1
|
Wang M, Xu Y, Cao L, Xiong L, Shang D, Cong Y, Zhao D, Wei X, Li J, Fu D, Lian H, Zhao Z. Mechanical and biological properties of 3D printed bone tissue engineering scaffolds. Front Bioeng Biotechnol 2025; 13:1545693. [PMID: 40260017 PMCID: PMC12010109 DOI: 10.3389/fbioe.2025.1545693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/10/2025] [Indexed: 04/23/2025] Open
Abstract
Bone defects have historically represented a significant challenge in clinical practice, with traditional surgical intervention remaining the gold standard for their management. However, due to the problem of the origin of autologous and allogeneic bone and the complex and diverse bone defects, traditional surgical methods sometimes cannot meet the treatment needs and expectations of patients. The development of bone tissue engineering and 3D printing technology provides new ideas for bone defect repair. Ideal bioscaffold materials must have good mechanical properties, biocompatibility, osteoinduction and bone conduction capabilities. Additionally, factors such as degradation rate, appropriate porosity and a sustained antibacterial effect must be taken into account. The combination of 3D printing technology and synthetic composite biomaterial scaffolds has become a well-established approach in the treatment of complex bone defects, offering innovative solutions for bone defect repair. The combined application of seed cells, signalling factors and biological scaffolds is also beneficial to improve the therapeutic effect of complex bone defects. This article will therefore examine some of the most commonly used 3D printing technologies for biological scaffolds and the most prevalent bioscaffold materials suitable for 3D printing. An analysis will be conducted on the mechanical and biological properties of these materials to elucidate their respective advantages and limitations.
Collapse
Affiliation(s)
- Mingxuan Wang
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yunpeng Xu
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Luoxi Cao
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Le Xiong
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Depeng Shang
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yang Cong
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Dan Zhao
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiaowei Wei
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Junlei Li
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Dapeng Fu
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Haoyi Lian
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Zhenhua Zhao
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Erdogan YK, Uslu E, Aydınol MK, Saglam ASY, Odabas S, Ercan B. Morphology of Nanostructured Tantalum Oxide Controls Stem Cell Differentiation and Improves Corrosion Behavior. ACS Biomater Sci Eng 2024; 10:377-390. [PMID: 38078685 DOI: 10.1021/acsbiomaterials.3c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tantalum is receiving increasing attention in the biomedical field due to its biocompatible nature and superior mechanical properties. However, the bioinert nature of tantalum still poses a challenge and limits its integration into the bone tissue. To address these issues, we fabricated nanotubular (NT), nanocoral (NC), and nanodimple morphologies on tantalum surfaces via anodization. The size of these nanofeatures was engineered to be approximately 30 nm for all anodized samples. Thus, the influence of the anodized nanostructured morphology on the chemical and biological properties of tantalum was evaluated. The NT and NC samples exhibited higher surface roughness, surface energy, and hydrophilicity compared to the nonanodized samples. In addition, the NT samples exhibited the highest corrosion resistance among all of the investigated samples. Biological experiments indicated that NT and NC samples promoted human adipose tissue-derived mesenchymal stem cell (hADMSC) spreading and proliferation up to 5 days in vitro. ALP, COL1A1, and OSC gene expressions as well as calcium mineral synthesis were upregulated on the NT and NC samples in the second and third weeks in vitro. These findings highlight the significance of nanostructured feature morphology for anodized tantalum, where the NT morphology was shown to be a potential candidate for orthopedic applications.
Collapse
Affiliation(s)
- Yasar Kemal Erdogan
- Biomedical Engineering Program, Middle East Technical University, Cankaya, Ankara 06800, Turkey
- Department of Biomedical Engineering, Isparta University of Applied Science, Isparta 32260, Turkey
| | - Ece Uslu
- Institute of Bioengineering, School of Engineering, EPFL, Lausanne 1015, Switzerland
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
| | - Mehmet Kadri Aydınol
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
| | - Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06500, Turkey
| | - Sedat Odabas
- Department of Chemistry, Faculty of Science, Ankara University, Besevler, Ankara 06560, Turkey
- Faculty of Science, Department of Chemistry, Biomaterials and Tissue Engineering Laboratory (BteLAB), Ankara University, Ankara 06100, Turkey
- Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara 06560, Turkey
| | - Batur Ercan
- Biomedical Engineering Program, Middle East Technical University, Cankaya, Ankara 06800, Turkey
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
| |
Collapse
|
3
|
Hossain MI, Shams AB, Das Gupta S, Blanchard GJ, Mobasheri A, Hoque Apu E. The Potential Role of Ionic Liquid as a Multifunctional Dental Biomaterial. Biomedicines 2023; 11:3093. [PMID: 38002093 PMCID: PMC10669305 DOI: 10.3390/biomedicines11113093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
In craniofacial research and routine dental clinical procedures, multifunctional materials with antimicrobial properties are in constant demand. Ionic liquids (ILs) are one such multifunctional intelligent material. Over the last three decades, ILs have been explored for different biomedical applications due to their unique physical and chemical properties, high task specificity, and sustainability. Their stable physical and chemical characteristics and extremely low vapor pressure make them suitable for various applications. Their unique properties, such as density, viscosity, and hydrophilicity/hydrophobicity, may provide higher performance as a potential dental material. ILs have functionalities for optimizing dental implants, infiltrate materials, oral hygiene maintenance products, and restorative materials. They also serve as sensors for dental chairside usage to detect oral cancer, periodontal lesions, breath-based sobriety, and dental hard tissue defects. With further optimization, ILs might also make vital contributions to craniofacial regeneration, oral hygiene maintenance, oral disease prevention, and antimicrobial materials. This review explores the different advantages and properties of ILs as possible dental material.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (M.I.H.); (G.J.B.)
| | - Abdullah Bin Shams
- The Edward S. Rogers Sr. Department of Electrical Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada;
| | - Shuvashis Das Gupta
- Research Unit of Health Science and Technology, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland; (S.D.G.); (A.M.)
| | - Gary J. Blanchard
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (M.I.H.); (G.J.B.)
| | - Ali Mobasheri
- Research Unit of Health Science and Technology, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland; (S.D.G.); (A.M.)
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing, University of Liège, 4000 Liège, Belgium
- State Research Institute Centre for Innovative Medicine, 08410 Vilnius, Lithuania
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ehsanul Hoque Apu
- Research Unit of Health Science and Technology, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland; (S.D.G.); (A.M.)
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
- Institute for Quantitative Health Science and Engineering, Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Centre for International Public Health and Environmental Research, Bangladesh (CIPHER,B), Dhaka 1207, Bangladesh
| |
Collapse
|
4
|
Wang X, Zhou K, Li Y, Xie H, Wang B. Preparation, modification, and clinical application of porous tantalum scaffolds. Front Bioeng Biotechnol 2023; 11:1127939. [PMID: 37082213 PMCID: PMC10110962 DOI: 10.3389/fbioe.2023.1127939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Porous tantalum (Ta) implants have been developed and clinically applied as high-quality implant biomaterials in the orthopedics field because of their excellent corrosion resistance, biocompatibility, osteointegration, and bone conductivity. Porous Ta allows fine bone ingrowth and new bone formation through the inner space because of its high porosity and interconnected pore structure. It contributes to rapid bone integration and long-term stability of osseointegrated implants. Porous Ta has excellent wetting properties and high surface energy, which facilitate the adhesion, proliferation, and mineralization of osteoblasts. Moreover, porous Ta is superior to classical metallic materials in avoiding the stress shielding effect, minimizing the loss of marginal bone, and improving primary stability because of its low elastic modulus and high friction coefficient. Accordingly, the excellent biological and mechanical properties of porous Ta are primarily responsible for its rising clinical translation trend. Over the past 2 decades, advanced fabrication strategies such as emerging manufacturing technologies, surface modification techniques, and patient-oriented designs have remarkably influenced the microstructural characteristic, bioactive performance, and clinical indications of porous Ta scaffolds. The present review offers an overview of the fabrication methods, modification techniques, and orthopedic applications of porous Ta implants.
Collapse
Affiliation(s)
| | | | | | - Hui Xie
- *Correspondence: Hui Xie, ; Benjie Wang,
| | | |
Collapse
|
5
|
Mesenchymal stem cell-seeded porous tantalum-based biomaterial: A promising choice for promoting bone regeneration. Colloids Surf B Biointerfaces 2022; 215:112491. [PMID: 35405535 DOI: 10.1016/j.colsurfb.2022.112491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 12/17/2022]
Abstract
Porous tantalum-based biomaterial is a novel tissue engineering material widely used in repairing bone defects due to its corrosion resistance, low elastic modulus, high friction coefficient, and excellent biocompatibility. Bone marrow-derived mesenchymal stem cells (BMSCs), a type of pluripotent stem cell, can travel from their original ecological niche to bone injury sites, where they differentiate into osteoblasts and osteocytes. Multiple factors regulate the proliferation, migration, and differentiation of BMSCs. In recent years, the regulatory effects of porous tantalum on BMSCs have been widely studied. Hence, in this study, we reviewed the characteristics of porous tantalum-based biomaterials and the mechanism of action of their regulatory effects on BMSCs. Further, we discuss the feasibility of seeding BMSCs in porous tantalum-based biomaterials for use in tissue repair.
Collapse
|
6
|
Alves CFA, Serra R, Bayat R, Ferreira F, Cavaleiro A, Carvalho S. Synergetic effect of thickness and oxygen addition on the electrochemical behaviour of tantalum oxide coatings deposited by HiPIMS in DOMS mode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Sun H, Chan Y, Li X, Xu R, Zhang Z, Hu X, Wu F, Deng F, Yu X. Multi-omics analysis of oral bacterial biofilm on titanium oxide nanostructure modified implant surface: In vivo sequencing-based pilot study in beagle dogs. Mater Today Bio 2022; 15:100275. [PMID: 35572854 PMCID: PMC9098469 DOI: 10.1016/j.mtbio.2022.100275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Peri-implantitis, the major cause of implant failure, is an inflammatory destructive disease due to the dysbiotic polymicrobial communities at the peri-implant sites. Therefore, it is highly warranted to develop the implant materials with antimicrobial properties and investigate their effects on oral microbiota. However, most of the relevant studies were performed in vitro, and insufficient to provide the comprehensive assessment of the antimicrobial capacity of the implant materials in vivo. Herein, we introduce an innovative approach to evaluate the in vivo antibacterial properties of the most commonly used implant materials, titanium with different nanostructured surfaces, and investigate their antibacterial mechanism via the next-generation sequencing (NGS) technology. We firstly prepared the titanium implants with three different surfaces, i) mechanical polishing (MP), ii) TiO2 nanotubes (NT) and iii) nanophase calcium phosphate embedded to TiO2 nanotubes (NTN), and then characterized them using scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), confocal laser scanning microscopy (CLSM) and surface hydrophilicity analysis. Afterwards, the implants were placed in the beagle dogs’ mouths to replace the pre-extracted premolar and molar teeth for eight weeks through implant surgery. The supra- and sub-mucosal plaques were collected and subjected to 16S rRNA gene/RNA sequencing and data analysis. It was found that the nanostructured surfaces in NT and NTN groups showed significantly increased roughness and decreased water contact angles compared to the MP group, while the XPS data further confirmed the successful modifications of TiO2 nanotubes and the subsequent deposition of nanophase calcium phosphate. Notably, the nanostructured surfaces in NT and NTN groups had limited impact on the diversity and community structure of oral microbiota according to the 16S rRNA sequencing results, and the nanostructures in NTN group could down-regulate the genes associated with localization and locomotion based on Gene Ontology (GO) terms enrichment analysis. Moreover, the differentially expressed genes (DEGs) were associated with microbial metabolism, protein synthesis and bacterial invasion of epithelial cells. Taken together, this study provides a new strategy to evaluate the antibacterial properties of the biomedical materials in vivo via the high-throughput sequencing and bioinformatic approaches, revealing the differences of the composition and functional gene expressions in the supra- and sub-mucosal microbiome.
Collapse
|
8
|
Zhang Y, Gulati K, Li Z, Di P, Liu Y. Dental Implant Nano-Engineering: Advances, Limitations and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2489. [PMID: 34684930 PMCID: PMC8538755 DOI: 10.3390/nano11102489] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 12/27/2022]
Abstract
Titanium (Ti) and its alloys offer favorable biocompatibility, mechanical properties and corrosion resistance, which makes them an ideal material choice for dental implants. However, the long-term success of Ti-based dental implants may be challenged due to implant-related infections and inadequate osseointegration. With the development of nanotechnology, nanoscale modifications and the application of nanomaterials have become key areas of focus for research on dental implants. Surface modifications and the use of various coatings, as well as the development of the controlled release of antibiotics or proteins, have improved the osseointegration and soft-tissue integration of dental implants, as well as their antibacterial and immunomodulatory functions. This review introduces recent nano-engineering technologies and materials used in topographical modifications and surface coatings of Ti-based dental implants. These advances are discussed and detailed, including an evaluation of the evidence of their biocompatibility, toxicity, antimicrobial activities and in-vivo performances. The comparison between these attempts at nano-engineering reveals that there are still research gaps that must be addressed towards their clinical translation. For instance, customized three-dimensional printing technology and stimuli-responsive, multi-functional and time-programmable implant surfaces holds great promise to advance this field. Furthermore, long-term in vivo studies under physiological conditions are required to ensure the clinical application of nanomaterial-modified dental implants.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China;
| | - Karan Gulati
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia;
| | - Ze Li
- School of Stomatology, Chongqing Medical University, Chongqing 400016, China;
| | - Ping Di
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia;
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
9
|
Gulati K, Zhang Y, Di P, Liu Y, Ivanovski S. Research to Clinics: Clinical Translation Considerations for Anodized Nano-Engineered Titanium Implants. ACS Biomater Sci Eng 2021; 8:4077-4091. [PMID: 34313123 DOI: 10.1021/acsbiomaterials.1c00529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Titania nanotubes (TNTs) fabricated on titanium orthopedic and dental implants have shown significant potential in "proof of concept" in vitro, ex vivo, and short-term in vivo studies. However, most studies do not focus on a clear direction for future research towards clinical translation, and there exists a knowledge gap in identifying key research challenges that must be addressed to progress to the clinical setting. This review focuses on such challenges with respect to anodized titanium implants modified with TNTs, including optimized fabrication on clinically utilized microrough surfaces, clinically relevant bioactivity assessments, and controlled/tailored local release of therapeutics. Further, long-term in vivo investigations in compromised animal models under loading conditions are needed. We also discuss and detail challenges and progress related to the mechanical stability of TNT-based implants, corrosion resistance/electrochemical stability, optimized cleaning/sterilization, packaging/aging, and nanotoxicity concerns. This extensive, clinical translation focused review of TNTs modified Ti implants aims to foster improved understanding of key research gaps and advances, informing future research in this domain.
Collapse
Affiliation(s)
- Karan Gulati
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| | - Yifan Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology and National Clinical Research Centre for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ping Di
- Department of Oral Implantology, Peking University School and Hospital of Stomatology and National Clinical Research Centre for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| |
Collapse
|
10
|
The Effect of Thermal Oxidation on the Photothermal Conversion Property of Tantalum Coatings. MATERIALS 2021; 14:ma14144031. [PMID: 34300950 PMCID: PMC8303513 DOI: 10.3390/ma14144031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 02/04/2023]
Abstract
In this study, tantalum coatings are deposited by a plasma spraying method aiming at enhancing the biocompatibility of the titanium implant. Tantalum oxide coatings are gained through the thermal oxidation of tantalum coatings at different temperatures for photothermal therapy. The effect of thermal oxidation on the morphology, composition, and structure of tantalum coatings has been studied. The UV-VIS-NIR spectra results, cancer therapy effect in vitro, and photothermal conversion properties among the tantalum oxide coatings under varied thermal treatment conditions are compared comprehensively. It has been proven that the tantalum coating treated at 200 °C exhibits the most intense NIR adsorption, the highest photothermal conversion effect, and the most excellent photothermal ablation effect in vitro. The results reveal that incomplete oxidation at a low temperature leads to the formation of oxygen vacancies, which narrow the band gap; this promotes its photothermal conversion ability.
Collapse
|
11
|
Gulati K, Scimeca JC, Ivanovski S, Verron E. Double-edged sword: Therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discov Today 2021; 26:2734-2742. [PMID: 34246772 DOI: 10.1016/j.drudis.2021.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
Titanium-based orthopaedic/dental implants modified with various metal-doping strategies can enhance local therapy and bioactivity. Intentional or unintentional (because of loading and wear) release of metal ions/nanoparticles (NPs) from metal-doped implants can be therapeutic or cause adverse local tissue reactions, compromising long-term survival. Strategies to incorporate metals into implants, such as superficial or deep loading inside nano-engineered surfaces, including nanotubes, and the physiochemical characteristics of the released species significantly influence both their therapeutic and cytotoxic potential. In this review, we compare and contrast this 'double-edged sword' to arrive at an improved understanding of metal-doped implants to enable controlled therapy while minimising cytotoxicity concerns.
Collapse
Affiliation(s)
- Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia
| | | | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia
| | - Elise Verron
- Université de Nantes, CNRS, UMR 6230, CEISAM, UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France.
| |
Collapse
|
12
|
Lei T, Qian H, Lei P, Hu Y. The increased oxygen content in tantalum leads to decreased bioactivity and osteogenic ability of tantalum implants. Biomater Sci 2021; 9:1409-1420. [PMID: 33393576 DOI: 10.1039/d0bm01555e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tantalum (Ta) implants fabricated by current processing techniques inevitably contain more or less oxygen impurities due to the extremely high melting point and high affinity of oxygen for Ta. Therefore, in this study we investigated whether oxygen impurities cause any effects on the bioactivity of Ta. EDS analysis demonstrated the surface oxygen content difference among different fabricated Ta samples, and the surface water contact angle (WCA) of Ta with high oxygen content (HO-Ta) was significantly higher than that of Ta with medium (MO-Ta) and low (LO-Ta) oxygen content. The in vitro cellular experiments showed that MC3T3-E1 cells on Ta with lower oxygen content exhibited better adhesion, growth, morphological development and in vitro osteogenic ability. Similarly, the in vivo animal experiments indicated the better bone regeneration and ingrowth performances of Ta with lower oxygen content. In addition, the highest ROS production was detected in the HO-Ta group, while the lowest in the LO-Ta group. This study suggests that the oxygen content within Ta, which occurs unavoidably due to technical limitations, negatively affects the bioactivity of Ta in a dose-dependent manner, indicating the need to develop techniques to produce orthopedic all-Ta implants.
Collapse
Affiliation(s)
- Ting Lei
- Department of Orthopeadic Surgery, Xiangya Hospital Central South University, China.
| | | | | | | |
Collapse
|
13
|
Hwang C, Park S, Kang IG, Kim HE, Han CM. Tantalum-coated polylactic acid fibrous membranes for guided bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111112. [DOI: 10.1016/j.msec.2020.111112] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
|
14
|
Li R, Liu G, Yang L, Qing Y, Tang X, Guo D, Zhang K, Qin Y. Tantalum boride as a biocompatible coating to improve osteogenesis of the bionano interface. J Biomed Mater Res A 2020; 108:1726-1735. [PMID: 32223058 DOI: 10.1002/jbm.a.36940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/30/2022]
Abstract
A proper biological microenvironment conducive to tissue repair and regeneration, while the bioimplant interface directly affects the local microenvironment. In this study, to improve the biological microenvironment, a nanosized tantalum boride (Ta-B) was coated on a titanium alloy substrate (Ti6Al4V, TC4) using magnetron cosputtering. The sample surface was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). To investigate the effects of tantalum boride coating on the microenvironment, rabbit bone marrow stromal cells (BMSCs), and RAW 264.7 cells were respectively seeded on the sample surface and relevant experiments were conducted in vitro. The pure tantalum coating (Ta) and naked TC4 were prepared as controls. Our results showed that the Ta-B coating enhanced cell proliferation and adhesion and inhibited the inflammatory response. Findings of alkaline phosphatase (ALP) staining, alizarin red staining and real-time PCR for osteoblastic gene expression indicated that Ta-B and Ta coating improve the osteogenesis, in which Ta-B coating showed higher osteogenesis than Ta coating. Thus, this study suggests that Ta-B coating with excellent biocompatibility could have new applications for wound healing in bone tissue engineering.
Collapse
Affiliation(s)
- Ruiyan Li
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Guancong Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun, PR China.,Department of Orthopedics, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Lina Yang
- State Key Laboratory of Superhard Materials, Department of Materials Science, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, PR China
| | - Yun'an Qing
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Xiongfeng Tang
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Deming Guo
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Kan Zhang
- State Key Laboratory of Superhard Materials, Department of Materials Science, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, PR China
| | - Yanguo Qin
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun, PR China
| |
Collapse
|
15
|
Ma J, Sun Y, Zan R, Ni J, Zhang X. Cellular different responses to different nanotube inner diameter on surface of pure tantalum. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110520. [DOI: 10.1016/j.msec.2019.110520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
|
16
|
Ding D, Zhang D, He F, Xie G, Chen Z. Gamma-ray irradiation effects on tantalum thin film for improved mechanical compatibility and cytocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110700. [PMID: 32204014 DOI: 10.1016/j.msec.2020.110700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
In this work, tantalum thin films were prepared on titanium substrates by an ion beam sputtering method. Tantalum thin films were irradiated by gamma-ray with different total dose levels. The effect of irradiation on the phase composition, microstructure, surface morphology, and chemical resistance were analyzed. Besides, in vitro cytocompatibility of tantalum films treated with different radiation doses were evaluated via 3T3-E1 cells. Experimental results showed that higher radiation dose resulted in reductions in crystalline nature, denser morphology, lower elastic modulus, less oxygen vacancies and better corrosion resistance. Additionally, 3T3-E1 cells adhered and spread well on the surface of tantalum film with irradiation exposure to 10 kGy. The dense surface morphology, less density of chemical defects and amorphous phase produced by the gamma-ray irradiation played a major role in the improvement of mechanical compatibility, electrochemical stability property along with the cytocompatibility of the tantalum films.
Collapse
Affiliation(s)
- Ding Ding
- Key Laboratory of Thin Film Sensing Technology for National Defense of Hunan Province, China Electronics Technology Group Corporation 48th Research Institute, Changsha 410111, China; School of Physic and Microelectronics, Hunan University, Changsha 410082, China
| | - Dechuang Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Feng He
- Key Laboratory of Thin Film Sensing Technology for National Defense of Hunan Province, China Electronics Technology Group Corporation 48th Research Institute, Changsha 410111, China
| | - Guijiu Xie
- Key Laboratory of Thin Film Sensing Technology for National Defense of Hunan Province, China Electronics Technology Group Corporation 48th Research Institute, Changsha 410111, China
| | - Zhuojun Chen
- School of Physic and Microelectronics, Hunan University, Changsha 410082, China.
| |
Collapse
|
17
|
Trincă LC, Mareci D, Solcan C, Fantanariu M, Burtan L, Vulpe V, Hriţcu LD, Souto RM. RETRACTED: In vitro corrosion resistance and in vivo osseointegration testing of new multifunctional beta-type quaternary TiMoZrTa alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110485. [PMID: 31924054 DOI: 10.1016/j.msec.2019.110485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 07/26/2018] [Accepted: 11/21/2019] [Indexed: 02/02/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of authors. Due to communication issues between Professor dr. Lucia Carmen Trincă and Professor dr. Vizureanu Petrica and Assist. dr. Bălţatu Simona, the first author was not aware that the specimens processed by corrosion by Assoc. Professor dr. Daniel Mareci and evaluated in the aforementioned article would be included by Assistant dr. Bălţatu Simona in her PhD thesis that was defended in June 2017 and then in an international patent application (Indonesia) No: PI 2019006569, in November 2019. The authors understand and respect the intellectual property rights of the international (Indonesia) patent application holders no: PI 2019006569/2019 and thus request the retraction of the article.
Collapse
Affiliation(s)
- Lucia Carmen Trincă
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Exact Sciences Department, 700490, Iasi, Romania.
| | - Daniel Mareci
- "Gheorghe Asachi" Technical University of Iasi, Department of Chemical Engineering, 700050, Iasi, Romania
| | - Carmen Solcan
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Preclinics Department, 700489, Iasi, Romania
| | - Mircea Fantanariu
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania
| | - Liviu Burtan
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania.
| | - Vasile Vulpe
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania
| | - Luminiţa-Diana Hriţcu
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania
| | - Ricardo Manuel Souto
- Department of Chemistry, Universidad de La Laguna, Avda. Astrofisico Sanchez s/n, 38205 La Laguna, Tenerife (Canary Islands), Spain; Instituto Universitario de Materiales y Nanotecnologias, Universidad de La Laguna, P.O. Box 456, 38200 La Laguna, Tenerife (Canary Islands), Spain.
| |
Collapse
|
18
|
Lu RJ, Wang X, He HX, E LL, Li Y, Zhang GL, Li CJ, Ning CY, Liu HC. Tantalum-incorporated hydroxyapatite coating on titanium implants: its mechanical and in vitro osteogenic properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:111. [PMID: 31583537 DOI: 10.1007/s10856-019-6308-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The fabrication of bioactive coatings on metallic implants to enhance osseointegration has become a topic of general interest in orthopedics and dentistry. Hydroxyapatite (HA) coating has been shown to induce bone formation and promote bone-implant integration. Unfortunately, poor mechanical performance has hindered this from becoming a favorable coating material. The majority of present studies have focused in incorporating different elements into HA coatings to improve mechanical properties. In recent years, tantalum (Ta) has received increasing attention due to its excellent biocompatibility and corrosion resistance. The aim of on the present study was to investigate the fabrication and biological performance of Ta-incorporated HA coatings. METHODS Ta-incorporated HA coatings were fabricated using the plasma spray technique on a titanium substrate, and the surface characteristics and mechanical properties were examined. In addition, the effects of Ta-incorporated HA coatings on the biological behavior of mesenchymal stem cells (BMSCs) were investigated. RESULTS Ta-incorporated HA coatings with microporous structure had higher roughness and wettability. In addition, the bonding strength of Ta/HA coatings with the substrate was substantially superior to HA coatings. Furthermore, Ta-incorporated HA coatings not only facilitated initial cell adhesion and faster proliferation, but also promoted the osteogenic differentiation of BMSCs. CONCLUSION These results indicate that the incorporation of Ta could improve mechanical performance and increase the osteogenic activity of HA coatings. The Ta-incorporated HA coating fabricated by plasma spraying is expected to be a promising bio-coating material for metallic implants.
Collapse
Affiliation(s)
- Rong-Jian Lu
- Department of Stomatology, the Fifth Medical Center, Chinese PLA General Hospital, 100071, Beijing, China
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, 030001, Taiyuan, China
| | - Hui-Xia He
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Ling-Ling E
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Ying Li
- School of Materials Science and Technology, South China University of Technology, 510641, Guangzhou, China
| | - Gui-Lan Zhang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Chuan-Jie Li
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Cheng-Yun Ning
- School of Materials Science and Technology, South China University of Technology, 510641, Guangzhou, China
| | - Hong-Chen Liu
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.
| |
Collapse
|
19
|
An R, Fan PP, Zhou MJ, Wang Y, Goel S, Zhou XF, Li W, Wang JT. Nanolamellar Tantalum Interfaces in the Osteoblast Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2480-2489. [PMID: 30673289 DOI: 10.1021/acs.langmuir.8b02796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The design of topographically patterned surfaces is considered to be a preferable approach for influencing cellular behavior in a controllable manner, in particular to improve the osteogenic ability of bone regeneration. In this study, we fabricated nanolamellar tantalum (Ta) surfaces with lamellar wall thicknesses of 40 and 70 nm. The cells attached to nanolamellar Ta surfaces exhibited higher protein adsorption and expression of β1 integrin, as compared to the nonstructured bulk Ta, which facilitated the initial cell attachment and spreading. We thus, as expected, observed significantly enhanced osteoblast adhesion, growth, and alkaline phosphatase activity on nanolamellar Ta surfaces. However, the beneficial effects of nanolamellar structures on osteogenesis became weaker as the lamellar wall thickness increased. The interaction between cells and Ta surfaces was examined through adhesion forces using atomic force microscopy. Our findings indicated that the Ta surface with a lamellar wall thickness of 40 nm exhibited the strongest stimulatory effect. The observed strongest adhesion force between the cell-attached tip and the Ta surface with a 40 nm thick lamellar wall encouraged the much stronger binding of cells with the surface and thus well-attached, -stretched, and -grown cells. We attributed this to the increase in the available contact area of cells with the thinner nanolamellar Ta surface. The increased contact area allowed the enhancement of the cell surface interaction strength and, thus, improved osteoblast adhesion. This study suggests that the thin nanolamellar topography shows immense potential in improving the clinical performance of dental and orthopedic implants.
Collapse
Affiliation(s)
- Rong An
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Peng Peng Fan
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Ming Jun Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , P. R. China
| | - Yue Wang
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
- Xiamen Golden Egret Special Alloy Company, Ltd. , Xiamen 361021 , P. R. China
| | - Sunkulp Goel
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Xue Feng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , P. R. China
| | - Wei Li
- European Bioenergy Research Institute, Aston Institute of Materials Research , Aston University , Birmingham B4 7ET , U.K
| | - Jing Tao Wang
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| |
Collapse
|
20
|
Bender CR, Salbego PR, Wust K, Farias CA, Beck TS, Machado G, Vaucher RA, Martins MA, Frizzo CP. Interaction of pharmaceutical ionic liquids with TiO2 in anatase and rutile phase. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Ding D, Xie Y, Li K, Huang L, Zheng X. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells. MATERIALS 2018; 11:ma11040546. [PMID: 29614022 PMCID: PMC5951430 DOI: 10.3390/ma11040546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/24/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022]
Abstract
Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.
Collapse
Affiliation(s)
- Ding Ding
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| |
Collapse
|
22
|
Su EP, Justin DF, Pratt CR, Sarin VK, Nguyen VS, Oh S, Jin S. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J 2018; 100-B:9-16. [PMID: 29292334 PMCID: PMC6424438 DOI: 10.1302/0301-620x.100b1.bjj-2017-0551.r1] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/16/2017] [Indexed: 11/21/2022]
Abstract
The development and pre-clinical evaluation of
nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated
with titanium dioxide (TiO2) nanotube arrays is reviewed. In
vitro and in vivo evaluations show that
TiO2 nanotubes on Ti surfaces positively affect the osseointegration,
cell differentiation, mineralisation, and anti-microbial properties.
This surface treatment can be superimposed onto existing macro and
micro porous Ti implants creating a surface texture that also interacts
with cells at the nano level. Histology and mechanical pull-out testing
of specimens in rabbits indicate that TiO2 nanotubes
improves bone bonding nine-fold (p = 0.008). The rate of mineralisation
associated with TiO2 nanotube surfaces is about three
times that of non-treated Ti surfaces. In addition to improved osseointegration
properties, TiO2 nanotubes reduce the initial adhesion
and colonisation of Staphylococcus epidermidis.
Collectively, the properties of Ti implant surfaces enhanced with
TiO2 nanotubes show great promise. Cite this article: Bone Joint J 2018;100-B(1
Supple A):9–16.
Collapse
Affiliation(s)
- E P Su
- Hospital for Special Surgery, New York, USA
| | - D F Justin
- Nanovation Partners, LLC, Camarillo, California, USA
| | - C R Pratt
- Nanovation Partners, LLC, Camarillo, California, USA
| | - V K Sarin
- Kinamed Incorporated, Camarillo, California, USA
| | - V S Nguyen
- Optimotion Implants, LLC, Orlando, Florida, USA
| | - S Oh
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - S Jin
- Nanovation Partners, LLC, Camarillo, California, USA
| |
Collapse
|
23
|
Jo A, Lee Y, Lee C. Real-time Selective Detection of Hydrogen Peroxide Based on a Tantalum Deposited Pencil Lead Electrode for Evaluation of Enzyme Activities. ELECTROANAL 2017. [DOI: 10.1002/elan.201700315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ara Jo
- Department of Chemistry and Nanoscience; Ewha Womans University; Seoul 03760 Korea
| | - Youngmi Lee
- Department of Chemistry and Nanoscience; Ewha Womans University; Seoul 03760 Korea
| | - Chongmok Lee
- Department of Chemistry and Nanoscience; Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
24
|
Awad NK, Edwards SL, Morsi YS. A review of TiO2 NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1401-1412. [DOI: 10.1016/j.msec.2017.02.150] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/15/2016] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
|
25
|
Sarraf M, Razak BA, Nasiri-Tabrizi B, Dabbagh A, Kasim NHA, Basirun WJ, Bin Sulaiman E. Nanomechanical properties, wear resistance and in-vitro characterization of Ta2O5 nanotubes coating on biomedical grade Ti–6Al–4V. J Mech Behav Biomed Mater 2017; 66:159-171. [DOI: 10.1016/j.jmbbm.2016.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 01/25/2023]
|
26
|
Shi J, Zhang X, Qiao S, Ni J, Mo J, Gu Y, Lai H. Enhanced osteointegration of tantalum-modified titanium implants with micro/nano-topography. RSC Adv 2017. [DOI: 10.1039/c7ra08036k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ta modification enhanced the osteointegration of an SLA surface with micro/nano topography and the possible mechanism might be activation of the Wnt pathway.
Collapse
Affiliation(s)
- Junyu Shi
- Department of Oral and Maxillo-facial Implantology
- Shanghai Ninth People's Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200011
| | - Xiaomeng Zhang
- Department of Oral and Maxillo-facial Implantology
- Shanghai Ninth People's Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200011
| | - Shichong Qiao
- Department of Oral and Maxillo-facial Implantology
- Shanghai Ninth People's Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200011
| | - Jie Ni
- Department of Oral and Maxillo-facial Implantology
- Shanghai Ninth People's Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200011
| | - Jiaji Mo
- Department of Oral and Maxillo-facial Implantology
- Shanghai Ninth People's Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200011
| | - Yingxin Gu
- Department of Oral and Maxillo-facial Implantology
- Shanghai Ninth People's Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200011
| | - Hongchang Lai
- Department of Oral and Maxillo-facial Implantology
- Shanghai Ninth People's Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200011
| |
Collapse
|
27
|
Liu X, Song X, Zhang P, Zhu Z, Xu X. Effects of nano tantalum implants on inducing osteoblast proliferation and differentiation. Exp Ther Med 2016; 12:3541-3544. [PMID: 28101149 PMCID: PMC5228204 DOI: 10.3892/etm.2016.3801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022] Open
Abstract
In the present study, we examined the effects of nano tantalum (Ta) dental implants on inducing osteoblast proliferation and differentiation. The MG-63 osteoblasts were divided into 3 groups after recovery, passage and storage: i) Osteoblast culturing group (control group); ii) osteoblast and titanium (Ti) implant co-culturing group (Ti group); and iii) osteoblast and Ta implant co-culturing group (Ta group). After 7 days, a scanning electron microscope was used to observe the growth status, number and morphological changes of the cells on the surfaces of the materials. An MTT assay was used to detect cell proliferation after culturing for 1, 3 and 7 days. ELISA assay was used to detect the levels of alkaline phosphatase (ALP) after 1, 3 and 7 days. Western blot analysis was used to detect the expression levels of collagen type I (Col-1) and osteocalcin after 1, 3 and 7 days. There was significant cell spreading on the surfaces of Ti and of Ta after 7 days, flat and with many pseudopodia. Additionally, there were more cell components in the Ta group. Concurrently, cell proliferation in the Ti and Ta groups increased. There was also an increase in the level of ALP and the expression level of Col-1 over time. The indexes of the Ta group were more apparent than those of the Ti group at each time-point, and the differences were statistically significant (p<0.05). In conclusion, compared with Ti implants, Ta implants induced more osteoblast proliferation and differentiation.
Collapse
Affiliation(s)
- Xinyu Liu
- Stomatological College of Shandong University, Jinan, Shandong 250012, P.R. China; Shandong Province Key Laboratory of Oral Biology Medicine, Jinan, Shandong 250012, P.R. China; Department of Stomatology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaobin Song
- Department of Stomatology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Peng Zhang
- Department of Orthopedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, P.R. China
| | - Zhenkun Zhu
- Stomatological College of Shandong University, Jinan, Shandong 250012, P.R. China; Shandong Province Key Laboratory of Oral Biology Medicine, Jinan, Shandong 250012, P.R. China
| | - Xin Xu
- Stomatological College of Shandong University, Jinan, Shandong 250012, P.R. China; Shandong Province Key Laboratory of Oral Biology Medicine, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
28
|
|
29
|
Gulati K, Maher S, Findlay DM, Losic D. Titania nanotubes for orchestrating osteogenesis at the bone-implant interface. Nanomedicine (Lond) 2016; 11:1847-64. [PMID: 27389393 DOI: 10.2217/nnm-2016-0169] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Titanium implants can fail due to inappropriate biomechanics at the bone-implant interface that leads to suboptimal osseointegration. Titania nanotubes (TNTs) fabricated on Ti implants by the electrochemical process have emerged as a promising modification strategy to facilitate osseointegration. TNTs enable augmentation of bone cell functions at the bone-implant interface and can be tailored to incorporate multiple functionalities including the loading of active biomolecules into the nanotubes to target anabolic processes in bone conditions such as osteoporotic fractures. Advanced functions can be introduced, including biopolymers, nanoparticles and electrical stimulation to release growth factors in a desired manner. This review describes the application of TNTs for enhancing osteogenesis at the bone-implant interface, as an alternative approach to systemic delivery of therapeutic agents.
Collapse
Affiliation(s)
- Karan Gulati
- School of Chemical Engineering, University of Adelaide, SA, Australia
| | - Shaheer Maher
- School of Chemical Engineering, University of Adelaide, SA, Australia
- Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - David M Findlay
- Discipline of Orthopaedics & Trauma, University of Adelaide, SA, Australia
| | - Dusan Losic
- School of Chemical Engineering, University of Adelaide, SA, Australia
| |
Collapse
|
30
|
Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants. Int J Mol Sci 2016; 17:292. [PMID: 26927080 PMCID: PMC4813156 DOI: 10.3390/ijms17030292] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 11/19/2022] Open
Abstract
While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO2) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO2 nanotubes and Ti alone, Si-doped TiO2 nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO2 nanotubes improved implant fixation strength by 18% and 54% compared to TiO2-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO2 nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants.
Collapse
|
31
|
Genchi GG, Nuhn H, Liakos I, Marino A, Marras S, Athanassiou A, Mattoli V, Desai TA. Titanium dioxide nanotube arrays coated with laminin enhance C2C12 skeletal myoblast adhesion and differentiation. RSC Adv 2016. [DOI: 10.1039/c6ra00716c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TiO2 nanotube arrays of various topography/surface chemistry are tested with C2C12 cells. Improved cell adhesion and differentiation are shown on 10 nm diameter nanotube arrays coated with laminin, encouraging array use for skeletal muscle tissue engineering and stimulation.
Collapse
Affiliation(s)
- Giada G. Genchi
- Center for Micro-BioRobotics @SSSA
- Istituto Italiano di Tecnologia
- 56025 Pontedera
- Italy
- Department of Bioengineering and Therapeutic Sciences
| | - Harald Nuhn
- Department of Bioengineering and Therapeutic Sciences
- University of California
- San Francisco
- USA
| | - Ioannis Liakos
- Smart Materials
- Nanophysics Department
- Istituto Italiano di Tecnologia
- Genoa
- Italy
| | - Attilio Marino
- Center for Micro-BioRobotics @SSSA
- Istituto Italiano di Tecnologia
- 56025 Pontedera
- Italy
- The BioRobotics Institute
| | - Sergio Marras
- Nanochemistry Department
- Istituto Italiano di Tecnologia
- Genoa
- Italy
| | | | - Virgilio Mattoli
- Center for Micro-BioRobotics @SSSA
- Istituto Italiano di Tecnologia
- 56025 Pontedera
- Italy
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences
- University of California
- San Francisco
- USA
| |
Collapse
|
32
|
Sarraf M, Abdul Razak B, Dabbagh A, Nasiri-Tabrizi B, Abu Kasim NH, Basirun WJ. Optimizing PVD conditions for electrochemical anodization growth of well-adherent Ta2O5 nanotubes on Ti–6Al–4V alloy. RSC Adv 2016. [DOI: 10.1039/c6ra11290k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The proposed approach could be considered for the design of various nanostructured titanium implant surfaces.
Collapse
Affiliation(s)
- Masoud Sarraf
- Center of Advanced Manufacturing and Material Processing
- Department of Engineering
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Bushroa Abdul Razak
- Center of Advanced Manufacturing and Material Processing
- Department of Engineering
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Ali Dabbagh
- Center of Advanced Manufacturing and Material Processing
- Department of Engineering
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Bahman Nasiri-Tabrizi
- Advanced Materials Research Center
- Materials Engineering Department
- Najafabad Branch
- Islamic Azad University
- Najafabad
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry
- Faculty of Dentistry
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Wan Jefrey Basirun
- Department of Chemistry
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| |
Collapse
|
33
|
Beltrán-Partida E, Valdez-Salas B, Escamilla A, Curiel M, Valdez-Salas E, Nedev N, Bastidas JM. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 60:239-245. [PMID: 26706527 DOI: 10.1016/j.msec.2015.11.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/20/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023]
Abstract
Amorphous titanium dioxide (TiO2) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability.
Collapse
Affiliation(s)
- Ernesto Beltrán-Partida
- Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California, Mexico; Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico
| | - Benjamín Valdez-Salas
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico.
| | - Alan Escamilla
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico
| | - Mario Curiel
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico
| | - Ernesto Valdez-Salas
- Ixchel Medical Centre, Av. Bravo y Obregón, 21000 Mexicali, Baja California, Mexico
| | - Nicola Nedev
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico
| | - Jose M Bastidas
- National Centre for Metallurgical Research, CSIC, Av. Gregorio del Amo 8, 28040 Madrid, Spain
| |
Collapse
|
34
|
A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40735-015-0024-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Almeida Alves CF, Cavaleiro A, Carvalho S. Bioactivity response of Ta1-xOx coatings deposited by reactive DC magnetron sputtering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:110-8. [PMID: 26478293 DOI: 10.1016/j.msec.2015.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/10/2015] [Accepted: 08/11/2015] [Indexed: 01/15/2023]
Abstract
The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft-hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar+O2 atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates.
Collapse
Affiliation(s)
- C F Almeida Alves
- GRF-CFUM, Physics Departament, University of Minho, Campus of Azurem, Guimaraes 4800-058, Portugal.
| | - A Cavaleiro
- SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Coimbra 3030-788, Portugal
| | - S Carvalho
- GRF-CFUM, Physics Departament, University of Minho, Campus of Azurem, Guimaraes 4800-058, Portugal; SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Coimbra 3030-788, Portugal
| |
Collapse
|
36
|
Yang J, Zhang K, Zhang S, Fan J, Guo X, Dong W, Wang S, Chen Y, Yu B. Preparation of calcium phosphate cement and polymethyl methacrylate for biological composite bone cements. Med Sci Monit 2015; 21:1162-72. [PMID: 25904398 PMCID: PMC4418284 DOI: 10.12659/msm.893845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background We studied the biological safety, biomechanics, and tissue compatibility of calcium phosphate cement and Polymethyl Methacrylate composite bone cement mixed in different ratios. Material/Methods CPC and PMMA were mixed in different ratios (3: 1, 2: 1, 1: 1, 1: 2, 1: 5, 1: 10, 1: 15, and 1: 20). PMMA solvent is a general solvent containing a dissolved preparation of the composite bone cement specific to a given specimen to determine biological safety, biomechanics, and tissue compatibility. Results The CPC/PMMA (33%) group, CPC/PMMA (50%) group, CPC/PMMA (67%) group, and CPC/PMMA (75%) group were more in line with the composite bone cement without cytotoxicity requirements. The compressive strength of the CPC/PMMA (67%) group and CPC/PMMA (75%) group was 20Mpa–30Mpa, while that of the CPC/PMMA (4.8%) group, CPC/PMMA (6.25%) group, CPC/PMMA (9.1%) group, CPC/PMMA (16.7%) group, CPC/PMMA (33%) group, and CPC/PMMA (50%) group was 40Mpa–70Mpa. Curing time was longer in the CPC group (more than 11 min) and shorter in the PMMA group (less than 2 min). The results of weight loss rate showed that there were no significant differences between the CPC/PMMA group (4.8%, 6.25%, 9.1%, 16.7%, 33%) and PMMA control group (p>0.05). With the decrease of CPC content, the rate of weight loss gradually decreased. Conclusions The CPC/PMMA (50%) group, CPC/PMMA (67%) group, and CPC/PMMA (75%) group provide greater variability and selectivity for the composite bone cement in obtaining better application.
Collapse
Affiliation(s)
- Jun Yang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Kairui Zhang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Sheng Zhang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jiping Fan
- Department of Orthopaedics, 421 hospital of PLA, Guangzhou, Guangdong, China (mainland)
| | - Xinhui Guo
- Department of Orthopaedics, 421 Hospital of PLA, Guangzhou, Guangdong, China (mainland)
| | - Weiqiang Dong
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shengnan Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yirong Chen
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
37
|
Li Y, Jiao Y, Li X, Guo Z. Improving the osteointegration of Ti6Al4V by zeolite MFI coating. Biochem Biophys Res Commun 2015; 460:151-6. [PMID: 25757911 DOI: 10.1016/j.bbrc.2015.02.157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Osteointegration is crucial for success in orthopedic implantation. In recent decades, there have been numerous studies aiming to modify titanium alloys, which are the most widely used materials in orthopedics. Zeolites are solid aluminosilicates whose application in the biomedical field has recently been explored. To this end, MFI zeolites have been developed as titanium alloy coatings and tested in vitro. Nevertheless, the effect of the MFI coating of biomaterials in vivo has not yet been addressed. The aim of the present work is to evaluate the effects of MFI-coated Ti6Al4V implants in vitro and in vivo. After surface modification, the surface was investigated using field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). No difference was observed regarding the proliferation of MC3T3-E1 cells on the Ti6Al4V (Ti) and MFI-coated Ti6Al4V (M-Ti) (p > 0.05). However, the attachment of MC3T3-E1 cells was found to be better in the M-Ti group. Additionally, ALP staining and activity assays and quantitative real-time RT-PCR indicated that MC3T3-E1 cells grown on the M-Ti displayed high levels of osteogenic differentiation markers. Moreover, Van-Gieson staining of histological sections demonstrated that the MFI coating on Ti6Al4V scaffolds significantly enhanced osteointegration and promoted bone regeneration after implantation in rabbit femoral condylar defects at 4 and 12 weeks. Therefore, this study provides a method for modifying Ti6Al4V to achieve improved osteointegration and osteogenesis.
Collapse
Affiliation(s)
- Yong Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Xiaokang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China.
| |
Collapse
|
38
|
Beltrán-Partida E, Moreno-Ulloa A, Valdez-Salas B, Velasquillo C, Carrillo M, Escamilla A, Valdez E, Villarreal F. Improved Osteoblast and Chondrocyte Adhesion and Viability by Surface-Modified Ti6Al4V Alloy with Anodized TiO₂ Nanotubes Using a Super-Oxidative Solution. MATERIALS 2015; 8:867-883. [PMID: 28787976 PMCID: PMC5455429 DOI: 10.3390/ma8030867] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/07/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
Titanium (Ti) and its alloys are amongst the most commonly-used biomaterials in orthopedic and dental applications. The Ti-aluminum-vanadium alloy (Ti6Al4V) is widely used as a biomaterial for these applications by virtue of its favorable properties, such as high tensile strength, good biocompatibility and excellent corrosion resistance. TiO2 nanotube (NTs) layers formed by anodization on Ti6Al4V alloy have been shown to improve osteoblast adhesion and function when compared to non-anodized material. In his study, NTs were grown on a Ti6Al4V alloy by anodic oxidation for 5 min using a super-oxidative aqueous solution, and their in vitro biocompatibility was investigated in pig periosteal osteoblasts and cartilage chondrocytes. Scanning electron microscopy (SEM), energy dispersion X-ray analysis (EDX) and atomic force microscopy (AFM) were used to characterize the materials. Cell morphology was analyzed by SEM and AFM. Cell viability was examined by fluorescence microscopy. Cell adhesion was evaluated by nuclei staining and cell number quantification by fluorescence microscopy. The average diameter of the NTs was 80 nm. The results demonstrate improved cell adhesion and viability at Day 1 and Day 3 of cell growth on the nanostructured material as compared to the non-anodized alloy. In conclusion, this study evidences the suitability of NTs grown on Ti6Al4V alloy using a super-oxidative water and a short anodization process to enhance the adhesion and viability of osteoblasts and chondrocytes. The results warrant further investigation for its use as medical implant materials.
Collapse
Affiliation(s)
- Ernesto Beltrán-Partida
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Av. Zotoluca y Chinampas, s/n, Mexicali C.P. 21040, Baja California, Mexico.
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. B. Juárez y Calle de la Normal s/n, Mexicali C.P. 21280, Baja California, Mexico.
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
- Instituto Nacional de Rehabilitación, Calz. México Xochimilco, No. 289, Arenal de Guadalupe, México C.P. 14389, D.F., Mexico.
| | - Aldo Moreno-Ulloa
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México C.P. 11340, D.F., Mexico.
| | - Benjamín Valdez-Salas
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. B. Juárez y Calle de la Normal s/n, Mexicali C.P. 21280, Baja California, Mexico.
| | - Cristina Velasquillo
- Instituto Nacional de Rehabilitación, Calz. México Xochimilco, No. 289, Arenal de Guadalupe, México C.P. 14389, D.F., Mexico.
| | - Monica Carrillo
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. B. Juárez y Calle de la Normal s/n, Mexicali C.P. 21280, Baja California, Mexico.
| | - Alan Escamilla
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. B. Juárez y Calle de la Normal s/n, Mexicali C.P. 21280, Baja California, Mexico.
| | - Ernesto Valdez
- Centro Medico Ixchel, Bravo y Obregón, Mexicali C.P. 21000, Baja California, Mexico.
| | - Francisco Villarreal
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Mas-Moruno C, Garrido B, Rodriguez D, Ruperez E, Gil FJ. Biofunctionalization strategies on tantalum-based materials for osseointegrative applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:109. [PMID: 25665847 PMCID: PMC4323513 DOI: 10.1007/s10856-015-5445-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
The use of tantalum as biomaterial for orthopedic applications is gaining considerable attention in the clinical practice because it presents an excellent chemical stability, body fluid resistance, biocompatibility, and it is more osteoconductive than titanium or cobalt-chromium alloys. Nonetheless, metallic biomaterials are commonly bioinert and may not provide fast and long-lasting interactions with surrounding tissues. The use of short cell adhesive peptides derived from the extracellular matrix has shown to improve cell adhesion and accelerate the implant's biointegration in vivo. However, this strategy has been rarely applied to tantalum materials. In this work, we have studied two immobilization strategies (physical adsorption and covalent binding via silanization) to functionalize tantalum surfaces with a cell adhesive RGD peptide. Surfaces were used untreated or activated with either HNO3 or UV/ozone treatments. The process of biofunctionalization was characterized by means of physicochemical and biological methods. Physisorption of the RGD peptide on control and HNO3-treated tantalum surfaces significantly enhanced the attachment and spreading of osteoblast-like cells; however, no effect on cell adhesion was observed in ozone-treated samples. This effect was attributed to the inefficient binding of the peptide on these highly hydrophilic surfaces, as evidenced by contact angle measurements and X-ray photoelectron spectroscopy. In contrast, activation of tantalum with UV/ozone proved to be the most efficient method to support silanization and subsequent peptide attachment, displaying the highest values of cell adhesion. This study demonstrates that both physical adsorption and silanization are feasible methods to immobilize peptides onto tantalum-based materials, providing them with superior bioactivity.
Collapse
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028, Barcelona, Spain,
| | | | | | | | | |
Collapse
|
40
|
Tan AW, Tay L, Chua KH, Ahmad R, Akbar SA, Pingguan-Murphy B. Proliferation and stemness preservation of human adipose-derived stem cells by surface-modified in situ TiO₂ nanofibrous surfaces. Int J Nanomedicine 2014; 9:5389-401. [PMID: 25473278 PMCID: PMC4247135 DOI: 10.2147/ijn.s72659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two important criteria of an ideal biomaterial in the field of stem cells research are to regulate the cell proliferation without the loss of its pluripotency and to direct the differentiation into a specific cell lineage when desired. The present study describes the influence of TiO2 nanofibrous surface structures on the regulation of proliferation and stemness preservation of adipose-derived stem cells (ADSCs). TiO2 nanofiber arrays were produced in situ onto Ti-6Al-4V substrate via a thermal oxidation process and the successful fabrication of these nanostructures was confirmed by field emission scanning electron microscopy (FESEM), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD), and contact angle measurement. ADSCs were seeded on two types of Ti-6Al-4V surfaces (TiO2 nanofibers and flat control), and their morphology, proliferation, and stemness expression were analyzed using FESEM, AlamarBlue assay, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR) after 2 weeks of incubation, respectively. The results show that ADSCs exhibit better adhesion and significantly enhanced proliferation on the TiO2 nanofibrous surfaces compared to the flat control surfaces. The greater proliferation ability of TiO2 nanofibrous surfaces was further confirmed by the results of cell cycle assay. More importantly, TiO2 nanofibrous surfaces significantly upregulate the expressions of stemness markers Sox-2, Nanog3, Rex-1, and Nestin. These results demonstrate that TiO2 nanofibrous surfaces can be used to enhance cell adhesion and proliferation while simultaneously maintaining the stemness of ADSCs, thereby representing a promising approach for their potential application in the field of bone tissue engineering as well as regenerative therapies.
Collapse
Affiliation(s)
- Ai Wen Tan
- Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Lelia Tay
- Department of Physiology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Kien Hui Chua
- Department of Physiology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Roslina Ahmad
- Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Sheikh Ali Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
41
|
Gindri IM, Frizzo CP, Bender CR, Tier AZ, Martins MAP, Villetti MA, Machado G, Rodriguez LC, Rodrigues DC. Preparation of TiO₂ nanoparticles coated with ionic liquids: a supramolecular approach. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11536-43. [PMID: 24933673 DOI: 10.1021/am5022107] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Coated TiO2 nanoparticles by dicationic imidazolium-based ionic liquids (ILs) were prepared and studied by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and scanning electron microscopy (SEM). Three ILs with different hydrophobicity degrees and structural characteristics were used (IL-1, IL-2, and IL-3). The interaction between IL molecules and the TiO2 surface was analyzed in both solid state and in solution. The physical and chemical properties of coated nanoparticles (TiO2 + IL-1, TiO2 + IL-2, and TiO2 + IL-3) were compared to pure materials (TiO2, IL-1, IL-2, and IL-3) in order to evaluate the interaction between both components. Thermal behavior, diffraction pattern, and morphologic characteristics were evaluated in the solid state. It was observed that all mixtures (TiO2 + IL) showed different behavior from that detected for pure substances, which is an evidence of film formation. DLS experiments were conducted to determine film thickness on the TiO2 surface comparing the size (hydrodynamic radius, Rh) of pure TiO2 with coated nanoparticles (TiO2 + IL). Results showed the thickness of the film increased with hydrophobicity of the IL compound. TEM images support this observation. Finally, X-ray diffraction patterns showed that, in coated samples, no structural changes in TiO2 diffraction peaks were observed, which is related to the maintenance of the crystalline structure. On the contrary, ILs showed different diffraction patterns, which confirms the hypothesis of interactions happening between IL and the TiO2 nanoparticles surface.
Collapse
Affiliation(s)
- Izabelle M Gindri
- Department of Bioengineering, The University of Texas at Dallas , Richardson, Texas 75080, United States
| | | | | | | | | | | | | | | | | |
Collapse
|