1
|
Liu J, Shen Y, Duan K, He X, Wang R, Chen Y, Li R, Sun J, Qiu X, Chen T, Wang J, Wang H. Novel biomimetic sandwich-structured electrospun cardiac patches with moderate adhesiveness and excellent electrical conductivity. J Mech Behav Biomed Mater 2025; 163:106828. [PMID: 39647339 DOI: 10.1016/j.jmbbm.2024.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
Clinical cardiac patches exhibit unsatisfied biocompatibility, low adhesion, and inadequate compliance and suboptimal mechanical properties for cardiac disorders repair. To address these challenges, herein we have innovatively proposed a biomimetic nanofiber electrospun membrane with a sandwich structure strategy. The composite patch comprises a stretchable polyurethane (PU) as basic material, then infiltrated with biocompatible silk fibroin methacryloyl (Silk-MA) as the middle layer via electrospinning and finally covered with Bio-ILs (chemically modified biocompatible ionic liquids) to impart electrical conductivity. Results indicated that the incorporation of Bio-ILs significantly enhances the conductivity reaching 2877 mS/m; particularly due to the positive charges of Bio-ILs, the composite film exhibits mild adhesive properties, inducing minimal damage to the substrate tissue. Furthermore, the basic PU of bilayer nanofiber membrane increased the film's stretching strain to approximately 250%, the Silk-MA hydrogel coating changed the film from hydrophobic to hydrophilic, creating a favorable and biocompatible microenvironment. Finally, in vitro experiments on cardiomyocytes confirmed that the material exhibits low cytotoxicity and excellent biocompatibility. Overall, the biomimetic sandwich electrospun membrane could restore electrical conduction and synchronized contraction function, providing a promising strategy for the treatment of cardiac tissue engineering.
Collapse
Affiliation(s)
- Jing Liu
- The Second Rehabilitation Hospital of Shanghai, China; Engineering Research Center of Intelligent Rehabilitation for Traditional Chinese Medicine, Ministry of Education, School of Rehabilitation Science, Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yinyang Shen
- Engineering Research Center of Intelligent Rehabilitation for Traditional Chinese Medicine, Ministry of Education, School of Rehabilitation Science, Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaikai Duan
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangming He
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruoyu Wang
- Engineering Research Center of Intelligent Rehabilitation for Traditional Chinese Medicine, Ministry of Education, School of Rehabilitation Science, Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yeping Chen
- The Second Rehabilitation Hospital of Shanghai, China
| | - Ruoyu Li
- Engineering Research Center of Intelligent Rehabilitation for Traditional Chinese Medicine, Ministry of Education, School of Rehabilitation Science, Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jialu Sun
- The Second Rehabilitation Hospital of Shanghai, China
| | - Xiaoyi Qiu
- The Second Rehabilitation Hospital of Shanghai, China
| | - Tao Chen
- Engineering Research Center of Intelligent Rehabilitation for Traditional Chinese Medicine, Ministry of Education, School of Rehabilitation Science, Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jie Wang
- The Second Rehabilitation Hospital of Shanghai, China.
| | - Hui Wang
- The Second Rehabilitation Hospital of Shanghai, China; Engineering Research Center of Intelligent Rehabilitation for Traditional Chinese Medicine, Ministry of Education, School of Rehabilitation Science, Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Todesco M, Lezziero G, Gerosa G, Bagno A. Polymeric Heart Valves: Do They Represent a Reliable Alternative to Current Prosthetic Devices? Polymers (Basel) 2025; 17:557. [PMID: 40076051 PMCID: PMC11902043 DOI: 10.3390/polym17050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
With the increasing number of people suffering from heart valve diseases (e.g., stenosis and/or insufficiency), the attention paid to prosthetic heart valves has grown significantly. Developing a prosthetic device that fully replaces the functionality of the native valve remains a huge challenge. Polymeric heart valves (PHVs) represent an appealing option, offering the potential to combine the robustness of mechanical valves with the enhanced biocompatibility of bioprosthetic ones. Over the years, novel biomaterials (such as promising new polymers and nanocomposites) and innovative designs have been explored for possible applications in manufacturing PHVs. This work provides a comprehensive overview of PHVs' evolution in terms of materials, design, and fabrication techniques, including in vitro and in vivo studies. Moreover, it addresses the drawbacks associated with PHV implementation, such as their limited biocompatibility and propensity for sudden failure in vivo. Future directions for further development are presented. Notably, PHVs can be particularly relevant for transcatheter application, the most recent minimally invasive approach for heart valve replacement. Despite current challenges, PHVs represent a promising area of research with the potential to revolutionize the treatment of heart valve diseases, offering more durable and less invasive solutions for patients.
Collapse
Affiliation(s)
- Martina Todesco
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy; (M.T.); (G.L.)
| | - Gianluca Lezziero
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy; (M.T.); (G.L.)
| | - Gino Gerosa
- Department of Cardiac, Thoracic Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
| | - Andrea Bagno
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy; (M.T.); (G.L.)
| |
Collapse
|
3
|
Azarmgin S, Torabinejad B, Kalantarzadeh R, Garcia H, Velazquez CA, Lopez G, Vazquez M, Rosales G, Heidari BS, Davachi SM. Polyurethanes and Their Biomedical Applications. ACS Biomater Sci Eng 2024; 10:6828-6859. [PMID: 39436687 DOI: 10.1021/acsbiomaterials.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The tunable mechanical properties of polyurethanes (PUs), due to their extensive structural diversity and biocompatibility, have made them promising materials for biomedical applications. Scientists can address PUs' issues with platelet absorption and thrombus formation owing to their modifiable surface. In recent years, PUs have been extensively utilized in biomedical applications because of their chemical stability, biocompatibility, and minimal cytotoxicity. Moreover, addressing challenges related to degradation and recycling has led to a growing focus on the development of biobased polyurethanes as a current focal point. PUs are widely implemented in cardiovascular fields and as implantable materials for internal organs due to their favorable biocompatibility and physicochemical properties. Additionally, they show great potential in bone tissue engineering as injectable grafts or implantable scaffolds. This paper reviews the synthesis methods, physicochemical properties, and degradation pathways of PUs and summarizes recent progress in applying different types of polyurethanes in various biomedical applications, from wound repair to hip replacement. Finally, we discuss the challenges and future directions for the translation of novel polyurethane materials into biomedical applications.
Collapse
Affiliation(s)
- Sepideh Azarmgin
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
| | - Bahman Torabinejad
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
| | - Rooja Kalantarzadeh
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Heriberto Garcia
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Carlo Alberto Velazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gino Lopez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Marisol Vazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gabriel Rosales
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Behzad Shiroud Heidari
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| |
Collapse
|
4
|
Chudinov VS, Shardakov IN, Litvinov VV, Solodnikov SY, Chudinova EY, Kondyurina IV, Kondyurin AV. Foreign Body Reaction to Ion-Beam-Treated Polyurethane Implant. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3833. [PMID: 39124497 PMCID: PMC11313228 DOI: 10.3390/ma17153833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
All artificial materials used for implantation into an organism cause a foreign body reaction. This is an obstacle for a number of medical technologies. In this work, we investigated the effect of high-energy ion bombardment on polyurethane for medical purposes and the reaction of body tissues to its insertion into the mouse organism. An analysis of the cellular response and shell thickness near the implant showed a decrease in the foreign body reaction for implants treated with high-energy ions compared to untreated implants. The decrease in the reaction is associated with the activation of the polyurethane surface due to the formation on the surface layer of condensed aromatic clusters with unbonded valences on the carbon atoms at the edges of such clusters and the covalent attachment of the organism's own proteins to the activated surface of the implant. Thus, immune cells do not identify the implant surface coated with its own proteins as a foreign body. The deactivation of free valences at the edges of aromatic structures due to the storage of the treated implant before surgery reduces surface activity and partially restores the foreign body response. For the greatest effect in eliminating a foreign body reaction, it is recommended to perform the operation immediately after treating the implant with high-energy ions, with minimal contact of the treated surface with any materials.
Collapse
Affiliation(s)
- Vyacheslav S. Chudinov
- Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences, Perm 614013, Russia; (V.S.C.); (I.N.S.)
| | - Igor N. Shardakov
- Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences, Perm 614013, Russia; (V.S.C.); (I.N.S.)
| | - Valery V. Litvinov
- Therapeutic Faculty, Perm State Medical University, Perm 614990, Russia;
| | - Sergey Y. Solodnikov
- Applied Chemical and Biochemical Research Center, Perm National Research Polytechnic, Perm 614990, Russia;
| | | | - Irina V. Kondyurina
- School of Medicine, University of Sydney, Camperdown, NSW 2050, Australia;
- Ewingar Scientific, Ewingar, NSW 2469, Australia
| | - Alexey V. Kondyurin
- Ewingar Scientific, Ewingar, NSW 2469, Australia
- School of Physics, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
5
|
Ciobotaru V, Batistella M, De Oliveira Emmer E, Clari L, Masson A, Decante B, Le Bret E, Lopez-Cuesta JM, Hascoet S. Aortic Valve Engineering Advancements: Precision Tuning with Laser Sintering Additive Manufacturing of TPU/TPE Submillimeter Membranes. Polymers (Basel) 2024; 16:900. [PMID: 38611158 PMCID: PMC11013727 DOI: 10.3390/polym16070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Synthetic biomaterials play a crucial role in developing tissue-engineered heart valves (TEHVs) due to their versatile mechanical properties. Achieving the right balance between mechanical strength and manufacturability is essential. Thermoplastic polyurethanes (TPUs) and elastomers (TPEs) garner significant attention for TEHV applications due to their notable stability, fatigue resistance, and customizable properties such as shear strength and elasticity. This study explores the additive manufacturing technique of selective laser sintering (SLS) for TPUs and TPEs to optimize process parameters to balance flexibility and strength, mimicking aortic valve tissue properties. Additionally, it aims to assess the feasibility of printing aortic valve models with submillimeter membranes. The results demonstrate that the SLS-TPU/TPE technique can produce micrometric valve structures with soft shape memory properties, resembling aortic tissue in strength, flexibility, and fineness. These models show promise for surgical training and manipulation, display intriguing echogenicity properties, and can potentially be personalized to shape biocompatible valve substitutes.
Collapse
Affiliation(s)
- Vlad Ciobotaru
- Centre Hospitalier Universitaire de Nîmes, Service de Radiologie, Imagerie Cardiovasculaire, 4 Rue du Professeur Robert Debré, 30900 Nîmes, France
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; (B.D.); (E.L.B.); (S.H.)
- 3DHeartModeling, 30132 Caissargues, France
| | - Marcos Batistella
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Emily De Oliveira Emmer
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Louis Clari
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Arthur Masson
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Benoit Decante
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; (B.D.); (E.L.B.); (S.H.)
| | - Emmanuel Le Bret
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; (B.D.); (E.L.B.); (S.H.)
| | - José-Marie Lopez-Cuesta
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Sebastien Hascoet
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; (B.D.); (E.L.B.); (S.H.)
| |
Collapse
|
6
|
Sun X, Huang D, Li G, Sun J, Zhang Y, Hu B, Xie M, Zhao M, Zhang X, Yu J, Li G. Artificial heart valve reinforced with silk woven fabric and poly (ethylene glycol) diacrylate hydrogels composite. Int J Biol Macromol 2024; 260:129485. [PMID: 38237838 DOI: 10.1016/j.ijbiomac.2024.129485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
The present study describes the preparation of woven silk fabric (WSF) and poly(ethylene glycol) diacrylate (PEGDA) hydrogel composite reinforced artificial heart valve (SPAHV). Interestingly, the longitudinal and latitudinal elastic modulus of the SPAHV composite can achieve at 54.08 ± 3.29 MPa and 23.96 ± 2.18 MPa, respectively, while its volume/mass swelling ratio and water permeability was 1.9 %/2.8 % and 3 mL/(cm2∙min), respectively, revealing remarkable anisotropic mechanical properties, low water swelling property and water permeability. The in vitro & in vivo biocompatibility and anti-calcification ability of SPAHV were further examined using L929 mouse fibroblasts and Sprague Dawley (SD) male rat model under 8 weeks of subcutaneous implantation. The expression of pro-inflammatory cytokine TNF-α and anti-inflammatory cytokine IL-10 was determined by immunohistochemical staining, as well as the H&E staining and alizarin red staining were accessed. The results showed that the composites possess better biocompatibility, resistance to degradation and anti-calcification ability compared to the control group (p < 0.05). Thus, the SPAHV composite with robust mechanical properties and biocompatibility has potential application for artificial heart valves.
Collapse
Affiliation(s)
- Xuan Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Di Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Guanqiang Li
- Dapartment of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Jing Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yaoyu Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Bo Hu
- Dapartment of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Xicheng Zhang
- Dapartment of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215000, China.
| | - Jia Yu
- School of Physical Education, Department of Orthopedics, Orthopedic Institute, The First Affiliated Hospital of Soochow University, Suzhou 215021, China.
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Zhou H, Wu Q, Wu L, Zhao Y. In vitro hemodynamics of fabric composite membrane for cardiac valve prosthesis replacement. J Biomech 2024; 163:111956. [PMID: 38266534 DOI: 10.1016/j.jbiomech.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
This study aimed to investigate the hemodynamics of a novel fabric composite that can be used as a substitute for bovine pericardium. The structure is composed of ultrahigh molecular weight polyethylene (UHMWPE) fabric coated with thermoplastic polyurethane (TPU) membranes on both sides. In vitro experiments were carried out on two composite valve samples with different specifications and a bovine pericardial one with the same dimension and structure. Hemodynamic properties including the effective orifice area (EOA) and regurgitant fraction (RF) were obtained and compared through pulsatile-flow testing in a pulse duplicator. Using the particle image velocimetry (PIV) technique, frames of the downstream velocity field in the aortic valve chamber were captured during cardiac cycles. Then, the field of Reynolds shear stress (RSS), viscous shear stress (VSS), and turbulent kinetic energy (TKE) at peak systole were calculated. A fluid-structure interaction (FSI) model has also been used to verify the pulsatile-flow testing. Compared with the bovine pericardial valve, composite valves have nosuperiority regarding EOA and RF due to their slightly higher rigidity. However, shear stresses of composite valves were lower than those of the bovine pericardial valve indicating more stable blood flows, which means that composite leaflets have the potential to reduce the risks of thrombosis and hemolysis induced by the mechanical contact between the blood flow and leaflets of valve prostheses.
Collapse
Affiliation(s)
- Han Zhou
- Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China
| | - Qianqian Wu
- Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China.
| | - Linzhi Wu
- Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Advanced Ship Materials and Mechanics, Harbin Engineering University, Harbin 150001, China
| | - Yang Zhao
- Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
8
|
Zhou H, Wu Q, Wu L, Zhao Y. Mechanical behaviors of high-strength fabric composite membrane designed for cardiac valve prosthesis replacement. J Mech Behav Biomed Mater 2023; 142:105863. [PMID: 37116312 DOI: 10.1016/j.jmbbm.2023.105863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
Bovine pericardium has been commonly used as leaflets in cardiac valve prosthesis replacement for decades because of its good short-term hemocompatibility and hemodynamic performance. However, fatigue, abrasion, permanent deformation, calcification, and many other failure modes have been reported as well. The degradation of the performance will have a serious impact on the function of valve prostheses, posing a risk to the patient's health. This study aimed to introduce a flexible fabric composite with better mechanical performance such that it can be employed as a substitute material for bioprosthetic valve leaflets. This composite has a multilayered thin film structure made of ultrahigh molecular weight polyethylene (UHMWPE) fabric and thermoplastic polyurethane (TPU) membranes. The mechanical properties of three specifications with different design parameters were tested. The tensile strength, shear behavior, tear resistance, and bending stiffness of the composites were characterized and compared to those of bovine pericardium. A constitutive model was also established to describe the composites' mechanical behaviors and predict their strength. According to the results of the tests, the composite could maintain a flexible bending stiffness with high in-plane tensile strength and tear strength. Therefore, bioprosthetic valve made of this substitute material can withstand harsher loads in the blood flow environment than those made of bovine pericardium. Moreover, all these test results and constitutive models can be used in future research to evaluate hemodynamic performance and clinical applications of fabric composite valve prostheses.
Collapse
Affiliation(s)
- Han Zhou
- Center for Composite Materials, Harbin Institute of Technology, Harbin, 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China
| | - Qianqian Wu
- Center for Composite Materials, Harbin Institute of Technology, Harbin, 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China.
| | - Linzhi Wu
- Center for Composite Materials, Harbin Institute of Technology, Harbin, 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China; Key Laboratory of Advanced Ship Materials and Mechanics, Harbin Engineering University, Harbin, 150001, China
| | - Yang Zhao
- Center for Composite Materials, Harbin Institute of Technology, Harbin, 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
9
|
Singh SK, Kachel M, Castillero E, Xue Y, Kalfa D, Ferrari G, George I. Polymeric prosthetic heart valves: A review of current technologies and future directions. Front Cardiovasc Med 2023; 10:1137827. [PMID: 36970335 PMCID: PMC10034107 DOI: 10.3389/fcvm.2023.1137827] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Valvular heart disease is an important source of cardiovascular morbidity and mortality. Current prosthetic valve replacement options, such as bioprosthetic and mechanical heart valves are limited by structural valve degeneration requiring reoperation or the need for lifelong anticoagulation. Several new polymer technologies have been developed in recent years in the hope of creating an ideal polymeric heart valve substitute that overcomes these limitations. These compounds and valve devices are in various stages of research and development and have unique strengths and limitations inherent to their properties. This review summarizes the current literature available for the latest polymer heart valve technologies and compares important characteristics necessary for a successful valve replacement therapy, including hydrodynamic performance, thrombogenicity, hemocompatibility, long-term durability, calcification, and transcatheter application. The latter portion of this review summarizes the currently available clinical outcomes data regarding polymeric heart valves and discusses future directions of research.
Collapse
Affiliation(s)
- Sameer K. Singh
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - Mateusz Kachel
- Cardiovascular Research Foundation, New York, NY, United States
- American Heart of Poland, Center for Cardiovascular Research and Development, Katowice, Poland
| | - Estibaliz Castillero
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - Yingfei Xue
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - David Kalfa
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - Giovanni Ferrari
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - Isaac George
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital, College of Physicians and Surgeons of Columbia University, New York, NY, United States
- *Correspondence: Isaac George,
| |
Collapse
|
10
|
Rezvova MA, Klyshnikov KY, Gritskevich AA, Ovcharenko EA. Polymeric Heart Valves Will Displace Mechanical and Tissue Heart Valves: A New Era for the Medical Devices. Int J Mol Sci 2023; 24:3963. [PMID: 36835389 PMCID: PMC9967268 DOI: 10.3390/ijms24043963] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The development of a novel artificial heart valve with outstanding durability and safety has remained a challenge since the first mechanical heart valve entered the market 65 years ago. Recent progress in high-molecular compounds opened new horizons in overcoming major drawbacks of mechanical and tissue heart valves (dysfunction and failure, tissue degradation, calcification, high immunogenic potential, and high risk of thrombosis), providing new insights into the development of an ideal artificial heart valve. Polymeric heart valves can best mimic the tissue-level mechanical behavior of the native valves. This review summarizes the evolution of polymeric heart valves and the state-of-the-art approaches to their development, fabrication, and manufacturing. The review discusses the biocompatibility and durability testing of previously investigated polymeric materials and presents the most recent developments, including the first human clinical trials of LifePolymer. New promising functional polymers, nanocomposite biomaterials, and valve designs are discussed in terms of their potential application in the development of an ideal polymeric heart valve. The superiority and inferiority of nanocomposite and hybrid materials to non-modified polymers are reported. The review proposes several concepts potentially suitable to address the above-mentioned challenges arising in the R&D of polymeric heart valves from the properties, structure, and surface of polymeric materials. Additive manufacturing, nanotechnology, anisotropy control, machine learning, and advanced modeling tools have given the green light to set new directions for polymeric heart valves.
Collapse
Affiliation(s)
- Maria A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | - Kirill Y. Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | | | - Evgeny A. Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| |
Collapse
|
11
|
Xu C, Hong Y. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioact Mater 2022; 15:250-271. [PMID: 35386346 PMCID: PMC8940769 DOI: 10.1016/j.bioactmat.2021.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
As a type of elastomeric polymers, non-degradable polyurethanes (PUs) have a long history of being used in clinics, whereas biodegradable PUs have been developed in recent decades, primarily for tissue repair and regeneration. Biodegradable thermoplastic (linear) PUs are soft and elastic polymeric biomaterials with high mechanical strength, which mimics the mechanical properties of soft and elastic tissues. Therefore, biodegradable thermoplastic polyurethanes are promising scaffolding materials for soft and elastic tissue repair and regeneration. Generally, PUs are synthesized by linking three types of changeable blocks: diisocyanates, diols, and chain extenders. Alternating the combination of these three blocks can finely tailor the physio-chemical properties and generate new functional PUs. These PUs have excellent processing flexibilities and can be fabricated into three-dimensional (3D) constructs using conventional and/or advanced technologies, which is a great advantage compared with cross-linked thermoset elastomers. Additionally, they can be combined with biomolecules to incorporate desired bioactivities to broaden their biomedical applications. In this review, we comprehensively summarized the synthesis, structures, and properties of biodegradable thermoplastic PUs, and introduced their multiple applications in tissue repair and regeneration. A whole picture of their design and applications along with discussions and perspectives of future directions would provide theoretical and technical supports to inspire new PU development and novel applications.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
12
|
Al Kayal T, Losi P, Asaro M, Volpi S, Bonani W, Bonini M, Soldani G. Analysis of oxidative degradation and calcification behavior of a silicone polycarbonate polyurethane‐polydimethylsiloxane material. J Biomed Mater Res A 2022; 110:1109-1120. [DOI: 10.1002/jbm.a.37357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/22/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council Massa Italy
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council Massa Italy
| | - Marianna Asaro
- Institute of Clinical Physiology, National Research Council Massa Italy
| | - Silvia Volpi
- Institute of Clinical Physiology, National Research Council Massa Italy
| | - Walter Bonani
- European Commission, Joint Research Centre Karlsruhe Germany
| | - Massimo Bonini
- Department of Chemistry “Ugo Schiff” and CSGI University of Florence Sesto Fiorentino Italy
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council Massa Italy
| |
Collapse
|
13
|
Composite Polyurethane-Polylactide (PUR/PLA) Flexible Filaments for 3D Fused Filament Fabrication (FFF) of Antibacterial Wound Dressings for Skin Regeneration. MATERIALS 2021; 14:ma14206054. [PMID: 34683646 PMCID: PMC8538761 DOI: 10.3390/ma14206054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/27/2022]
Abstract
This paper addresses the potential application of flexible thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA) compositions as a material for the production of antibacterial wound dressings using the Fused Filament Fabrication (FFF) 3D printing method. On the market, there are medical-grade polyurethane filaments available, but few of them have properties required for the fabrication of wound dressings, such as flexibility and antibacterial effects. Thus, research aimed at the production, characterization and modification of filaments based on different TPU/PLA compositions was conducted. The combination of mechanical (tensile, hardness), structural (FTIR), microscopic (optical and SEM), degradation (2 M HCl, 5 M NaOH, and 0.1 M CoCl2 in 20% H2O2) and printability analysis allowed us to select the most promising composition for further antibacterial modification (COMP-7,5PLA). The thermal stability of the chosen antibiotic—amikacin—was tested using processing temperature and HPLC. Two routes were used for the antibacterial modification of the selected filament—post-processing modification (AMI-1) and modification during processing (AMI-2). The antibacterial activity and amikacin release profiles were studied. The postprocessing modification method turned out to be superior and suitable for wound dressing fabrication due to its proven antimicrobial activity against E. coli, P. fluorescens, S. aureus and S. epidermidis bacteria.
Collapse
|
14
|
Ataee B, Khorasani MT, Karimi M, Daliri-Joupari M. Surface modification of polyurethane/HCNT nanocomposite with octavinyl polyhedral oligomeric silsesquioxane as a heart valve material. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1937160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Boshra Ataee
- Department of Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Majid Karimi
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Morteza Daliri-Joupari
- Department of Animal, Avian and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
15
|
Zhou H, Wu L, Wu Q. Structural stability of novel composite heart valve prostheses - Fatigue and wear performance. Biomed Pharmacother 2021; 136:111288. [PMID: 33493869 DOI: 10.1016/j.biopha.2021.111288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/29/2022] Open
Abstract
Heart valve replacement is a very effective method to treat severe valvular stenosis or valvular insufficiency. The valve can be divided into the mechanical valve and biological valve according to the main materials of the valve leaflets. The former has good durability, but the patients need to take anticoagulants all their lives, otherwise, thrombosis will occur; the latter has good blood compatibility, and only 3-6 months of postoperative anticoagulation is required, but its durability is lower than the former. Compared with a traditional valve used materials, the fabric composite valve leaflets have both mechanical valve and biological valve advantages, i.e. it can have both good blood compatibility and excellent fatigue resistance. This material is comprised of the internal fabric layer and bilateral external polyurethane layers jointed with adhesive, and it can adjust the flexibility, wear-resistance and fatigue resistance of the valve leaflet through adjusting the thickness of the outer polyurethane protective layer, the weaving method, the fiber diameter and the surface density of the inner ultra-high molecular weight polyethylene (UHMWPE) fabric. In this article, we tested the long-term durability of a fabric composite with its property close to the valve leaflet made of bovine pericardium, to evaluate the material performance loss under long-term fatigue and the wear degree of this material with different polyurethane layer thicknesses. As many as two hundred million cycles of fatigue test and the hydrodynamic performance test before and after the fatigue test proved that the material could withstand a service life of at least five years without structural failure or functional degradation. According to the SEM images after the experiment, it can be predicted that this material can achieve a longer fatigue life.
Collapse
Affiliation(s)
- Han Zhou
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, Heilongjiang, 150008, PR China
| | - Linzhi Wu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, Heilongjiang, 150008, PR China.
| | - Qianqian Wu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, Heilongjiang, 150008, PR China
| |
Collapse
|
16
|
Kiesendahl N, Schmitz C, Menne M, Schmitz-Rode T, Steinseifer U. In Vitro Calcification of Bioprosthetic Heart Valves: Test Fluid Validation on Prosthetic Material Samples. Ann Biomed Eng 2020; 49:885-899. [PMID: 32989592 PMCID: PMC7851015 DOI: 10.1007/s10439-020-02618-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/10/2020] [Indexed: 11/25/2022]
Abstract
Calcification is a major failure mode of bioprosthetic heart valves. So far, cost and time saving in vitro analyses of calcification potentials are unreliable, mostly due to superficial or spontaneous precipitation of the applied fluids. In this study, we developed a near-physiological non-spontaneously precipitating fluid for an accelerated in vitro calcification assessment, and validated it by analyzing the calcification potential of two prosthetic materials within two reference-tests. The first test focused on the comparison of four calcification fluids under dynamic contact with n=12 commercial bovine pericardium patches. The second one focused on the validation of the most appropriate fluid by analyzing the calcification potential of pericardium vs. polyurethane. The patches were mounted in separate test compartments and treated simultaneously with the respective fluids at an accelerated test frequency. Calcification propensity and progression were detected macroscopically and microscopically. Structural analyses of all deposits indicated hydroxyapatite by X-ray powder diffraction, which is also most commonly observed in vivo. Histological examination by von Kossa staining showed matrix internal and superficial calcifications, depending on the fluid composition. The present study reveals promising results towards the development of a meaningful, cost and time saving in vitro analysis of the calcification potential of bioprosthetic heart valves.
Collapse
Affiliation(s)
- N Kiesendahl
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.,ac.biomed GmbH, Aachen, Germany
| | - C Schmitz
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.,ac.biomed GmbH, Aachen, Germany
| | - M Menne
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - T Schmitz-Rode
- Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany
| | - U Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.
| |
Collapse
|
17
|
In Vitro Durability and Stability Testing of a Novel Polymeric Transcatheter Aortic Valve. ASAIO J 2020; 66:190-198. [PMID: 30845067 DOI: 10.1097/mat.0000000000000980] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcatheter aortic valve replacement (TAVR) has emerged as an effective therapy for the unmet clinical need of inoperable patients with severe aortic stenosis (AS). Current clinically used tissue TAVR valves suffer from limited durability that hampers TAVR's rapid expansion to younger, lower risk patients. Polymeric TAVR valves optimized for hemodynamic performance, hemocompatibility, extended durability, and resistance to calcific degeneration offer a viable solution to this challenge. We present extensive in vitro durability and stability testing of a novel polymeric TAVR valve (PolyNova valve) using 1) accelerated wear testing (AWT, ISO 5840); 2) calcification susceptibility (in the AWT)-compared with clinically used tissue valves; and 3) extended crimping stability (valves crimped to 16 Fr for 8 days). Hydrodynamic testing was performed every 50M cycles. The valves were also evaluated visually for structural integrity and by scanning electron microscopy for evaluation of surface damage in the micro-scale. Calcium and phosphorus deposition was evaluated using micro-computed tomography (μCT) and inductive coupled plasma spectroscopy. The valves passed 400M cycles in the AWT without failure. The effective orifice area kept stable at 1.8 cm with a desired gradual decrease in transvalvular pressure gradient and regurgitation (10.4 mm Hg and 6.9%, respectively). Calcium and phosphorus deposition was significantly lower in the polymeric valve: down by a factor of 85 and 16, respectively-as compared to a tissue valve. Following the extended crimping testing, no tears nor surface damage were evident. The results of this study demonstrate the potential of a polymeric TAVR valve to be a viable alternative to tissue-based TAVR valves.
Collapse
|
18
|
Ovcharenko EA, Seifalian A, Rezvova MA, Klyshnikov KY, Glushkova TV, Akenteva TN, Antonova LV, Velikanova EA, Chernonosova VS, Shevelev GY, Shishkova DK, Krivkina EO, Kudryavceva YA, Seifalian AM, Barbarash LS. A New Nanocomposite Copolymer Based On Functionalised Graphene Oxide for Development of Heart Valves. Sci Rep 2020; 10:5271. [PMID: 32210287 PMCID: PMC7093488 DOI: 10.1038/s41598-020-62122-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
Polymeric heart valves seem to be an attractive alternative to mechanical and biological prostheses as they are more durable, due to the superior properties of novel polymers, and have the biocompatibility and hemodynamics comparable to tissue substitutes. This study reports a comprehensive assessment of a nanocomposite based on the functionalised graphene oxide and poly(carbonate-urea)urethane with the trade name "Hastalex" in comparison with GORE-TEX, a commercial polymer routinely used for cardiovascular medical devices. Experimental data have proved that GORE-TEX has a 2.5-fold (longitudinal direction) and 3.5-fold (transverse direction) lower ultimate tensile strength in comparison with Hastalex (p < 0.05). The contact angles of Hastalex surfaces (85.2 ± 1.1°) significantly (p < 0.05) are lower than those of GORE-TEX (127.1 ± 6.8°). The highest number of viable cells Ea.hy 926 is on the Hastalex surface exceeding 7.5-fold when compared with the GORE-TEX surface (p < 0.001). The platelet deformation index for GORE-TEX is 2-fold higher than that of Hastalex polymer (p < 0.05). Calcium content is greater for GORE-TEX (8.4 mg/g) in comparison with Hastalex (0.55 mg/g). The results of this study have proven that Hastalex meets the main standards required for manufacturing artificial heart valves and has superior mechanical, hemocompatibility and calcific resistance properties in comparison with GORE-TEX.
Collapse
Affiliation(s)
- Evgeny A Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation.
| | - Amelia Seifalian
- UCL Medical School, University College London, London, United Kingdom
| | - Maria A Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation.
| | - Kirill Yu Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Tatiana V Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Tatyana N Akenteva
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Larisa V Antonova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Elena A Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Vera S Chernonosova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russian Federation
| | - Georgy Yu Shevelev
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russian Federation
| | - Darya K Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Evgeniya O Krivkina
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Yuliya A Kudryavceva
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Alexander M Seifalian
- NanoRegMed Ltd (Nanotechnology and Regenerative Medicine Commercialization Centre), London BioScience Innovation Centre, London, United Kingdom
| | - Leonid S Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| |
Collapse
|
19
|
Oveissi F, Naficy S, Lee A, Winlaw D, Dehghani F. Materials and manufacturing perspectives in engineering heart valves: a review. Mater Today Bio 2020; 5:100038. [PMID: 32211604 PMCID: PMC7083765 DOI: 10.1016/j.mtbio.2019.100038] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
Valvular heart diseases (VHD) are a major health burden, affecting millions of people worldwide. The treatments for such diseases rely on medicine, valve repair, and artificial heart valves including mechanical and bioprosthetic valves. Yet, there are countless reports on possible alternatives noting long-term stability and biocompatibility issues and highlighting the need for fabrication of more durable and effective replacements. This review discusses the current and potential materials that can be used for developing such valves along with existing and developing fabrication methods. With this perspective, we quantitatively compare mechanical properties of various materials that are currently used or proposed for heart valves along with their fabrication processes to identify challenges we face in creating new materials and manufacturing techniques to better mimick the performance of native heart valves.
Collapse
Key Words
- 3D printing
- Biofabrication
- Biomaterials
- E, Young's modulus
- Electrospinning
- Gal, galactose-α1,3-galactose
- GelMa, gelatin methacrylate
- HA, hyaluronic acid
- HAVIC, human aortic valvular interstitial cells
- MA-HA, methacrylated hyaluronic acid
- NeuGc, N-glycolylneuraminic acid
- P4HB, poly(4-hydroxybutyrate)
- PAAm, polyacrylamide
- PCE, polycitrate-(ε-polypeptide)
- PCL, polycaprolactone
- PE, polyethylene
- PEG, polyethylene glycol
- PEGDA, polyethylene glycol diacrylate
- PGA, poly(glycolic acid)
- PHA, poly(hydroxyalkanoate)
- PLA, polylactide
- PMMA, poly(methyl methacrylate)
- PPG, polypropylene glycol
- PTFE, polytetrafluoroethylene
- PU, polyurethane
- SIBS, poly(styrene-b-isobutylene-b-styrene)
- SMC, smooth muscle cells
- VHD, valvular heart disease
- VIC, aortic valve leaflet interstitial cells
- Valvular heart diseases
- dECM, decellularized extracellular matrix
- ePTFE, expanded PTFE
- xSIBS, crosslinked version of SIBS
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- F. Oveissi
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - S. Naficy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - A. Lee
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, New South Wales, 2006, Australia
- Heart Centre for Children, The Children's Hospital at Westmead, New South Wales, 2145, Australia
| | - D.S. Winlaw
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, New South Wales, 2006, Australia
- Heart Centre for Children, The Children's Hospital at Westmead, New South Wales, 2145, Australia
| | - F. Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
20
|
Kucińska-Lipka J, Lewandowska A, Szarlej P, Łapiński MS, Gubańska I. Degradable poly(ester-ether) urethanes of improved surface calcium deposition developed as novel biomaterials. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519854114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bones, which are considered as hard tissues, work as scaffold for human body. They provide physical support for muscles and protect intestinal organs. Percentage of hard tissues in human body depends on age, weight, and gender. Human skeleton consists of 206 connected bones. Therefore, it is natural that the hard-tissue damage such as fractures, osteoporosis, and congenital lack of bone may appear. The innovative way of bone healing is an application of so-called tissue scaffolds. There are many synthetic polymers used in this field, but polyurethanes play a great role in this field. It is due to the possibility to control their degradation rate and to tune their surface to improve the calcification process, required for proper bone regeneration. In this article, we described the fabrication of degradable poly(ester-ether)urethane materials, having different hard-segment content (28% or 47%). PEEURs-28HS and PEEURs-47HS materials were obtained by two-step polymerization method and characterized by mechanical properties, ability to undergo oxidative degradation and surface calcification. Performed studies indicated that the PEEURs-28HS material possessed suitable properties to be proposed as a material for possible application in the bone tissue engineering.
Collapse
Affiliation(s)
- Justyna Kucińska-Lipka
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology (GUT), Gdansk, Poland
| | - Alicja Lewandowska
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology (GUT), Gdansk, Poland
| | - Paweł Szarlej
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology (GUT), Gdansk, Poland
| | - Marcin Stanisław Łapiński
- Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology (GUT), Gdansk, Poland
| | - Iga Gubańska
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology (GUT), Gdansk, Poland
| |
Collapse
|
21
|
Kekec NC, Akolpoglu MB, Bozuyuk U, Kizilel S, Nugay N, Nugay T, Kennedy JP. Calcification resistance of polyisobutylene and polyisobutylene‐based materials. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nur Cicek Kekec
- Department of Chemistry, Polymer Research CenterBogazici University Bebek Istanbul 34342 Turkey
| | | | - Ugur Bozuyuk
- Department of Chemical and Biological EngineeringKoc University Istanbul 34450 Turkey
| | - Seda Kizilel
- Department of Chemical and Biological EngineeringKoc University Istanbul 34450 Turkey
| | - Nihan Nugay
- Department of Chemistry, Polymer Research CenterBogazici University Bebek Istanbul 34342 Turkey
| | - Turgut Nugay
- Department of Chemistry, Polymer Research CenterBogazici University Bebek Istanbul 34342 Turkey
| | - Joseph P. Kennedy
- Department of Polymer ScienceThe University of Akron Akron 44325‐3909 OH United States
| |
Collapse
|
22
|
Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B. Degradation and stabilization of polyurethane elastomers. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.12.003] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Rotman OM, Bianchi M, Ghosh RP, Kovarovic B, Bluestein D. Principles of TAVR valve design, modelling, and testing. Expert Rev Med Devices 2018; 15:771-791. [PMID: 30318937 PMCID: PMC6417919 DOI: 10.1080/17434440.2018.1536427] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Transcatheter aortic valve replacement (TAVR) has emerged as an effective minimally-invasive alternative to surgical valve replacement in medium- to high-risk, elderly patients with calcific aortic valve disease and severe aortic stenosis. The rapid growth of the TAVR devices market has led to a high variety of designs, each aiming to address persistent complications associated with TAVR valves that may hamper the anticipated expansion of TAVR utility. AREAS COVERED Here we outline the challenges and the technical demands that TAVR devices need to address for achieving the desired expansion, and review design aspects of selected, latest generation, TAVR valves of both clinically-used and investigational devices. We further review in detail some of the up-to-date modeling and testing approaches for TAVR, both computationally and experimentally, and additionally discuss those as complementary approaches to the ISO 5840-3 standard. A comprehensive survey of the prior and up-to-date literature was conducted to cover the most pertaining issues and challenges that TAVR technology faces. EXPERT COMMENTARY The expansion of TAVR over SAVR and to new indications seems more promising than ever. With new challenges to come, new TAV design approaches, and materials used, are expected to emerge, and novel testing/modeling methods to be developed.
Collapse
Affiliation(s)
- Oren M. Rotman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Matteo Bianchi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ram P. Ghosh
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
24
|
Vaesken A, Pidancier C, Chakfe N, Heim F. Hybrid textile heart valve prosthesis: preliminary in vitro evaluation. ACTA ACUST UNITED AC 2018; 63:333-339. [DOI: 10.1515/bmt-2016-0083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/19/2016] [Indexed: 11/15/2022]
Abstract
Abstract
Transcatheter aortic valve implantation (TAVI) is nowadays a popular alternative technique to surgical valve replacement for critical patients. Biological valve tissue has been used in these devices for over a decade now with over 100,000 implantations. However, material degradations due to crimping for catheter insertion purpose have been reported, and with only 6-year follow-up, no information is available about the long-term durability of biological tissue. Moreover, expensive biological tissue harvesting and chemical treatment procedures tend to promote the development of synthetic valve leaflet materials. Textile polyester (PET) material is characterized by outstanding folding and strength properties combined with proven biocompatibility and could therefore be considered as a candidate to replace biological valve leaflets in TAVI devices. Nevertheless, the material should be preferentially partly elastic in order to limit water hammer effects at valve closing time and prevent exaggerated stress from occurring into the stent and the valve. The purpose of the present work is to study in vitro the mechanical as well as the hydrodynamic behavior of a hybrid elastic textile valve device combining non-deformable PET yarn and elastic polyurethane (PU) yarn. The hybrid valve properties are compared with those of a non-elastic textile valve. Testing results show improved hydrodynamic properties with the elastic construction. However, under fatigue conditions, the interaction between PU and PET yarns tends to limit the valve durability.
Collapse
|
25
|
Kucińska-Lipka J, Gubanska I, Korchynskyi O, Malysheva K, Kostrzewa M, Włodarczyk D, Karczewski J, Janik H. The Influence of Calcium Glycerophosphate (GPCa) Modifier on Physicochemical, Mechanical, and Biological Performance of Polyurethanes Applicable as Biomaterials for Bone Tissue Scaffolds Fabrication. Polymers (Basel) 2017; 9:polym9080329. [PMID: 30971004 PMCID: PMC6418683 DOI: 10.3390/polym9080329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 12/26/2022] Open
Abstract
In this paper we describe the synthesis of poly(ester ether urethane)s (PEEURs) by using selected raw materials to reach a biocompatible polyurethane (PU) for biomedical applications. PEEURs were synthesized by using aliphatic 1,6-hexamethylene diisocyanate (HDI), poly(ethylene glycol) (PEG), α,ω-dihydroxy(ethylene-butylene adipate) (Polios), 1,4-butanediol (BDO) as a chain extender and calcium glycerolphosphate salt (GPCa) as a modifier used to stimulate bone tissue regeneration. The obtained unmodified (PURs) and modified with GPCa (PURs-M) PEEURs were studied by various techniques. It was confirmed that urethane prepolymer reacts with GPCa modifier. Further analysis of the obtained PURs and PURs-M by Fourier transform infrared (FTIR) and Raman spectroscopy revealed the chemical composition typical for PUs by the confirmed presence of urethane bonds. Moreover, the FTIR and Raman spectra indicated that GPCa was incorporated into the main PU chain at least at one-side. The scanning electron microscopy (SEM) analysis of the PURs-M surface was in good agreement with the FTIR and Raman analysis due to the fact that inclusions were observed only at 20% of its surface, which were related to the non-reacted GPCa enclosed in the PUR matrix as filler. Further studies of hydrophilicity, mechanical properties, biocompatibility, short term-interactions, and calcification study lead to the final conclusion that the obtained PURs-M may by suitable candidate material for further scaffold fabrication. Scaffolds were prepared by the solvent casting/particulate leaching technique (SC/PL) combined with thermally-induced phase separation (TIPS). Such porous scaffolds had satisfactory pore sizes (36–100 μm) and porosity (77–82%) so as to be considered as suitable templates for bone tissue regeneration.
Collapse
Affiliation(s)
- Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdank University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| | - Iga Gubanska
- Department of Polymer Technology, Faculty of Chemistry, Gdank University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| | - Olexandr Korchynskyi
- Institute of Cell Biology, National Academy Science of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine.
- Centre for Innovative Research in Medical and Natural Sciences, Rzeszow University and Medical Faculty, 35-959 Rzeszow, Poland.
| | - Khrystyna Malysheva
- Institute of Cell Biology, National Academy Science of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine.
| | - Marcin Kostrzewa
- Department of Organic Materials Technology, Technical University of Radom, 26-600 Radom, Poland.
| | - Damian Włodarczyk
- Institute of Physics, Polish Academy of Science, Division of Physics and Technology of Wide-Band-Gap Semiconductor Nanostructures, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Jakub Karczewski
- Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Helena Janik
- Department of Polymer Technology, Faculty of Chemistry, Gdank University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
26
|
Li Q, Bai Y, Jin T, Wang S, Cui W, Stanciulescu I, Yang R, Nie H, Wang L, Zhang X. Bioinspired Engineering of Poly(ethylene glycol) Hydrogels and Natural Protein Fibers for Layered Heart Valve Constructs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16524-16535. [PMID: 28448124 DOI: 10.1021/acsami.7b03281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Layered constructs from poly(ethylene glycol) (PEG) hydrogels and chicken eggshell membranes (ESMs) are fabricated, which can be further cross-linked by glutaraldehyde (GA) to form GA-PEG-ESM composites. Our results indicate that ESMs composed of protein fibrous networks show elastic moduli ∼3.3-5.0 MPa and elongation percentages ∼47-56%, close to human heart valve leaflets. Finite element simulations reveal obvious stress concentration on a partial number of fibers in the GA-cross-linked ESM (GA-ESM) samples, which can be alleviated by efficient stress distribution among multiple layers of ESMs embedded in PEG hydrogels. Moreover, the polymeric networks of PEG hydrogels can prevent mineral deposition and enzyme degradation of protein fibers from incorporated ESMs. The fibrous structures of ESMs retain in the GA-PEG-ESM samples after subcutaneous implantation for 4 weeks, while those from ESM and GA-ESM samples show early degradation to certain extent, suggesting the prevention of enzymatic degradation of protein fibers by the polymeric network of PEG hydrogels in vivo. Thus, these GA-PEG-ESM layered constructs show heterogenic structures and mechanical properties comparable to heart valve leaflets, as well as improved functions to prevent progressive calcification and enzymatic degeneration, which are likely used for artificial heart valves.
Collapse
Affiliation(s)
- Qian Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
- Department of Chemistry, Northeastern University , Shenyang, Liaoning 110004, China
| | - Yun Bai
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
| | - Tao Jin
- Department of Civil and Environmental Engineering, Rice University , Houston, Texas 77005, United States
| | - Shuo Wang
- Institute of Bionanotechnology and Tissue Engineering, College of Life Sciences, Hunan University , Changsha, Hunan 410082, China
| | - Wei Cui
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
| | - Ilinca Stanciulescu
- Department of Civil and Environmental Engineering, Rice University , Houston, Texas 77005, United States
| | - Rui Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
- School of Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Hemin Nie
- Institute of Bionanotechnology and Tissue Engineering, College of Life Sciences, Hunan University , Changsha, Hunan 410082, China
| | - Linshan Wang
- Department of Chemistry, Northeastern University , Shenyang, Liaoning 110004, China
| | - Xing Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
- School of Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
27
|
Wang C, Zheng Y, Sun Y, Fan J, Qin Q, Zhao Z. A novel biodegradable polyurethane based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(ethylene glycol) as promising biomaterials with the improvement of mechanical properties and hemocompatibility. Polym Chem 2016. [DOI: 10.1039/c6py01131d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel biodegradable PHBV-based polyurethane was designed and synthesized by using PHBV, MDI and PEG.
Collapse
Affiliation(s)
- Cai Wang
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Yudong Zheng
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Yi Sun
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Jinsheng Fan
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Qiujing Qin
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Zhenjiang Zhao
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| |
Collapse
|
28
|
A review of: Application of synthetic scaffold in tissue engineering heart valves. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:556-65. [DOI: 10.1016/j.msec.2014.12.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 08/26/2014] [Accepted: 12/05/2014] [Indexed: 01/28/2023]
|