1
|
Velaiyan M, Muthusamy R, Kativa M, Annamalai A, Govindhan A, Punniyakotti P, Balupillai A. Gallic acid-loaded chitosan nanoparticles enhance the DNA damage and apoptotic features through inhibiting flap endonuclease-1 in triple-negative breast cancer cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:4171-4183. [PMID: 38666519 DOI: 10.1002/tox.24293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 07/14/2024]
Abstract
This study investigated the fabrication of gallic acid-loaded chitosan nanoparticles (Gal-Chi-NPs) that enhanced the DNA damage and apoptotic features by inhibiting FEN-1 expressions in MDA-MB 231 cells. Gal-Chi-NPs were fabricated by the ionic gelation method, and it was characterized by several studies such as dynamic light spectroscopy, Fourier-transforms infrared spectroscopy, x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray, atomic force microscopy, and thermogravimetric analysis. We have obtained that Gal-Chi-NPs displayed 182.2 nm with crystal, smooth surface, and heat stability in nature. Gal-Chi-NPs induce significant toxicity in MDA-MB-231 cells that compared with normal NIH-3T3 cells. A significant reactive oxygen species (ROS) overproduction was observed in Gal-Chi-NPs treated MDA-MB-231. Flap endonuclease-1 (FEN-1) is a crucial protein involved in long patch base excision repair that is involved in repairing the chemotherapeutic mediated DNA-damaged base. Therefore, inhibition of FEN-1 protein expression is a crucial target for enhancing chemotherapeutical efficacy. In this study, we have obtained that Gal-Chi-NPs treatment enhanced the DNA damage by observing increased p-H2AX, PARP1; and suppressed the expression of FEN-1 in MDA-MB-231 cells. Moreover, Gal-Chi-NPs inhibited the expression of tumor proliferating markers p-PI3K, AKT, cyclin-D1, PCNA, and BCL-2; induced proapoptotic proteins (Bax and caspase-3) in MDA-MB 231 cells. Thus, Gal-Chi-NPs induce DNA damage and apoptotic features and inhibit tumor proliferation by suppressing FEN-1 expression in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Monica Velaiyan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rajasekar Muthusamy
- Central Research Laboratory, Vinayaka Mission's Kirupananda Variyar Medical College and Hospitals, Salem, Tamil Nadu, India
| | - Miguel Kativa
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Asaikkutti Annamalai
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Annamalai Govindhan
- Department of Medicine, Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Parthipan Punniyakotti
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Agilan Balupillai
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
2
|
Su Y, Zhao J, Fu H, Liu Z, Du P, Zheng J, Wu J, Zhang J. TP53 R175H mutation promotes breast cancer cell proliferation through CORO1A-P38 MAPK pathway regulation. Biochem Pharmacol 2024; 221:116047. [PMID: 38331350 DOI: 10.1016/j.bcp.2024.116047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Breast cancer is the most commonly diagnosed cancer in women. Among all types, triple-negative breast cancer is particularly challenging to cure because of its high recurrence rates and invasive and metastatic capacity. Although numerous studies have explored the role of TP53 mutations in cancer, there is a dearth of research regarding the correlation between TP53 mutations and breast cancer cell proliferation. In this study, our aim was to examine the impact of TP53 mutations on the prognosis of patients with breast cancer bioinformatics techniques. To detect cell proliferation, a CCK8 assay was performed, and western blotting was used to identify the expression of p53, p38, and p-p38 proteins. Cellular mRNA sequencing was used to screen target genes of TP53 mutations, and molecular docking was performed to identify the drugs that could hinder the proliferation of breast cancer cells.The results showed that the TP53 mutation rate is higher in patients with triple-negative breast cancer than non-triple-negative breast cancer, and those with TP53 mutations tended to have a poorer prognosis than those without. Patients with R175H site mutations also had shorter survival times than those without. Cytological experiments revealed that the TP53R175H mutation increases the rate of breast cancer cell proliferation. In conjunction with this, CORO1A was found to be a downstream target of TP53 mutations, and it was determined to promote breast cancer cell proliferation. Moreover, CORO1A overexpression resulted in the downregulation of p-p38 levels. Molecular docking studies further revealed that tea polyphenols can inhibit breast cancer proliferation by binding to p53.
Collapse
Affiliation(s)
- Yali Su
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital-Tangshan, China; Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City-Tangshan, China
| | - Jiaxuan Zhao
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital-Tangshan, China; Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City-Tangshan, China
| | - Haoran Fu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital-Tangshan, China; Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City-Tangshan, China
| | - Zeliang Liu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital-Tangshan, China; Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City-Tangshan, China
| | - Panyan Du
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital-Tangshan, China; Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City-Tangshan, China
| | - Jianxia Zheng
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital-Tangshan, China; Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City-Tangshan, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital-Tangshan, China; Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City-Tangshan, China.
| | - Jinghua Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital-Tangshan, China; Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City-Tangshan, China.
| |
Collapse
|
3
|
Alzahrani B, Elderdery AY, Alzerwi NAN, Alsrhani A, Alsultan A, Rayzah M, Idrees B, Rayzah F, Baksh Y, Alzahrani AM, Subbiah SK, Mok PL. Pluronic-F-127-Passivated SnO 2 Nanoparticles Derived by Using Polygonum cuspidatum Root Extract: Synthesis, Characterization, and Anticancer Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091760. [PMID: 37176818 PMCID: PMC10181209 DOI: 10.3390/plants12091760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has emerged as the most popular research topic with revolutionary applications across all scientific disciplines. Tin oxide (SnO2) has been gaining considerable attention lately owing to its intriguing features, which can be enhanced by its synthesis in the nanoscale range. The establishment of a cost-efficient and ecologically friendly procedure for its production is the result of growing concerns about human well-being. The novelty and significance of this study lie in the fact that the synthesized SnO2 nanoparticles have been tailored to have specific properties, such as size and morphology. These properties are crucial for their applications. Moreover, this study provides insights into the synthesis process of SnO2 nanoparticles, which can be useful for developing efficient and cost-effective methods for large-scale production. In the current study, green Pluronic-coated SnO2 nanoparticles (NPs) utilizing the root extracts of Polygonum cuspidatum have been formulated and characterized by several methods such as UV-visible, Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDAX), transmission electron microscope (TEM), field emission-scanning electron microscope (FE-SEM), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS) studies. The crystallite size of SnO2 NPs was estimated to be 45 nm, and a tetragonal rutile-type crystalline structure was observed. FESEM analysis validated the NPs' spherical structure. The cytotoxic potential of the NPs against HepG2 cells was assessed using the in vitro MTT assay. The apoptotic efficiency of the NPs was evaluated using a dual-staining approach. The NPs revealed substantial cytotoxic effects against HepG2 cells but failed to exhibit cytotoxicity in different liver cell lines. Furthermore, dual staining and flow cytometry studies revealed higher apoptosis in NP-treated HepG2 cells. Nanoparticle treatment also inhibited the cell cycle at G0/G1 stage. It increased oxidative stress and promoted apoptosis by encouraging pro-apoptotic protein expression in HepG2 cells. NP treatment effectively blocked the PI3K/Akt/mTOR axis in HepG2 cells. Thus, green Pluronic-F-127-coated SnO2 NPs exhibits enormous efficiency to be utilized as an talented anticancer agent.
Collapse
Affiliation(s)
- Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nasser A N Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Afnan Alsultan
- Department of Surgery, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City, P.O. Box 7897, Riyadh 11159, Saudi Arabia
| | - Fares Rayzah
- Aseer Central Hospital, Abha 62523, Saudi Arabia
| | - Yaser Baksh
- Iman General Hospital, Riyadh 12684, Saudi Arabia
| | - Ahmed M Alzahrani
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Suresh K Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
4
|
Pattnaik A, Pati S, Samal SK. Chitosan-Polyphenol Conjugates for Human Health. Life (Basel) 2022; 12:1768. [PMID: 36362923 PMCID: PMC9693316 DOI: 10.3390/life12111768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 05/25/2025] Open
Abstract
Human health deteriorates due to the generation and accumulation of free radicals that induce oxidative stress, damaging proteins, lipids, and nucleic acids; this has become the leading cause of many deadly diseases such as cardiovascular, cancer, neurodegenerative, diabetes, and inflammation. Naturally occurring polyphenols have tremendous therapeutic potential, but their short biological half-life and rapid metabolism limit their use. Recent advancements in polymer science have provided numerous varieties of natural and synthetic polymers. Chitosan is widely used due to its biomimetic properties which include biodegradability, biocompatibility, inherent antimicrobial activity, and antioxidant properties. However, due to low solubility in water and the non-availability of the H-atom donor, the practical use of chitosan as an antioxidant is limited. Therefore, chitosan has been conjugated with polyphenols to overcome the limitations of both chitosan and polyphenol, along with increasing the potential synergistic effects of their combination for therapeutic applications. Though many methods have been evolved to conjugate chitosan with polyphenol through activated ester-modification, enzyme-mediated, and free radical induced are the most widely used strategies. The therapeutic efficiency of chitosan-polyphenol conjugates has been investigated for various disease treatments caused by ROS that have shown favorable outcomes and tremendous results. Hence, the present review focuses on the recent advancement of different strategies of chitosan-polyphenol conjugate formation with their advantages and limitations. Furthermore, the therapeutic applicability of the combinatorial efficiency of chitosan-based conjugates formed using Gallic Acid, Curcumin, Catechin, and Quercetin in human health has been described in detail.
Collapse
Affiliation(s)
- Ananya Pattnaik
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Center, Bhubaneswar 751023, Odisha, India
- KSBT, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Sanghamitra Pati
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Center, Bhubaneswar 751023, Odisha, India
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Center, Bhubaneswar 751023, Odisha, India
| |
Collapse
|
5
|
Yin Z, Zheng T, Ho CT, Huang Q, Wu Q, Zhang M. Improving the stability and bioavailability of tea polyphenols by encapsulations: a review. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Kabil MF, Nasr M, Ibrahim IT, Hassan YA, El-Sherbiny IM. New repurposed rolapitant in nanovesicular systems for lung cancer treatment: Development, in-vitro assessment and in-vivo biodistribution study. Eur J Pharm Sci 2022; 171:106119. [PMID: 34998905 DOI: 10.1016/j.ejps.2022.106119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/14/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022]
Abstract
Lung cancer is characterized by poor prognosis, and is considered a serious disease that causes a significant mortality. The available conventional chemotherapeutic agents suffer from several limitations; hence, new drug molecules are constantly being sought. In the current study, lipid nanovesicles (LNVs) were selected as a colloidal vehicle for encapsulation of the FDA-approved drug; rolapitant (RP), which is used particularly for the treatment of nausea and vomiting, but is repurposed for the treatment of lung cancer in the current work. RP was loaded into various LNVs (liposomes, ethosomes and transethosomes) using the thin film hydration method, and the LNVs were evaluated for particle size, zeta potential, entrapment efficiency (EE%), storage stability and surface morphology. Besides, the in-vitro drug release, in-vitro cytotoxicity on A549 lung cancer cells, nebulization performance using next generation impactor (NGI), and the in-vivo biodistribution behaviour were evaluated. The selected ethosomal and transethosomal vesicles displayed a particle size less than 400 nm, a positive charge, and EE% exceeding 90% for RP, with a sustained release pattern over 15 days. The in-vivo biodistribution results proved the high lung deposition potential of RP-LNVs with a considerable safety. Besides, the developed RP-LNVs were able to reach the metastatic organs of lung cancer, hence they were proven promising as a possible treatment modality for lung cancer.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ismail T Ibrahim
- Labeled compound department, Hot lab. Center, Atomic energy authority, Inshas, Egypt
| | - Yasser A Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578, Giza, Egypt.
| |
Collapse
|
7
|
Fawzi Kabil M, Nasr M, El-Sherbiny IM. Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. Eur J Pharm Biopharm 2021; 167:9-37. [PMID: 34271117 DOI: 10.1016/j.ejpb.2021.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is considered a serious malignancy which affects a large number of people worldwide. Despite the presence of some diagnostic techniques for HCC, the fact that its symptoms somehow overlap with other diseases causes it to be diagnosed at a late stage, hence negatively affecting the prognosis of the disease. The currently available treatment strategies have many shortcomings such as high cost, induction of serious side effects as well as multiple drug resistance, hence resulting in therapeutic failure. Accordingly, nanoformulations have been developed in order to overcome the clinical challenges, enhance the therapeutic efficacy, and elicit chemotherapy tailor-ability. Hybrid nanoparticulate carriers in particular, which are composed of two or more drug vehicles with different physicochemical characteristics combined together in one system, have been recently reported to advance nanotechnology-based therapies. Therefore, this review sheds the light on HCC, and the role of nanotechnology and hybrid nanoparticulate carriers as well as the latest developments in the use of conventional nanoparticles in combating this disease.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt.
| |
Collapse
|
8
|
Echeverri-Cuartas CE, Agudelo NA, Gartner C. Chitosan-PEG-folate-Fe(III) complexes as nanocarriers of epigallocatechin–3–gallate. Int J Biol Macromol 2020; 165:2909-2919. [DOI: 10.1016/j.ijbiomac.2020.10.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
|
9
|
Kim TL, Jeong GH, Yang JW, Lee KH, Kronbichler A, van der Vliet HJ, Grosso G, Galvano F, Aune D, Kim JY, Veronese N, Stubbs B, Solmi M, Koyanagi A, Hong SH, Dragioti E, Cho E, de Rezende LFM, Giovannucci EL, Shin JI, Gamerith G. Tea Consumption and Risk of Cancer: An Umbrella Review and Meta-Analysis of Observational Studies. Adv Nutr 2020; 11:1437-1452. [PMID: 32667980 PMCID: PMC7666907 DOI: 10.1093/advances/nmaa077] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 04/17/2020] [Accepted: 06/11/2020] [Indexed: 01/15/2023] Open
Abstract
Tea is one of the most widely consumed beverages, but its association with cancer risk remains controversial and unclear. We performed an umbrella review to clarify and determine the associations between tea consumption and various types of cancer by summarizing and recalculating the existing meta-analyses. Meta-analyses of observational studies reporting associations between tea consumption and cancer risk were searched on PubMed and Embase. Associations found to be statistically significant were further classified into levels of evidence (convincing, suggestive, or weak), based on P value, between-study heterogeneity, prediction intervals, and small study effects. Sixty-four observational studies (case-control or cohort) corresponding to 154 effect sizes on the incidence of 25 types of cancer were included. Forty-three (27.9%) results in 15 different types of cancer were statistically significant. When combining all studies on the same type of cancer, 19 results in 11 different types of cancer showed significant associations with lower risk of gastrointestinal tract organ cancer (oral, gastric, colorectal, biliary tract, and liver cancer), breast cancer, and gynecological cancer (endometrial and ovarian cancer) as well as leukemia, lung cancer, and thyroid cancer. Only the reduced risk of oral cancer in tea-consuming populations (OR = 0.62; 95% CI: 0.55, 0.72; P value < 10-6) was supported by convincing evidence. Suggestive evidence was found for 6 results on biliary tract, breast, endometrial, liver, and oral cancer. To summarize, tea consumption was shown to have protective effects on some types of cancer, particularly oral cancer. More well-designed prospective studies are needed with consideration of other factors that can cause biases.
Collapse
Affiliation(s)
- Tai Lim Kim
- Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Hans J van der Vliet
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, Catania, Italy
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, Catania, Italy
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Jong Yeob Kim
- Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Positive Ageing Research Institute, Faculty of Health, Social Care, Medicine and Education, Anglia Ruskin University, Chelmsford, UK
| | - Marco Solmi
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Ai Koyanagi
- Parc Sanitari Sant Joan de Déu/CIBERSAM, Universitat de Barcelona, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Sung Hwi Hong
- Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elena Dragioti
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Eunyoung Cho
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, RI, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leandro F M de Rezende
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Preventiva, São Paulo, Brazil
| | - Edward L Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, Korea
| | - Gabriele Gamerith
- Internal Medicine V, Department of Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Effects of Chitosan on Clostridium perfringens and Application in the Preservation of Pork Sausage. Mar Drugs 2020; 18:md18020070. [PMID: 31978959 PMCID: PMC7074077 DOI: 10.3390/md18020070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 11/25/2022] Open
Abstract
The effects of chitosan with 95% deacetylation degree (DD95) on the spore germination, cell proliferation, and heat resistance of Clostridium perfringens CCRC 10,648 and CCRC 13,019 were investigated, and its application on pork sausage with sodium nitrite reduction was also evaluated. DD95 chitosan can strongly reduce the heat resistance of both strains. The D80 and D100 values for strain CCRC 13,019 decreased from 40.98 and 4.64 min to 39.21 and 3.26 min, respectively, as a result of adding 250 ppm DD95; meanwhile, addition of chitosan decreased the D80 and D100 values for CCRC 10,648 from 41.15 and 6.46 min to 39.52 and 3.78 min, respectively. In pork sausage, addition of 3000 ppm DD95 chitosan considerably slowed down the bacterial proliferation and volatile basic nitrogen production. There were no significant differences in color (L* and b* values), shearing force, and hardness in the pork sausages with or without DD95 chitosan during storage at 4 and 25 °C. However, the addition of DD95 chitosan in pork sausage significantly retarded the decrease of the a* value. Therefore, DD95 chitosan could reduce the concentration of sodium nitrite required in pork sausages for color retention.
Collapse
|
11
|
Safer AM, Leporatti S, Jose J, Soliman MS. Conjugation Of EGCG And Chitosan NPs As A Novel Nano-Drug Delivery System. Int J Nanomedicine 2019; 14:8033-8046. [PMID: 31632016 PMCID: PMC6781949 DOI: 10.2147/ijn.s217898] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Chitosan nanoparticles (CS NPs) have been used as a good vehicle for nano-drug delivery due to their good physicochemical properties. Epigallocatechin-3-gallate (EGCG), one of the major active ingredients of green tea, is a natural antioxidant that helps in reducing and preventing cell damage and fighting cancer, plus providing other benefits. The aim of this study is to optimise the preparation parameters in terms of the physical characteristics and stability in CS/EGCG NPs conjugation. RESULTS The conjugation of CS/EGCGNPs was obtained by means of Poloxamer 188. The average CS/EGCG NPs complex was of size 117.8±38.71nm with a surface charge of +67.8±4.38mV and isoelectric point at pH 7.61. CONCLUSION In conclusion, NPs produced were stable at 4°C with nanometric size, good polydispersity, good loading and efficiency, envisaging to be a possible candidate for nano-therapeutic delivery system against hepatic fibrosis.
Collapse
Affiliation(s)
- Abdel-Majeed Safer
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | | | - Jacquilion Jose
- Nanoscopy Science Center, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Mahmoud S Soliman
- Nanotechnology Research Facility, Faculty of Engineering and Petroleum, College of Engineering and Petroleum, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
12
|
Aiello P, Consalvi S, Poce G, Raguzzini A, Toti E, Palmery M, Biava M, Bernardi M, Kamal MA, Perry G, Peluso I. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Semin Cancer Biol 2019; 69:150-165. [PMID: 31454670 DOI: 10.1016/j.semcancer.2019.08.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
Application of nanotechnologies to cancer therapy might increase solubility and/or bioavailability of bioactive compounds of natural or synthetic origin and offers other potential benefits in cancer therapy, including selective targeting. In the present review we aim to evaluate in vivo studies on the anticancer activity of nanoparticles (NPs) obtained from food-derived flavonoids. From a systematic search a total of 60 studies were identified. Most of the studies involved the flavanol epigallocatechin-3-O-gallate and the flavonol quercetin, in both delivery and co-delivery (with anti-cancer drugs) systems. Moreover, some studies investigated the effects of other flavonoids, such as anthocyanins aglycones anthocyanidins, flavanones, flavones and isoflavonoids. NPs inhibited tumor growth in both xenograft and chemical-induced animal models of cancerogenesis. Encapsulation improved bioavailability and/or reduced toxicity of both flavonoids and/or co-delivered drugs, such as doxorubicin, docetaxel, paclitaxel, honokiol and vincristine. Moreover, flavonoids have been successfully applied in molecular targeted nanosystems. Selectivity for cancer cells involves pH- and/or reactive oxygen species-mediated mechanisms. Furthermore, flavonoids are good candidates as drug delivery for anticancer drugs in green synthesis systems. In conclusion, although human studies are needed, NPs obtained from food-derived flavonoids have promising anticancer effects in vivo.
Collapse
Affiliation(s)
- Paola Aiello
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy; Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Sara Consalvi
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Mariangela Biava
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - George Perry
- Department of Biology, University of Texas at San Antonio, TX, USA.
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy.
| |
Collapse
|
13
|
Chang SH, Wu GJ, Wu CH, Huang CH, Tsai GJ. Oral administration with chitosan hydrolytic products modulates mitogen-induced and antigen-specific immune responses in BALB/c mice. Int J Biol Macromol 2019; 131:158-166. [DOI: 10.1016/j.ijbiomac.2019.02.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/22/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023]
|
14
|
Polyphenon-E encapsulated into chitosan nanoparticles inhibited proliferation and growth of Ehrlich solid tumor in mice. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Ernest U, Chen HY, Xu MJ, Taghipour YD, Asad MHHB, Rahimi R, Murtaza G. Anti-Cancerous Potential of Polyphenol-Loaded Polymeric Nanotherapeutics. Molecules 2018; 23:2787. [PMID: 30373235 PMCID: PMC6278361 DOI: 10.3390/molecules23112787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has extensively demonstrated the anticancer potential of nutraceuticals, including plant polyphenols. Polymeric nanocarrier systems have played an important role in improving the physicochemical and pharmacological properties of polyphenols, thus ameliorating their therapeutic effectiveness. This article summarizes the benefits and shortcomings of various polymeric systems developed for the delivery of polyphenols in cancer therapy and reveals some ideas for future work.
Collapse
Affiliation(s)
- Umeorah Ernest
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hai-Yan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming-Jun Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 1416663547, Iran.
| | | | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 5165665931, Iran.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54600, Pakistan.
| |
Collapse
|
16
|
Wang J, Pan Y, Hu J, Ma Q, Xu Y, Zhang Y, Zhang F, Liu Y. Tea polyphenols induce S phase arrest and apoptosis in gallbladder cancer cells. ACTA ACUST UNITED AC 2018. [PMID: 29513793 PMCID: PMC5856445 DOI: 10.1590/1414-431x20176891] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gallbladder cancer (GBC) is the most common malignancy in the biliary tract. Without effective treatment, its prognosis is notoriously poor. Tea polyphenols (TPs) have many pharmacological and health benefits, including antioxidant, anti-inflammatory, anti-tumor, anti-thrombotic, antibacterial, and vasodilatory properties. However, the anti-cancer effect of TPs in human gallbladder cancer has not yet been determined. Cell viability and colony formation assay were used to investigate the cell growth. Cell cycle and apoptosis were evaluated by flow cytometry analysis. Western blot assay was used to detect the expression of proteins related to cell cycle and apoptosis. Human tumor xenografts were used to examine the effect of TPs on gallbladder cancer cells in vivo. TPs significantly inhibited cell growth of gallbladder cancer cell lines in a dose- and time-dependent manner. Cell cycle progression in GBC cells was blocked at the S phase by TPs. TPs also induced mitochondrial-related apoptosis in GBC cells by upregulating Bax, cleaved caspase-3, and cleaved PARP expressions and downregulating Bcl-2, cyclin A, and Cdk2 expressions. The effects of TPs on GBC were further proven in vivo in a mouse xenograft model. Our study is the first to report that TPs inhibit GBC cell growth and these compounds may have potential as novel therapeutic agents for treating gallbladder cancer.
Collapse
Affiliation(s)
- Jiaqi Wang
- High School Affiliated Fudan University, Shanghai, China
| | - Yixuan Pan
- High School Affiliated Fudan University, Shanghai, China
| | - Jiacheng Hu
- High School Affiliated Fudan University, Shanghai, China
| | - Qiang Ma
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yi Xu
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yijian Zhang
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Fei Zhang
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yingbin Liu
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
17
|
Vittorio O, Curcio M, Cojoc M, Goya GF, Hampel S, Iemma F, Dubrovska A, Cirillo G. Polyphenols delivery by polymeric materials: challenges in cancer treatment. Drug Deliv 2017; 24:162-180. [PMID: 28156178 PMCID: PMC8241076 DOI: 10.1080/10717544.2016.1236846] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology can offer different solutions for enhancing the therapeutic efficiency of polyphenols, a class of natural products widely explored for a potential applicability for the treatment of different diseases including cancer. While possessing interesting anticancer properties, polyphenols suffer from low stability and unfavorable pharmacokinetics, and thus suitable carriers are required when planning a therapeutic protocol. In the present review, an overview of the different strategies based on polymeric materials is presented, with the aim to highlight the strengths and the weaknesses of each approach and offer a platform of ideas for researchers working in the field.
Collapse
Affiliation(s)
- Orazio Vittorio
- a UNSW Australia, Children's Cancer Institute, Lowy Cancer Research Center and ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Australian Center for NanoMedicine , Sydney , NSW , Australia
| | - Manuela Curcio
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| | - Monica Cojoc
- c OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany
| | - Gerardo F Goya
- d Institute of Nanoscience of Aragon (INA) and Department of Condensed Matter Physics, University of Zaragoza , Zaragoza , Spain
| | - Silke Hampel
- e Leibniz Institute of Solid State and Material Research Dresden , Dresden , Germany , and
| | - Francesca Iemma
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| | - Anna Dubrovska
- c OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany.,f German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Giuseppe Cirillo
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| |
Collapse
|
18
|
Preparation and characterization of kanamycin-chitosan nanoparticles to improve the efficacy of antibacterial activity against nosocomial pathogens. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.05.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Chen M, Zhao Z, Yu S. Cytotoxicity and Apoptotic Effects of Polyphenols from Sugar Beet Molasses on Colon Carcinoma Cells in Vitro. Int J Mol Sci 2016; 17:ijms17070993. [PMID: 27347927 PMCID: PMC4964369 DOI: 10.3390/ijms17070993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 11/16/2022] Open
Abstract
Three polyphenols were isolated and purified from sugar beet molasses by ultrasonic-aid extraction and various chromatographic techniques, and their structures were elucidated by spectral analysis. Cytotoxicity and the molecular mechanism were measured by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry, caspase-3 activity assay and Western blot assay. The results showed that gallic acid, cyanidin-3-O-glucoside chloride and epicatechin have cytotoxicity to the human colon, hepatocellular and breast cancer cells. Cyanidin-3-O-glucoside chloride showed its cytotoxicity against various tumor cell lines, particularly against colon cancer Caco-2 cells with half maximal inhibitory concentration (IC50) value of 23.21 ± 0.14 μg/mL in vitro. Cyanidin-3-O-glucoside chloride may be a potential candidate for the treatment of colon cancer. In the mechanism study, cyanidin-3-O-glucoside chloride increased the ratio of cell cycle at G0/G1 phase and reduced cyclin D1 expression on Caco-2 cells. Cyanidin-3-O-glucoside chloride decreased mutant p21 expression, and increased the ratio of Bax/Bcl-2 and the activation of caspase-3 to induce apoptosis.
Collapse
Affiliation(s)
- Mingshun Chen
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China.
| | - Zhengang Zhao
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China.
| | - Shujuan Yu
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
20
|
Sak K, Everaus H. Nanotechnological approach to improve the bioavailability of dietary flavonoids with chemopreventive and anticancer properties. NUTRACEUTICALS 2016:427-479. [DOI: 10.1016/b978-0-12-804305-9.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
21
|
Upputuri RTP, Kulandaivelu K, Mandal AKA. Nanotechnology-Based Approach for Enhanced Bioavailability and Stability of Tea Polyphenols—A Review. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2016. [DOI: 10.1016/b978-0-444-63749-9.00012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Ganesan P, Ko HM, Kim IS, Choi DK. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson's disease models. Int J Nanomedicine 2015; 10:6757-72. [PMID: 26604750 PMCID: PMC4631432 DOI: 10.2147/ijn.s93918] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress plays a very critical role in neurodegenerative diseases, such as Parkinson's disease (PD), which is the second most common neurodegenerative disease among elderly people worldwide. Increasing evidence has suggested that phytobioactive compounds show enhanced benefits in cell and animal models of PD. Curcumin, resveratrol, ginsenosides, quercetin, and catechin are phyto-derived bioactive compounds with important roles in the prevention and treatment of PD. However, in vivo studies suggest that their concentrations are very low to cross blood-brain barrier thereby it limits bioavailability, stability, and dissolution at target sites in the brain. To overcome these problems, nanophytomedicine with the controlled size of 1-100 nm is used to maximize efficiency in the treatment of PD. Nanosizing of phytobioactive compounds enhances the permeability into the brain with maximized efficiency and stability. Several nanodelivery techniques, including solid lipid nanoparticles, nanostructured lipid carriers, nanoliposomes, and nanoniosomes can be used for controlled delivery of nanobioactive compounds to brain. Nanocompounds, such as ginsenosides (19.9 nm) synthesized using a nanoemulsion technique, showed enhanced bioavailability in the rat brain. Here, we discuss the most recent trends and applications in PD, including 1) the role of phytobioactive compounds in reducing oxidative stress and their bioavailability; 2) the role of nanotechnology in reducing oxidative stress during PD; 3) nanodelivery systems; and 4) various nanophytobioactive compounds and their role in PD.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Nanotechnology Research Center, Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Hyun-Myung Ko
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Nanotechnology Research Center, Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
23
|
Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 2015; 10:6055-74. [PMID: 26451111 PMCID: PMC4592057 DOI: 10.2147/ijn.s92162] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications.
Collapse
Affiliation(s)
- Rebekah Watkins
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Program in Nanoscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chenming Zhang
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richey M Davis
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
24
|
Pellei M, Gandin V, Marinelli M, Orsetti A, Del Bello F, Santini C, Marzano C. Novel triazolium based 11th group NHCs: synthesis, characterization and cellular response mechanisms. Dalton Trans 2015; 44:21041-52. [DOI: 10.1039/c5dt02934a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The novel NHC ligand precursor 1,4-bis(4-nitrobenzyl)-1H-1,2,4-triazol-4-ium bromide, [HTz(pNO2Bz)2]Br, has been synthesized and used in the synthesis of the corresponding metal complexes M[Tz(pNO2Bz)2]Br (M = Cu(i), Ag(i) or Au(i)).
Collapse
Affiliation(s)
- M. Pellei
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 62032 Camerino
- Italy
| | - V. Gandin
- Department of Pharmaceutical and Pharmacological Sciences
- University of Padova
- 35131 Padova
- Italy
| | - M. Marinelli
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 62032 Camerino
- Italy
| | - A. Orsetti
- Department of Pharmaceutical and Pharmacological Sciences
- University of Padova
- 35131 Padova
- Italy
| | - F. Del Bello
- School of Pharmacy
- University of Camerino
- 62032 Camerino
- Italy
| | - C. Santini
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 62032 Camerino
- Italy
| | - C. Marzano
- Department of Pharmaceutical and Pharmacological Sciences
- University of Padova
- 35131 Padova
- Italy
| |
Collapse
|
25
|
Tekade RK, Youngren-Ortiz SR, Yang H, Haware R, Chougule MB. Designing hybrid onconase nanocarriers for mesothelioma therapy: a Taguchi orthogonal array and multivariate component driven analysis. Mol Pharm 2014; 11:3671-83. [PMID: 25179221 DOI: 10.1021/mp500403b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Onconase (ONC) is a member of a ribonuclease superfamily that has cytostatic activity against malignant mesothelioma (MM). The objective of this investigation was to develop bovine serum albumin (BSA)-chitosan based hybrid nanoformulations for the efficient delivery of ONC to MM while minimizing the exposure to normal tissues. Taguchi orthogonal array L9 type design was used to formulate ONC loaded BSA nanocarriers (ONC-ANC) with a mean particle size of 15.78 ± 0.24 nm (ζ = -21.89 ± 0.11 mV). The ONC-ANC surface was hybridized using varying chitosan concentrations ranging between 0.100 and 0.175% w/v to form various ONC loaded hybrid nanocarriers (ONC-HNC). The obtained data set was analyzed by principal component analysis (PCA) and principal component regressions (PCR) to decode the effects of investigated design variables. PCA showed positive correlations between investigated design variables like BSA, ethanol dilution, and total ethanol with particle size and entrapment efficiency (EE) of formulated nanocarriers. PCR showed that the particle size depends on BSA, ethanol dilution, and total ethanol content, while EE was only influenced by BSA content. Further analysis of chitosan and TPP effects used for coating of ONC-ANC by PCR confirmed their positive impacts on the particle size, zeta potential, and prolongation of ONC release compared to uncoated ONC-ANC. PCR analysis of preliminary stability studies showed increase in the particle size and zeta potential at lower pH. However, particle size, zeta potential, and EE of developed HNC were below 63 nm, 31 mV, and 96%, respectively, indicating their stability under subjected buffer conditions. Out of the developed formulations, HNC showed enhanced inhibition of cell viability with lower IC50 against human MM-REN cells compared to ONC and ONC-ANC. This might be attributed to the better cell uptake of HNC, which was confirmed in the cell uptake fluorescence studies. These studies indicated that a developed nanotherapeutic approach might aid in reducing the therapeutic dose of ONC, minimizing adverse effects by limiting the exposure of ONC to normal tissues, and help in the development of new therapeutic forms and routes of administration.
Collapse
Affiliation(s)
- Rakesh K Tekade
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo , Hilo, Hawaii 96720, United States
| | | | | | | | | |
Collapse
|