1
|
Shao H, Zhang T, Gong Y, He Y. Silver-Containing Biomaterials for Biomedical Hard Tissue Implants. Adv Healthc Mater 2023; 12:e2300932. [PMID: 37300754 DOI: 10.1002/adhm.202300932] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Bacterial infection caused by biomaterials is a very serious problem in the clinical treatment of implants. The emergence of antibiotic resistance has prompted other antibacterial agents to replace traditional antibiotics. Silver is rapidly developing as an antibacterial candidate material to inhibit bone infections due to its significant advantages such as high antibacterial timeliness, high antibacterial efficiency, and less susceptibility to bacterial resistance. However, silver has strong cytotoxicity, which can cause inflammatory reactions and oxidative stress, thereby destroying tissue regeneration, making the application of silver-containing biomaterials extremely challenging. In this paper, the application of silver in biomaterials is reviewed, focusing on the following three issues: 1) how to ensure the excellent antibacterial properties of silver, and not easy to cause bacterial resistance; 2) how to choose the appropriate method to combine silver with biomaterials; 3) how to make silver-containing biomaterials in hard tissue implants have further research. Following a brief introduction, the discussion focuses on the application of silver-containing biomaterials, with an emphasis on the effects of silver on the physicochemical properties, structural properties, and biological properties of biomaterials. Finally, the review concludes with the authors' perspectives on the challenges and future directions of silver in commercialization and in-depth research.
Collapse
Affiliation(s)
- Huifeng Shao
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Zhejiang Guanlin Machinery Limited Company, Anji, Hangzhou, 313300, China
| | - Tao Zhang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Youping Gong
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
2
|
Chen J, Gai K, He Y, Xu Y, Guo W. Generating bioactive and antiseptic interfaces with nano-silver hydroxyapatite-based coatings by pulsed electrochemical deposition for long-term efficient cervical soft tissue sealing. J Mater Chem B 2023; 11:345-358. [PMID: 36484404 DOI: 10.1039/d2tb02098j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Infections related to osseointegrated implants have sparked the interest in studying titanium modification for long-term effective soft tissue sealing. Constructing a silver (Ag)-hydroxyapatite (HA) coating is regarded as an effective strategy for integrating antibiosis with osteanagenesis; however, the outcome for long-term cervical soft tissue sealing in vivo is compromised. It is challenging to construct an Ag-HA coating for long-term efficient soft tissue integration that instills a maximum antibacterial effect while retaining favorable bioactivity to normal gingival mesenchymal cells in vivo. In this study, we employed gradient concentrations of Ag/CaP by pulsed electrochemical deposition to fabricate optimal Ag-HA nanocoatings. By physicochemical analyses, these uniform coatings were mainly formed with spherical metallic and hydroxyapatite nanoparticles, which facilitated good hydrophilicity, moderate rough surfaces and corrosion protection. Furthermore, the nanocoating of the 1.5Ag/CaP group exhibited superior performances in dental follicle cells' proliferation, osteogenic differentiation and antibacterial properties mainly through direct contact inhibition and partially through sustained silver ion release, which resulted in functional cervical soft tissue sealing in beagles lasting for one year. Our investigations provide a feasible strategy to balance the long-term antibacterial demand and bioactive induction around osseointegrated implants for long-term efficient cervical soft tissue sealing.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kuo Gai
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanyuan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yuchan Xu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Nayak C, Singh P, Balani K. Contact stress and sliding wear damage tolerance of hydroxyapatite and carbon nanotube reinforced polyethylene cup liner against zirconia femoral head. J Mech Behav Biomed Mater 2022; 136:105435. [PMID: 36244327 DOI: 10.1016/j.jmbbm.2022.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
A finite element modeling (FEM) approach is carried out to estimate the contact stresses such as von-Mises and shear stress on the acetabular cup liner, made up of ultra-high molecular weight polyethylene (UHMWPE)-hydroxyapatite (HAp)-carbon nanotubes (CNT) based composites. The highlights of this work include the effects of liners' material (UHMWPE-HAp-CNT composites), radial clearance (0.05 to 1 mm), and liners' wall thickness (3 to 8 mm) on contact stresses. The thick liner (thickness: 8 mm) with conformal geometry (radial clearance 0.05 mm) produced the lowest contact stresses (von-Mises: 13.8-17.5 MPa and shear stress: 2.3-3.3 MPa). In contrast, the thin liner (thickness: 3 mm) with higher radial clearance (1 mm) showed the highest von-Mises stress (78.6-131.0 MPa) and shear stress (17.0-23.3 MPa). According to ISO 7206-1, nearly 6-7 times reduced contact stresses were observed because of the wider articulating contact area provided by thick cup liner and its conformity with respect to the femoral head. The UHMWPE-2 wt % CNT composite (UC) showed low von-Mises stress (16.1 MPa) and lowest shear stress (2.3 MPa); thus, it is the most damage tolerant material (wear rate: 2.6 × 10-7 mm3/Nm). The excellent mechanical properties such as hardness (165 MPa), elastic modulus (2.28 GPa), and tensile strength (36.7 MPa) are reasoned to elicit an increased sliding-wear resistance of UC. Thus, CNT-based UHMWPE composite can be the potential acetabular cup liner with a thickness of 8 mm and clearance of 0.05 mm without plastic deformation.
Collapse
Affiliation(s)
- Chinmayee Nayak
- Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur, Kanpur, 208016, India; Department of Mechanical and Materials Engineering, University of Turku, Turku, 20500, Finland
| | - Priyansh Singh
- Department of Mechanical Engineering, Delhi Technological University, Delhi, 110042, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur, Kanpur, 208016, India; Advanced Centre for Materials Science, Indian Institute of Technology, Kanpur, Kanpur, 208016, India.
| |
Collapse
|
4
|
George SM, Nayak C, Singh I, Balani K. Multifunctional Hydroxyapatite Composites for Orthopedic Applications: A Review. ACS Biomater Sci Eng 2022; 8:3162-3186. [PMID: 35838237 DOI: 10.1021/acsbiomaterials.2c00140] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Being a bioactive material, hydroxyapatite (HAp) is regarded as one of the most attractive ceramic biomaterials for bone and hard-tissue replacement and regeneration. Despite its substantial biocompatibility, osteoconductivity, and compositional similarity to that of bone, the employment of HAp is still limited in orthopedic applications due to its poor mechanical (low fracture toughness and bending strength) and antibacterial properties. These significant challenges lead to the notion of developing novel HAp-based composites via different fabrication routes. HAp, when efficaciously combined with functionally graded materials and antibacterial agents, like Ag, ZnO, Co, etc., form composites that render remarkable crack resistance and toughening, as well as enhance its bactericidal efficacy. The addition of different materials and a fabrication method, like 3D printing, greatly influence the porosity of the structure and, in turn, control cell adhesion, thereby enabling biological fixation of the material. This article encompasses an elaborate discussion on different multifunctional HAp composites developed for orthopedic applications with particular emphasis on the incorporation of functionally graded materials and antibacterial agents. The influence of 3D printing on the fabrication of HAp-based scaffolds, and the different in vitro and in vivo studies conducted on these, have all been included here. Furthermore, the present review not only provides insights and broad understanding by elucidating recent advancements toward 4D printing but also directs the reader to future research directions in design and application of HAp-based composite coatings and scaffolds.
Collapse
Affiliation(s)
- Suchi Mercy George
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chinmayee Nayak
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Indrajeet Singh
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.,Advanced Centre for Materials Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
5
|
Yousefpour F, Jamaati R, Aval HJ. Synergistic effects of hybrid (HA+Ag) particles and friction stir processing in the design of a high-strength magnesium matrix bio-nano composite with an appropriate texture for biomedical applications. J Mech Behav Biomed Mater 2021; 125:104983. [PMID: 34823088 DOI: 10.1016/j.jmbbm.2021.104983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/07/2023]
Abstract
In this work, the effects of hybrid (HA + Ag) particles and triple-pass friction stir processing on the microstructure, texture, hardness, and tensile behavior of magnesium matrix bio-nano composite were investigated. The results showed that the mean grain size of samples was in the range of 1-5 μm owing to the occurrence of dynamic recrystallization and suppression of grain growth by second phase particles. All samples exhibited uniform dispersion of particles in the magnesium matrix caused by triple-pass FSP. However, some agglomerations were visible in the microstructure of AZ91/nHA nanocomposite. The average grain size of the AZ91/nHA/smAg sample (1.4 μm) was smaller than that of the AZ91/nHA/mAg sample (2.1 μm), which was attributed to the formation of higher content of MgxAgy precipitates in the AZ91/nHA/smAg composite. By performing the FSP, the content of Mg17Al12 was significantly decreased due to the dissolution of beta into the alpha caused by the breakup effect of mechanical stirring and temperature increase of samples. The AZ91/nHA/smAg sample had the highest texture parameter for the {101‾1} orientation as the high corrosion resistance texture. This was due to the promoting the non-basal slip caused by the dissolution of smAg particles in the magnesium matrix. After the FSP, the microhardness distribution of AZ91, AZ91/nHA, AZ91/nHA/mAg, and AZ91/nHA/smAg samples tended to be uniform and the average hardness was improved owing to the fragmentation of beta particles, grain refinement, and homogeneous dispersion of second phase particles. Compared with the AZ91/nHA/mAg sample, an increase in ultimate tensile strength (291.7 MPa), and a decrease in total elongation (5.6%) and energy absorption (12.3 J/cm3) were observed in the AZ91/nHA/smAg sample due to the formation of a higher content of the silver-rich precipitates in the AZ91/nHA/smAg sample during cooling caused by the higher solubility of silver submicron particles. The fracture surfaces of all processed samples consisted of a large number of fine equiaxed dimples (ductile fracture) owing to the grain refinement and the presence of fine second phase particles.
Collapse
Affiliation(s)
- Foroozan Yousefpour
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol, 47148-71167, Iran
| | - Roohollah Jamaati
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol, 47148-71167, Iran.
| | - Hamed Jamshidi Aval
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol, 47148-71167, Iran
| |
Collapse
|
6
|
Hou J, Liu Y, Han Z, Song D, Zhu B. Silver-hydroxyapatite nanocomposites prepared by three sequential reaction steps in one pot and their bioactivities in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111655. [PMID: 33545823 DOI: 10.1016/j.msec.2020.111655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022]
Abstract
Hydroxyapatite (HA) combined with antimicrobial agents for biomedical application can effectively avoid the bacteria infection, while HA have the good performance. In this study, we prepared silver-hydroxyapatite (Ag-HA) nanocomposites using a one-pot method consisting of three sequential steps of wet chemical precipitation, ion exchange, and a silver mirror reaction. The HA nanoparticles used as the precursor for Ag ion doping were first synthesised by wet chemical precipitation. Next, Ag+ absorbed on HA surface through ion exchange reaction. Glucose was then added to initiate the silver mirror reaction, which made the Ag+ ions reduce to Ag0 and Ag nanoparticles in situ formed on HA nanoparticles. Subsequently, Ag-HA nanocomposites with different Ag content were prepared. X-ray diffraction, SEM, EDX mapping and TEM imaging confirmed that spherical Ag nanoparticles ~20-40 nm in diameter were adhered to the surface of HA nano-rods (0.4-0.8 μm in length and 15-40 nm in diameter). The Ag content (1.9-15.2 wt%) in the Ag-HA nanocomposites was adjusted by varying the feeding Ag/Ca molar ratio (2.0-20%). The cell viability evaluation in vitro proved that Ag-HA nanocomposites had low cytotoxicity to L929 normal cells. Meanwhile, the antibacterial examinations in vitro demonstrated that Ag-HA nanocomposites had obvious antibacterial effects on Gram-positive bacteria, Gram-negative bacteria, and fungus. The antibacterial results were dose-dependent on the accumulation of silver content. The Ag-HA nanocomposites loaded PMMA resins also demonstrated a potential antibacterial activity against S. mutans. This paper presents a convenient and bio-friendly approach for preparing Ag-HA nanocomposites with adjustable Ag content, which are a promising material for biomedical applications.
Collapse
Affiliation(s)
- Jingwen Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongjia Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhihui Han
- Department of Stomatology, Xuhui Central Hospital, 996 Huaihaizhong Road, Shanghai 200031, China.
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, China
| | - Bangshang Zhu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Mokabber T, Cao HT, Norouzi N, van Rijn P, Pei YT. Antimicrobial Electrodeposited Silver-Containing Calcium Phosphate Coatings. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5531-5541. [PMID: 31894959 PMCID: PMC7252902 DOI: 10.1021/acsami.9b20158] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/02/2020] [Indexed: 05/31/2023]
Abstract
Biocompatible antimicrobial coatings may enhance the function of many orthopedic implants by combating infection. Hydroxyapatite is a choice mineral for such a coating as it is native to bone and silver would be a possible antimicrobial agent as it is also commonly used in biomedical applications. The aim of the research is to develop a silver-containing calcium phosphate (Ag/Ca-P) coating via electrochemical deposition on titanium substrates as this allows for controlled coating buildup on complex shapes and porous surfaces. Two different deposition approaches are explored: one-step Ag/Ca-P(1) deposition coatings, containing silver ions as microsized silver phosphate particles embedded in the Ca-P matrix; and via a two-step method (Ag/Ca-P(2)) where silver is deposited as metallic silver nanoparticle on the Ca-P coating. The Ag/Ca-P(1) coating displays a bacterial reduction of 76.1 ± 8.3% via Ag-ion leaching. The Ag/Ca-P(2) coating displays a bacterial reduction of 83.7 ± 4.5% via contact killing. Interestingly, by preincubation in phosphate-buffered saline solution, bacterial reduction improves to 97.6 ± 2.7 and 99.7 ± 0.4% for Ag/Ca-P(1) and Ag/Ca-P(2) coatings, respectively, due to leaching of formed AgClx(x-1)- species. The biocompatibility evaluation indicates that the Ag/Ca-P(1) coating is cytotoxic towards osteoblasts while the Ag/Ca-P(2) coating shows excellent compatibility. The electrochemical deposition of highly bactericidal coatings with excellent biocompatibility will enable us to coat future bone implants even with complex or porous structures.
Collapse
Affiliation(s)
- T. Mokabber
- Department of Advanced
Production Engineering, Engineering and Technology Institute Groningen,
Faculty of Science and Engineering, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - H. T. Cao
- Department of Advanced
Production Engineering, Engineering and Technology Institute Groningen,
Faculty of Science and Engineering, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - N. Norouzi
- Department
of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical
Engineering and Materials Science-FB41, University Medical Center
Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - P. van Rijn
- Department
of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical
Engineering and Materials Science-FB41, University Medical Center
Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Y. T. Pei
- Department of Advanced
Production Engineering, Engineering and Technology Institute Groningen,
Faculty of Science and Engineering, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
8
|
Cellulose acetate/multi-wall carbon nanotube/Ag nanofiber composite for antibacterial applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110679. [PMID: 32204107 DOI: 10.1016/j.msec.2020.110679] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/24/2019] [Accepted: 01/19/2020] [Indexed: 12/23/2022]
Abstract
Herein we propose cellulose acetate/carbon nanotube/silver nanoparticles (CA/CNT/Ag) nanofiber composite for antibacterial applications. The nanofiber composite are expected to avoid harmful effects of silver (i.e. argyria and argyrosis) owing to anchoring of silver nanoparticles on carbon nanotubes (CNTs) and embedding of the composite inside cellulose acetate (CA) matrix. The carbon nanotubes/silver nanoparticles (CNT/Ag) nanocomposite localized inside the CA polymer matrix allow minimal/no direct contact of silver nanoparticles with human cells and are expected to show reduced silver leaching. The cellulose acetate (CA) nanofibers loaded with silver nanoparticles anchored multiwall carbon nanotubes (CNT/Ag) were fabricated by electrospinning. The samples were studied with scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR), tensile strength tests and antibacterial assays. Synthesis of the CNT/Ag nanocomposite was confirmed with XPS, XRD, EDS and TEM analysis. SEM images showed regular morphology of the CA/CNT/Ag nanofiber composites. TEM images depicted anchoring of silver nanoparticles on CNTs and embedding of CNT/Ag in the CA nanofiber matrix. The antibacterial test results demonstrated excellent antibacterial performance of the CA/CNT/Ag. The CA/CNT/Ag samples ensured effective bacterial growth inhibition on agar plates, in liquid medium (optical density, OD590nm) (for 48 h) and in bactericidal assay (relative cell viability, %). Our results suggested CA/CNT/Ag composite nanofibers as potential candidate for safer antibacterial applications.
Collapse
|
9
|
Morakul S, Otsuka Y, Ohnuma K, Tagaya M, Motozuka S, Miyashita Y, Mutoh Y. Enhancement effect on antibacterial property of gray titania coating by plasma-sprayed hydroxyapatite-amino acid complexes during irradiation with visible light. Heliyon 2019; 5:e02207. [PMID: 31517079 PMCID: PMC6728275 DOI: 10.1016/j.heliyon.2019.e02207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to reveal the mechanism of enhancement of antibacterial properties of gray titania by plasma-sprayed hydroxyapatite (HAp)-amino acid fluorescent complexes under irradiation with visible light. Although visible-light-sensitive photocatalysts are applied safely to oral cavities, their efficacy is not high because of the low energy of irradiating light. This study proposed a composite coating containing HAp and gray titania. HAp itself functioned as bacteria catchers and gray titania released antibacterial radicals by visible-light irradiation. HAp-amino acid fluorescent complexes were formed on the surface of the composite coating in order to increase light intensity to gray titania by fluorescence, based on an idea bioinspired by deep-sea fluorescent coral reefs. A cytotoxicity assay on murine osteoblastlike cells revealed that biocompatibility of the HAp-amino acid fluorescent complexes was identical with the that of HAp. Antibacterial assays involving Escherichia coli showed that the three types of HAp-amino acid fluorescent complexes and irradiation with three types of light-emitting diodes (blue, green, and red) significantly decreased colony-forming units. Furthermore, kelvin probe force microscopy revealed that the HAp-amino acid fluorescent complexes preserved the surface potentials even after irradiation with visible light, whereas those of HAp were significantly decreased by the irradiation. Such a preservative effect of the HAp-amino acid fluorescent complexes maintained the bacterial-adhesion performance of HAp and consequently enhanced the antibacterial action of gray titania.
Collapse
Affiliation(s)
- Sarita Morakul
- Graduate School of Materials Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Yuichi Otsuka
- Department of System Safety, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Motohiro Tagaya
- Department of Materials Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Satoshi Motozuka
- Department of Mechanical Engineering, Gihu National College of Technology, 2236-2 Kamimakuwa, Motosu, Gifu, Japan
| | - Yukio Miyashita
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Yoshiharu Mutoh
- Department of System Safety, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| |
Collapse
|
10
|
Yilmaz B, Alshemary AZ, Evis Z. Co-doped hydroxyapatites as potential materials for biomedical applications. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Siddiqui HA, Pickering KL, Mucalo MR. A Review on the Use of Hydroxyapatite-Carbonaceous Structure Composites in Bone Replacement Materials for Strengthening Purposes. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1813. [PMID: 30249999 PMCID: PMC6212993 DOI: 10.3390/ma11101813] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 12/26/2022]
Abstract
Biomedical materials constitute a vast scientific research field, which is devoted to producing medical devices which aid in enhancing human life. In this field, there is an enormous demand for long-lasting implants and bone substitutes that avoid rejection issues whilst providing favourable bioactivity, osteoconductivity and robust mechanical properties. Hydroxyapatite (HAp)-based biomaterials possess a close chemical resemblance to the mineral phase of bone, which give rise to their excellent biocompatibility, so allowing for them to serve the purpose of a bone-substituting and osteoconductive scaffold. The biodegradability of HAp is low (Ksp ≈ 6.62 × 10-126) as compared to other calcium phosphates materials, however they are known for their ability to develop bone-like apatite coatings on their surface for enhanced bone bonding. Despite its favourable bone regeneration properties, restrictions on the use of pure HAp ceramics in high load-bearing applications exist due to its inherently low mechanical properties (including low strength and fracture toughness, and poor wear resistance). Recent innovations in the field of bio-composites and nanoscience have reignited the investigation of utilising different carbonaceous materials for enhancing the mechanical properties of composites, including HAp-based bio-composites. Researchers have preferred carbonaceous materials with hydroxyapatite due to their inherent biocompatibility and good structural properties. It has been demonstrated that different structures of carbonaceous material can be used to improve the fracture toughness of HAp, as they can easily serve the purpose of being a second phase reinforcement, with the resulting composite still being a biocompatible material. Nanostructured carbonaceous structures, especially those in the form of fibres and sheets, were found to be very effective in increasing the fracture toughness values of HAp. Minor addition of CNTs (3 wt.%) has resulted in a more than 200% increase in fracture toughness of hydroxyapatite-nanorods/CNTs made using spark plasma sintering. This paper presents a current review of the research field of using different carbonaceous materials composited with hydroxyapatite with the intent being to produce high performance biomedically targeted materials.
Collapse
Affiliation(s)
- Humair A Siddiqui
- School of Engineering, Faculty of Science & Engineering, University of Waikato, Hamilton 3240, New Zealand.
- Department of Materials Engineering, Faculty of Chemical & Process Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan.
| | - Kim L Pickering
- School of Engineering, Faculty of Science & Engineering, University of Waikato, Hamilton 3240, New Zealand.
| | - Michael R Mucalo
- School of Science, Faculty of Science & Engineering, University of Waikato, Hamilton 3240, New Zealand.
| |
Collapse
|
12
|
Pandey A, Patel AK, S A, Kumar V, Sharma RK, Kanhed S, Nigam VK, Keshri A, Agarwal A, Balani K. Enhanced Tribological and Bacterial Resistance of Carbon Nanotube with Ceria- and Silver-Incorporated Hydroxyapatite Biocoating. NANOMATERIALS 2018; 8:nano8060363. [PMID: 29794997 PMCID: PMC6027173 DOI: 10.3390/nano8060363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022]
Abstract
Pertaining to real-life applications (by scaling up) of hydroxyapatite (HA)-based materials, herein is a study illustrating the role of carbon nanotube (CNT) reinforcement with ceria (CeO2) and silver (Ag) in HA on titanium alloy (TiAl6V4) substrate, utilizing the plasma-spraying processing technique, is presented. When compared with pure HA coating enhanced hardness (from 2.5 to 5.8 GPa), elastic modulus (from 110 to 171 GPa), and fracture toughness (from 0.7 to 2.2 MPa·m1/2) elicited a reduced wear rate from 55.3 × 10−5 mm3·N−1·m−1 to 2.1 × 10−5 mm3·N−1·m−1 in HA-CNT-CeO2-Ag. Besides, an order of magnitude lower Archard’s wear constant and a 41% decreased shear stress by for HA-CNT-CeO2-Ag coating depicted the effect of higher hardness and modulus of a material to control its wear phenomenon. Antibacterial property of 46% (bactericidal) is ascribed to Ag in addition to CNT-CeO2 in HA. Nonetheless, the composite coating also portrayed exaggerated L929 fibroblast cell growth (4.8 times more than HA), which was visualized as flat and elongated cells with multiple filopodial protrusions. Hence, synthesis of a material with enhanced mechanical integrity resulting in tribological resistance and cytocompatible efficacy was achieved, thereupon making HA-CNT-CeO2-Ag a scalable potent material for real-life load-bearing implantable bio-coating.
Collapse
Affiliation(s)
- Aditi Pandey
- Biomaterials Processing and Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Anup Kumar Patel
- Biomaterials Processing and Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Ariharan S
- Biomaterials Processing and Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Vikram Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Rajeev Kumar Sharma
- Biomaterials Processing and Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Satish Kanhed
- Biomaterials Processing and Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Vinod Kumar Nigam
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi-835 215, Jharkhand, India.
| | - Anup Keshri
- Department of Materials Science and Engineering, Indian Institute of Technology Patna, Patna-801103, Bihar, India.
| | - Arvind Agarwal
- Department of Mechanical Engineering, Florida International University, Miami, FL 33172, USA.
| | - Kantesh Balani
- Biomaterials Processing and Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| |
Collapse
|
13
|
Pandey A, Midha S, Sharma RK, Maurya R, Nigam VK, Ghosh S, Balani K. Antioxidant and antibacterial hydroxyapatite-based biocomposite for orthopedic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 88:13-24. [PMID: 29636127 DOI: 10.1016/j.msec.2018.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 01/14/2018] [Accepted: 02/20/2018] [Indexed: 12/27/2022]
Abstract
Post-implantation, vicinity acquired oxidative stress and bacterial infections lead to apoptosis with eventual bone-resorption and implant failure, respectively. Thus, in order to combat aforementioned complications, present research aims in utilizing antioxidant ceria (CeO2) and antibacterial silver (Ag) reinforced hydroxyapatite (HA) composite with enhanced mechanical and cytocompatible properties. Highly dense (>90%) spark plasma sintered HA-based composites elicits enhanced elastic modulus (121-133 GPa) in comparison to that of HA. The antioxidant activity is quantified using ceria alone, wherein HA-ceria and HA-ceria-Ag pellets exhibits ~36 and 30% antioxidant activity, respectively, accrediting ceria as a scavenger of reactive oxygen species, which was corroborated with the % Ce3+ change quantified by X-ray photoelectron spectroscopy. The HA-Ag pellet shows antibacterial efficacy of ~61% for E. coli and ~53% for S. aureus, while a reduction of ~59% for E. coli and ~50% for S. aureus is observed for HA-ceria-2.5Ag pellet, affirming Ag reinforcement as an established bactericidal agent. The enhanced hydrophobicity on all the HA-based composites affords a high protein adsorption (24 h incubation). Further, elevated hFOB cell count (~6.7 times for HA-ceria-Ag on day 7) with filopodial extensions (60-150 μm) and matrix-like deposition reflect cell-substrate intimacy. Thus, synergistic antioxidant ceria and antibacterial Ag reinforcement with enhanced mechanical integrity can potentially serve as cytocompatible porous bone scaffolds or bioactive coatings on femoral stems.
Collapse
Affiliation(s)
- Aditi Pandey
- Biomaterials Processing and Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Swati Midha
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajeev Kumar Sharma
- Biomaterials Processing and Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Rita Maurya
- Biomaterials Processing and Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Vinod Kumar Nigam
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835 215, Jharkhand, India
| | - Sourabh Ghosh
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Kantesh Balani
- Biomaterials Processing and Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| |
Collapse
|
14
|
Azarniya A, Sovizi S, Azarniya A, Rahmani Taji Boyuk MR, Varol T, Nithyadharseni P, Madaah Hosseini HR, Ramakrishna S, Reddy MV. Physicomechanical properties of spark plasma sintered carbon nanotube-containing ceramic matrix nanocomposites. NANOSCALE 2017; 9:12779-12820. [PMID: 28832057 DOI: 10.1039/c7nr01878a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recently, a wide variety of research works have focused on carbon nanotube (CNT)-ceramic matrix nanocomposites. In many cases, these novel materials are produced through conventional powder metallurgy methods including hot pressing, conventional sintering, and hot isostatic pressing. However, spark plasma sintering (SPS) as a novel and efficient consolidation technique is exploited for the full densification of high-temperature ceramic systems. In these binary nanocomposites, CNTs are added to ceramic matrices to noticeably modify their inferior properties and SPS is employed to produce fully dense compacts. In this review, a broad overview of these systems is provided and the potential influences of CNTs on their functional and structural properties are addressed. The technical challenges are then mentioned and the ongoing debates over overcoming these drawbacks are fully highlighted. The structural classification used is material-oriented. It helps the readers to easily find the material systems of interest. The SPSed CNT-containing ceramic matrix nanocomposites are generally categorized into four main classes: CNT-oxide systems; CNT-nitride systems, CNT-carbide systems, and CNT-boride systems. A large number of original curves and bubble maps are provided to fully summarize the experimental results reported in the literature. They pave the way for obviously selecting the ceramic systems required for each industrial application. The properties in consideration include the relative density, hardness, yield strength, fracture toughness, electrical and thermal conductivities, modulus, and flexural strength. These unique graphs facilitate the comparison between reported results and help the reader to easily distinguish the best method for producing the ceramic systems of interest and the optimal conditions under which the superior properties can be reached. The authors have concentrated on the microstructure evolution-physicomechanical property relationship and tried to relate each property to pertinent microstructural phenomena and address why the properties are degraded or enhanced with the variation of SPS conditions or material parameters.
Collapse
Affiliation(s)
- Abolfazl Azarniya
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tripathi A, Melo JS. Development of Nano-Antimicrobial Biomaterials for Biomedical Applications. ADVANCES IN BIOMATERIALS FOR BIOMEDICAL APPLICATIONS 2017; 66. [PMCID: PMC7122509 DOI: 10.1007/978-981-10-3328-5_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Around the globe, there is a great concern about controlling growth of pathogenic microorganisms for the prevention of infectious diseases. Moreover, the greater incidences of cross contamination and overuse of drugs has contributed towards the development of drug resistant microbial strains making conditions even worse. Hospital acquired infections pose one of the leading complications associated with implantation of any biomaterial after surgery and critical care. In this regard, developing non-conventional antimicrobial agents which would prevent the aforementioned causes is under the quest. The rapid development in nanoscience and nanotechnology has shown promising potential for developing novel biocidal agents that would integrate with a biomaterial to prevent bacterial colonization and biofilm formation. Metals with inherent antimicrobial properties such as silver, copper, zinc at nano scale constitute a special class of antimicrobials which have broad spectrum antimicrobial nature and pose minimum toxicity to humans. Hence, novel biomaterials that inhibit microbial growth would be of great significance to eliminate medical device/instruments associated infections. This chapter comprises the state-of-art advancements in the development of nano-antimicrobial biomaterials for biomedical applications. Several strategies have been targeted to satisfy few important concern such as enhanced long term antimicrobial activity and stability, minimize leaching of antimicrobial material and promote reuse. The proposed strategies to develop new hybrid antimicrobial biomaterials would offer a potent antibacterial solution in healthcare sector such as wound healing applications, tissue scaffolds, medical implants, surgical devices and instruments.
Collapse
Affiliation(s)
- Anuj Tripathi
- Nuclear Agriculture & Biotechnology Div, Bhabha Atomic Research Centre, Mumbai, Maharashtra India
| | - Jose Savio Melo
- Nuclear Agriculture & Biotechnology Div, Bhabha Atomic Research Centre, Mumbai, Maharashtra India
| |
Collapse
|
16
|
Patel AK, Trivedi P, Balani K. Carbon Nanotube Functionalization Decreases Osteogenic Differentiation in Aluminum Oxide Reinforced Ultrahigh Molecular Weight Polyethylene. ACS Biomater Sci Eng 2016; 2:1242-1256. [DOI: 10.1021/acsbiomaterials.6b00154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anup Kumar Patel
- Biomaterials
Processing and
Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pramanshu Trivedi
- Biomaterials
Processing and
Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kantesh Balani
- Biomaterials
Processing and
Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
17
|
Influence of Silver-hydroxyapatite Nanocomposite Coating on Biofilm Formation of Joint Prosthesis and Its Mechanism. W INDIAN MED J 2016; 64:506-513. [PMID: 27400164 DOI: 10.7727/wimj.2016.179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/08/2016] [Indexed: 01/04/2023]
Abstract
Background The main reason for biomaterial related refractory infections is biofilm formation caused by bacterial adhesion on the surface of materials. Silver-hydroxyapatite (Ag/HA) nanocomposite coating can inhibit the formation of biofilm, but its mechanism is not clear. Material and method In order to clarify the mechanism, the amounts of biofilm on the Ag/HA composite coating and HA coating were determined, the release rates of silver nanoparticles in simulated body fluid (SBF) were detected by atomic absorption spectrometry, and the expression values of atlE, fbe, sap, iapB genes of Staphylococcus aureus were studied when they grew on Ag/HA composite coating and HA coating. Results The amount of the biofilm on the Ag/HA composite coating was significantly less than that on the HA coating, and the bacterial adhesion was decreased. The silver nanoparticles were released continuously in SBF and the release rate decreased gradually with time. The expression values of atlE, fbe and sap were high in the initial stage of adhesion and the expression value of iapB was high in the colonies-gathering stage in the control group, but they were all significantly inhibited in the presence of Ag. Conclusion These results indicated that the main antibacterial effect of Ag/HA composite coating was achieved by the release of silver nanoparticles. The addition of Ag inhibited the expression of genes related to biofilm formation, which in turn inhibited the formation of biofilms. This provided theoretical support for the clinical application of Ag/HA composite coating.
Collapse
|
18
|
Patel AK, Balani K. Dispersion fraction enhances cellular growth of carbon nanotube and aluminum oxide reinforced ultrahigh molecular weight polyethylene biocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 46:504-13. [DOI: 10.1016/j.msec.2014.10.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/04/2014] [Accepted: 10/28/2014] [Indexed: 12/01/2022]
|