the OP values and DO content described by a linear function was obtained. A program based on the Labview software was developed for monitoring the real-time DO content automatically. The influence of the excitation intensity and fluctuation on the OP values and the direct luminescence signal (integration areas) was compared, verifying the strong anti-interference ability of the sensor. The detection limit of the sensor was determined to be 0.10 (1) mg/L. The switching response time and recovery time of the sensor were 0.4 and 1.3 s, respectively. Finally, the oxygen sensor was applied to the investigation of the kinetic process of the DO content variation, which revealed an exponential relationship with time.
Collapse
|
8
|
Wongkaew N, Simsek M, Heider J, Wegener J, Baeumner AJ, Schreml S, Stolwijk JA. Cytocompatibility of Mats Prepared from Different Electrospun Polymer Nanofibers. ACS APPLIED BIO MATERIALS 2020; 3:4912-4921. [DOI: 10.1021/acsabm.0c00426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nongnoot Wongkaew
- Institute for Analytical Chemistry, Chemo- and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Marcel Simsek
- Institute for Analytical Chemistry, Chemo- and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Judith Heider
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Joachim Wegener
- Institute for Analytical Chemistry, Chemo- and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Fraunhofer Research Institution for Microsystems and Solid State Technologies, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Antje J. Baeumner
- Institute for Analytical Chemistry, Chemo- and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Judith A. Stolwijk
- Institute for Analytical Chemistry, Chemo- and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Schilling K, El Khatib M, Plunkett S, Xue J, Xia Y, Vinogradov SA, Brown E, Zhang X. Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33548-33558. [PMID: 31436082 PMCID: PMC6916729 DOI: 10.1021/acsami.9b08341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Tissue oxygenation is one of the key determining factors in bone repair and bone tissue engineering. Adequate tissue oxygenation is essential for survival and differentiation of the bone-forming cells and ultimately the success of bone tissue regeneration. Two-photon phosphorescence lifetime microscopy (2PLM) has been successfully applied in the past to image oxygen distributions in tissue with high spatial resolution. However, delivery of phosphorescent probes into avascular compartments, such as those formed during early bone defect healing, poses significant problems. Here, we report a multifunctional oxygen-reporting fibrous matrix fabricated through encapsulation of a hydrophilic oxygen-sensitive, two-photon excitable phosphorescent probe, PtP-C343, in the core of fibers during coaxial electrospinning. The oxygen-sensitive fibers support bone marrow stromal cell growth and differentiation and at the same time enable real-time high-resolution probing of partial pressures of oxygen via 2PLM. The hydrophilicity of the probe facilitates its gradual release into the nearby microenvironment, allowing fibers to act as a vehicle for probe delivery into the healing tissue. In conjunction with a cranial defect window chamber model, which permits simultaneous imaging of the bone and neovasculature in vivo via two-photon laser scanning microscopy, the oxygen-reporting fibers provide a useful tool for minimally invasive, high-resolution, real-time 3D mapping of tissue oxygenation during bone defect healing, facilitating studies aimed at understanding the healing process and advancing design of tissue-engineered constructs for enhanced bone repair and regeneration.
Collapse
Affiliation(s)
- Kevin Schilling
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 146421, USA
| | - Mirna El Khatib
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shane Plunkett
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Sergei A. Vinogradov
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding authors contact information: Xinping Zhang, The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA, ; Edward Brown, Department of Biomedical Engineering, University of Rochester, Goergen Hall Box 270168Rochester, NY 14642, USA, ; Sergei A. Vinogradov, Department of Biochemistry and Biophysics, Perelman School of Medicine, Department of Chemistry, School of Arts and Sciences University of Pennsylvania Philadelphia, PA 19104,
| | - Edward Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA
- Corresponding authors contact information: Xinping Zhang, The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA, ; Edward Brown, Department of Biomedical Engineering, University of Rochester, Goergen Hall Box 270168Rochester, NY 14642, USA, ; Sergei A. Vinogradov, Department of Biochemistry and Biophysics, Perelman School of Medicine, Department of Chemistry, School of Arts and Sciences University of Pennsylvania Philadelphia, PA 19104,
| | - Xinping Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 146421, USA
- Corresponding authors contact information: Xinping Zhang, The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA, ; Edward Brown, Department of Biomedical Engineering, University of Rochester, Goergen Hall Box 270168Rochester, NY 14642, USA, ; Sergei A. Vinogradov, Department of Biochemistry and Biophysics, Perelman School of Medicine, Department of Chemistry, School of Arts and Sciences University of Pennsylvania Philadelphia, PA 19104,
| |
Collapse
|
10
|
Abstract
Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Electrospun Antimicrobial Wound Dressings: Novel Strategies to Fight Against Wound Infections. CHRONIC WOUNDS, WOUND DRESSINGS AND WOUND HEALING 2018. [DOI: 10.1007/15695_2018_133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Zhang K, Zhang H, Wang Y, Tian Y, Zhao J, Li Y. High sensitivity and accuracy dissolved oxygen (DO) detection by using PtOEP/poly(MMA-co-TFEMA) sensing film. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 170:242-246. [PMID: 27450122 DOI: 10.1016/j.saa.2016.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Fluorinated acrylate polymer has received great interest in recent years due to its extraordinary characteristics such as high oxygen permeability, good stability, low surface energy and refractive index. In this work, platinum octaethylporphyrin/poly(methylmethacrylate-co-trifluoroethyl methacrylate) (PtOEP/poly(MMA-co-TFEMA)) oxygen sensing film was prepared by the immobilizing of PtOEP in a poly(MMA-co-TFEMA) matrix and the technological readiness of optical properties was established based on the principle of luminescence quenching. It was found that the oxygen-sensing performance could be improved by optimizing the monomer ratio (MMA/TFEMA=1:1), tributylphosphate(TBP, 0.05mL) and PtOEP (5μg) content. Under this condition, the maximum quenching ratio I0/I100 of the oxygen sensing film is obtained to be about 8.16, Stern-Volmer equation is I0/I=1.003+2.663[O2] (R(2)=0.999), exhibiting a linear relationship, good photo-stability, high sensitivity and accuracy. Finally, the synthesized PtOEP/poly(MMA-co-TFEMA) sensing film was used for DO detection in different water samples.
Collapse
Affiliation(s)
- Ke Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Honglin Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Ying Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Yanqing Tian
- South University of Science and Technology of China, Shenzhen 518000, China
| | - Jiupeng Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China.
| | - Yao Li
- Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
13
|
Nanoscale upconversion for oxygen sensing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:76-84. [DOI: 10.1016/j.msec.2016.08.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/22/2016] [Indexed: 01/12/2023]
|
14
|
Abstract
EPR (electron paramagnetic resonance) based biological oximetry is a powerful tool that accurately and repeatedly measures tissue oxygen levels. In vivo determination of oxygen in tissues is crucial for the diagnosis and treatment of a number of diseases. Here, we report the first successful fabrication and remarkable properties of nanofiber sensors for EPR-oximetry applications. Lithium octa-n-butoxynaphthalocyanine (LiNc- BuO), an excellent paramagnetic oxygen sensor, was successfully encapsulated in 300-500 nm diameter fibers consisting of a core of polydimethylsiloxane (PDMS) and a shell of polycaprolactone (PCL) by electrospinning. This core-shell nanosensor (LiNc-BuO-PDMS-PCL) shows a linear dependence of linewidth versus oxygen partial pressure (pO2). The nanofiber sensors have response and recovery times of 0.35 s and 0.55 s, respectively, these response and recovery times are ~12 times and ~218 times faster than those previously reported for PDMS-LiNc-BuO chip sensors. This greater responsiveness is likely due to the high porosity and excellent oxygen permeability of the nanofibers. Electrospinning of the structurally flexible PDMS enabled the fabrication of fibers having tailored spin densities. Core-shell encapsulation ensures the non-exposure of embedded LiNc-BuO and mitigates potential biocompatibility concerns. In vitro evaluation of the fiber performed under exposure to cultured cells showed that it is both stable and biocompatible. The unique combination of biocompatibility due to the PCL 'shell,' the excellent oxygen transparency of the PDMS core, and the excellent oxygen-sensing properties of LiNc-BuO makes LiNc-BuO-PDMS-PCL platform promising for long-term oximetry and repetitive oxygen measurements in both biological systems and clinical applications.
Collapse
|
15
|
Park C, Xue R, Lannutti JJ, Farson DF. Ablation characteristics of electrospun core-shell nanofiber by femtosecond laser. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:232-9. [DOI: 10.1016/j.msec.2016.04.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 03/22/2016] [Accepted: 04/12/2016] [Indexed: 02/06/2023]
|
16
|
Fang J, Wang Q, Yue X, Wang G, Jiang Z. A WORM type polymer electrical memory based on polyethersulfone with carbazole derivatives. HIGH PERFORM POLYM 2016. [DOI: 10.1177/0954008315621122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A series of high-performance polyethersulfone, which had pendent carbazole moieties (Cz-PES 1–3), have been designed and successfully synthesized for an application in a write-once read-many type memory device as the active polymer layer. The memory performance can be tuned by changing the substituent in the Cz derivatives units. Cz-PES 3 with excellent thermal properties ( Tg = 185°C and Td = 378°C) exhibits the best memory performance. For Cz-PES 3-based device indium tin oxide/Cz-PES 3/aluminum, the turn-on voltage is 2.5 V and the ON/OFF current ratio is higher than 106. Moreover, the data can be maintained for longer than 3 × 105 s once written and can be read for more than 450 cycles under a reading voltage of 1.0 V at ambient conditions. Thus Cz-PES 3 can serve as an excellent memory material in the data storage field of next generation.
Collapse
Affiliation(s)
- Jiyong Fang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, China
| | - Qinhong Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, China
| | - Xigui Yue
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, China
| | - Guibin Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, China
| | - Zhenhua Jiang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
17
|
Cancer cell aggregate hypoxia visualized in vitro via biocompatible fiber sensors. Biomaterials 2016; 76:208-17. [DOI: 10.1016/j.biomaterials.2015.10.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022]
|
18
|
Fang J, Zhang H, Wei W, Li Y, Yue X, Jiang Z. A low onset voltage WORM type polymer memory based on functional PES. J Appl Polym Sci 2015. [DOI: 10.1002/app.42644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiyong Fang
- Alan G. MacDiarmid Institute; College of Chemistry; Jilin University; 2699 Qianjin street Changchun 130012 People's Republic of China
| | - Haibo Zhang
- Alan G. MacDiarmid Institute; College of Chemistry; Jilin University; 2699 Qianjin street Changchun 130012 People's Republic of China
| | - Wei Wei
- Alan G. MacDiarmid Institute; College of Chemistry; Jilin University; 2699 Qianjin street Changchun 130012 People's Republic of China
| | - Yunxi Li
- Alan G. MacDiarmid Institute; College of Chemistry; Jilin University; 2699 Qianjin street Changchun 130012 People's Republic of China
| | - Xigui Yue
- Alan G. MacDiarmid Institute; College of Chemistry; Jilin University; 2699 Qianjin street Changchun 130012 People's Republic of China
| | - Zhenhua Jiang
- Alan G. MacDiarmid Institute; College of Chemistry; Jilin University; 2699 Qianjin street Changchun 130012 People's Republic of China
| |
Collapse
|
19
|
Zhao SY, Harrison BS. Morphology impact on oxygen sensing ability of Ru(dpp)3Cl2 containing biocompatible polymers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:280-5. [DOI: 10.1016/j.msec.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/26/2015] [Accepted: 04/01/2015] [Indexed: 02/08/2023]
|
20
|
Xue R, Ge C, Richardson K, Palmer A, Viapiano M, Lannutti JJ. Microscale Sensing of Oxygen via Encapsulated Porphyrin Nanofibers: Effect of Indicator and Polymer "Core" Permeability. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8606-14. [PMID: 25850567 DOI: 10.1021/acsami.5b00403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Biomimetic polymer nanofibers integrate sensing capabilities creating utility across many biological and biomedical applications. We created fibers consisting of either a poly(ether sulfone) (PES) or a polysulfone (PSU) core coated by a biocompatible polycaprolactone (PCL) shell to facilitate cell attachment. Oxygen sensitive luminescent probes Pt(II) meso-tetra(pentafluorophenyl)porphine (PtTFPP) or Pd(II) meso-tetra(pentafluorophenyl)porphine (PdTFPP), were incorporated in the core via single-step coaxial electrospinning providing superior sensitivity, high brightness, linear response, and excellent stability. Both PES-PCL and PSU-PCL fibers provide more uniform probe distribution than polydimethylsiloxane (PDMS). PSU-based sensing fibers possessed optimum sensitivity due to their relatively higher oxygen permeability. During exposure to 100% nitrogen and 100% oxygen, PES-PCL fiber displayed an I0/I100 value of 6.7; PSU-PCL exhibited a value of 8.9 with PtTFPP as the indicator. In contrast, PdTFPP-containing fibers possess higher sensitivity due to the long porphyrin lifetime. The corresponding I0/I100 values were 80.6 and 106.7 for the PES-PCL and PSU-PCL matrices, respectively. The response and recovery times were 0.24/0.39 s for PES-PCL and 0.38/0.83 s for PSU-PCL which are 0.12 and 0.11 s faster, respectively, than the Pt-based porphyrin in the same matrices. Paradoxically, lower oxygen permeabilities make these polymers better suited to measuring higher (i. e., ∼20%) oxygen contents than PDMS. Individual fiber sensing was studied by fluorescence spectrometry and at a sub-micrometer scale by total internal reflection fluorescence (TIRF). Specific polymer blends relate polymer composition to the resulting sensor properties. All compositions displayed linear Stern-Volmer plots; sensitivity could be tailored by matrix or the sensing probe selection.
Collapse
Affiliation(s)
| | | | | | | | - Mariano Viapiano
- §Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
21
|
Bowers DT, Tanes ML, Das A, Lin Y, Keane NA, Neal RA, Ogle ME, Brayman KL, Fraser CL, Botchwey EA. Spatiotemporal oxygen sensing using dual emissive boron dye-polylactide nanofibers. ACS NANO 2014; 8:12080-12091. [PMID: 25426706 PMCID: PMC4278692 DOI: 10.1021/nn504332j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 10/22/2014] [Indexed: 02/08/2023]
Abstract
Oxygenation in tissue scaffolds continues to be a limiting factor in regenerative medicine despite efforts to induce neovascularization or to use oxygen-generating materials. Unfortunately, many established methods to measure oxygen concentration, such as using electrodes, require mechanical disturbance of the tissue structure. To address the need for scaffold-based oxygen concentration monitoring, a single-component, self-referenced oxygen sensor was made into nanofibers. Electrospinning process parameters were tuned to produce a biomaterial scaffold with specific morphological features. The ratio of an oxygen sensitive phosphorescence signal to an oxygen insensitive fluorescence signal was calculated at each image pixel to determine an oxygenation value. A single component boron dye-polymer conjugate was chosen for additional investigation due to improved resistance to degradation in aqueous media compared to a boron dye polymer blend. Standardization curves show that in fully supplemented media, the fibers are responsive to dissolved oxygen concentrations less than 15 ppm. Spatial (millimeters) and temporal (minutes) ratiometric gradients were observed in vitro radiating outward from the center of a dense adherent cell grouping on scaffolds. Sensor activation in ischemia and cell transplant models in vivo show oxygenation decreases on the scale of minutes. The nanofiber construct offers a robust approach to biomaterial scaffold oxygen sensing.
Collapse
Affiliation(s)
- Daniel T. Bowers
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Michael L. Tanes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Anusuya Das
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Yong Lin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Nicole A. Keane
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Rebekah A. Neal
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Molly E. Ogle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Kenneth L. Brayman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Department of Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Cassandra L. Fraser
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Edward A. Botchwey
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
22
|
Xue R, Behera P, Xu J, Viapiano MS, Lannutti JJ. Polydimethylsiloxane Core-Polycaprolactone Shell Nanofibers as Biocompatible, Real-Time Oxygen Sensors. SENSORS AND ACTUATORS. B, CHEMICAL 2014; 192:697-707. [PMID: 25006274 PMCID: PMC4082658 DOI: 10.1016/j.snb.2013.10.084] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Real-time, continuous monitoring of local oxygen contents at the cellular level is desirable both for the study of cancer cell biology and in tissue engineering. In this paper, we report the successful fabrication of polydimethylsiloxane (PDMS) nanofibers containing oxygen-sensitive probes by electrospinning and the applications of these fibers as optical oxygen sensors for both gaseous and dissolved oxygen. A protective 'shell' layer of polycaprolactone (PCL) not only maintains the fiber morphology of PDMS during the slow curing process but also provides more biocompatible surfaces. Once this strategy was perfected, tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) (Ru(dpp)) and platinum octaethylporphyrin (PtOEP) were dissolved in the PDMS core and the resulting sensing performance established. These new core-shell sensors containing different sensitivity probes showed slight variations in oxygen response but all exhibited excellent Stern-Volmer linearity. Due in part to the porous nature of the fibers and the excellent oxygen permeability of PDMS, the new sensors show faster response (<0.5 s) -4-10 times faster than previous reports - than conventional 2D film-based oxygen sensors. Such core-shell fibers are readily integrated into standard cell culture plates or bioreactors. The photostability of these nanofiber-based sensors was also assessed. Culture of glioma cell lines (CNS1, U251) and glioma-derived primary cells (GBM34) revealed negligible differences in biological behavior suggesting that the presence of the porphyrin dyes within the core carries with it no strong cytotoxic effects. The unique combination of demonstrated biocompatibility due to the PCL 'shell' and the excellent oxygen transparency of the PDMS core makes this particular sensing platform promising for sensing in the context of biological environments.
Collapse
Affiliation(s)
- Ruipeng Xue
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Prajna Behera
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Mariano S. Viapiano
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John J. Lannutti
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Corresponding author. Phone: +1 614-292-3926. Fax: +1 614-688-3182. Address: 477 Watts Hall, 2041 College Rd., Columbus, OH 43210, USA
| |
Collapse
|