1
|
Bulut MO, Akçalı K. Sustainable Cationic Cotton with Keratin Hydrolysate. FIBERS AND POLYMERS 2024; 25:3021-3033. [DOI: 10.1007/s12221-024-00626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 01/06/2025]
Abstract
AbstractIn this research work, the keratin hydrolysate was obtained from waste wool by using alkaline hydrolysis. The extracted keratin hydrolysate was treated to the cotton fabric, and then reference and treated fabrics dyed with direct dyestuffs in neutral medium without salt. It was revealed that there was improvement in treated fabric in terms of dyeability and dry crease recovery angle compared to untreated fabric and that wet fastness values and tensile strength values of treated fabric remained same compared to those of untreated fabric. The structural change of treated surfaces was confirmed by SEM, FTIR, XPS and TEM analyses.
Collapse
|
2
|
Mori H, Taketsuna Y, Shimogama K, Nishi K, Hara M. Interpenetrating gelatin/alginate mixed hydrogel: The simplest method to prepare an autoclavable scaffold. J Biosci Bioeng 2024; 137:463-470. [PMID: 38570220 DOI: 10.1016/j.jbiosc.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 04/05/2024]
Abstract
The choice of sterilization method for hydrogels used for cell culture influences the ease of preparing the gel. We prepared interpenetrating gelatin/calcium alginate hydrogels containing 1% (w/v) alginate and 1-16% (w/v) gelatin by molding with the mixture of gelatin/sodium alginate solution, followed by the addition of calcium ions by incubation in calcium chloride solution. It is the simplest method to prepare autoclavable gelatin/sodium hydrogel. We measured various properties of the hydrogels including volume, Young's modulus in the compression test, storage modulus, and loss modulus in the dynamic viscoelasticity measurement. The gelatin/alginate hydrogel can be easily fabricated into any shape by this method. After autoclave treatment, the hydrogel was shrunk to smaller than the original shape in similar figures. The shape of the gelatin/alginate hydrogel can be designed into any shape with the reduction ratio of the volume. Human osteosarcoma (HOS) cells adhered to the gelatin/alginate hydrogel and then proliferated. Gelatin/calcium alginate hydrogels with a high concentration are considered to be autoclavable culture substrates because of their low deformation and gelatin elution rate after autoclaving and the high amount of cells attached to the hydrogels.
Collapse
Affiliation(s)
- Hideki Mori
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Yaya Taketsuna
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Kae Shimogama
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Koki Nishi
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Masayuki Hara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| |
Collapse
|
3
|
Ma X, Wang M, Ran Y, Wu Y, Wang J, Gao F, Liu Z, Xi J, Ye L, Feng Z. Design and Fabrication of Polymeric Hydrogel Carrier for Nerve Repair. Polymers (Basel) 2022; 14:polym14081549. [PMID: 35458307 PMCID: PMC9031091 DOI: 10.3390/polym14081549] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Nerve regeneration and repair still remain a huge challenge for both central nervous and peripheral nervous system. Although some therapeutic substances, including neuroprotective agents, clinical drugs and stem cells, as well as various growth factors, are found to be effective to promote nerve repair, a carrier system that possesses a sustainable release behavior, in order to ensure high on-site concentration during the whole repair and regeneration process, and high bioavailability is still highly desirable. Hydrogel, as an ideal delivery system, has an excellent loading capacity and sustainable release behavior, as well as tunable physical and chemical properties to adapt to various biomedical scenarios; thus, it is thought to be a suitable carrier system for nerve repair. This paper reviews the structure and classification of hydrogels and summarizes the fabrication and processing methods that can prepare a suitable hydrogel carrier with specific physical and chemical properties. Furthermore, the modulation of the physical and chemical properties of hydrogels is also discussed in detail in order to obtain a better therapeutic effect to promote nerve repair. Finally, the future perspectives of hydrogel microsphere carriers for stroke rehabilitation are highlighted.
Collapse
Affiliation(s)
- Xiaoyu Ma
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| | - Mengjie Wang
- School of Beijing Rehabilitation Medicine, Capital Medical University, Beijing 100044, China;
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Yusi Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
- NUIST-UoR International Research Institute, Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
| | - Fuhai Gao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| |
Collapse
|
4
|
Yang W, Shan Z. Application of wool keratin: an anti-ultraviolet wall material in spray drying. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4235-4244. [PMID: 34538906 DOI: 10.1007/s13197-020-04897-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/30/2022]
Abstract
Low-molecular-weight keratin (LMWK) obtained from wool was employed as a wall material for the spray drying encapsulation of fish oil. Microcapsules with different LMWK contents were prepared, and their anti-ultraviolet performance and other features were studied. The results showed that LMWK was able to improve the encapsulation efficiency of fish oil because of its good emulsifying properties. When the LMWK content was increased from 0 to 10, 30 and 50%, the shelf life of the microcapsules under ultraviolet irradiation increased from 48 to 96 h, 144 h and 168 h, respectively. The strongest absorption efficiency of LMWK is shown in the UVc band. The chemical structure of LMWK did not change during an ultraviolet accelerating ageing test.
Collapse
Affiliation(s)
- Wenhua Yang
- College of Biomass Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China.,National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065 China
| | - Zhihua Shan
- College of Biomass Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China.,National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065 China
| |
Collapse
|
5
|
Brenner M, Weichold O. Autogenous Cross-Linking of Recycled Keratin from Poultry-Feather Waste to Hydrogels for Plant-Growth Media. Polymers (Basel) 2021; 13:polym13203581. [PMID: 34685338 PMCID: PMC8540439 DOI: 10.3390/polym13203581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
The global rise in atmospheric temperature is leading to an increasing spread of semi-arid and arid regions and is accompanied by a deterioration of arable land. Polymers can help in a number of ways, but they must not be a burden to the environment. In this context, we present herein a method by which goose feathers, representative of keratin waste in general, can be transformed into hydrogels for use as a plant growth medium. The treatment of shredded feathers in Na2S solution at ambient conditions dissolves approx. 80% of the keratin within 30 min. During evaporation, the thiol groups of cysteine reoxidise to disulphide bridges. Additionally, the protein chains form β-sheets. Both act as cross-links that enables the formation of gels. The drying conditions were found to be crucial as slower evaporation affords gels with higher degrees of swelling at the cost of reduced gel yields. The cress germination test indicated the absence of toxic substances in the gel, which strongly adheres to the roots. Thereby, the plants are protected from drought stress as long as the gel still contains moisture.
Collapse
|
6
|
Goh PS, Othman MHD, Matsuura T. Waste Reutilization in Polymeric Membrane Fabrication: A New Direction in Membranes for Separation. MEMBRANES 2021; 11:782. [PMID: 34677548 PMCID: PMC8541373 DOI: 10.3390/membranes11100782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 01/11/2023]
Abstract
In parallel to the rapid growth in economic and social activities, there has been an undesirable increase in environmental degradation due to the massively produced and disposed waste. The need to manage waste in a more innovative manner has become an urgent matter. In response to the call for circular economy, some solid wastes can offer plenty of opportunities to be reutilized as raw materials for the fabrication of functional, high-value products. In the context of solid waste-derived polymeric membrane development, this strategy can pave a way to reduce the consumption of conventional feedstock for the production of synthetic polymers and simultaneously to dampen the negative environmental impacts resulting from the improper management of these solid wastes. The review aims to offer a platform for overviewing the potentials of reutilizing solid waste in liquid separation membrane fabrication by covering the important aspects, including waste pretreatment and raw material extraction, membrane fabrication and characterizations, as well as the separation performance evaluation of the resultant membranes. Three major types of waste-derived polymeric raw materials, namely keratin, cellulose, and plastics, are discussed based on the waste origins, limitations in the waste processing, and their conversion into polymeric membranes. With the promising material properties and viability of processing facilities, recycling and reutilization of waste resources for membrane fabrication are deemed to be a promising strategy that can bring about huge benefits in multiple ways, especially to make a step closer to sustainable and green membrane production.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur St., Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
7
|
Zhao Z, Chua HM, Goh BHR, Lai HY, Tan SJ, Moay ZK, Setyawati MI, Ng KW. Anisotropic hair keratin-dopamine composite scaffolds exhibit strain-stiffening properties. J Biomed Mater Res A 2021; 110:92-104. [PMID: 34254735 DOI: 10.1002/jbm.a.37268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 11/06/2022]
Abstract
Human hair keratin (HHK) has been successfully explored as raw materials for three-dimensional scaffolds for soft tissue regeneration due to its excellent biocompatibility and bioactivity. However, none of the reported HHK based scaffolds is able to replicate the strain-stiffening capacity of living tissues when responding to large deformations. In the present study, strain-stiffening property was achieved in scaffolds fabricated from HHK via a synergistic effect of well-defined, aligned microstructure and chemical crosslinking. Directed ice-templating method was used to fabricate HHK-based scaffolds with highly aligned (anisotropic) microstructure while oxidized dopamine (ODA) was used to crosslink covalently to HHKs. The resultant HHK-ODA scaffolds exhibited strain-stiffening behavior characterized by the increased gradient of the stress-strain curve after the yield point. Both ultimate tensile strength and the elongation at break were enhanced significantly (~700 kPa, ~170%) in comparison to that of HHK scaffolds lacking of aligned microstructure or ODA crosslinking. In vitro cell culture studies indicated that HHK-ODA scaffolds successfully supported human dermal fibroblasts (HDFs) adhesion, spreading and proliferation. Moreover, anisotropic HHK-ODA scaffolds guided cell growth in alignment with the defined microstructure as shown by the highly organized cytoskeletal networks and nuclei distribution. The findings suggest that HHK-ODA scaffolds, with strain-stiffening properties, biocompatibility and bioactivity, have the potential to be applied as biomimetic matrices for soft tissue regeneration.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Bernice Huan Rong Goh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Shao Jie Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Zi Kuang Moay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | | | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.,Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA.,Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore.,Skin Research Institute of Singapore, Biomedical Science Institutes, Singapore
| |
Collapse
|
8
|
Zakeri-Siavashani A, Chamanara M, Nassireslami E, Shiri M, Hoseini-Ahmadabadi M, Paknejad B. Three dimensional spongy fibroin scaffolds containing keratin/vanillin particles as an antibacterial skin tissue engineering scaffold. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1817021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mahdi Shiri
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Babak Paknejad
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zhang C, Xia L, Zhang J, Liu X, Xu W. Utilization of waste wool fibers for fabrication of wool powders and keratin: a review. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2020. [DOI: 10.1186/s42825-020-00030-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
|
11
|
Zhong X, Li R, Wang Z, Wang W, Yu D. Eco-fabrication of antibacterial nanofibrous membrane with high moisture permeability from wasted wool fabrics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:404-411. [PMID: 31734551 DOI: 10.1016/j.wasman.2019.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/09/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Wasted wool fabrics are a kind of textile waste source and the upcycle of them can not only benefit the environmental protection, but also turn waste into treasure by developing other potential applications. In this work, ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) was used as a green solvent to upcycle wasted wool fabrics into a wool keratin (WK)/IL/polyacrylonitrile (PAN) composite nanofibrous membrane with good antibacterial and high moisture permeability through electrospinning. The morphology and structure of the regenerated nanofibrous membrane were characterized by Scanning Electronic Microscopy (SEM), Energy Dispersive Spectrometer (EDS), Fourier Transfer Infrared Spectroscopy (FTIR). The antibacterial test demonstrates that it has 89.21% inhibition rate against E. coli, and 60.70% against S. aureus. Furthermore, the keratin containing in the membrane can effectively improve the hydrophilic property of it, as Moisture Management Test (MMT) indicates that it performs an excellent wetting performance and water transport property. In addition, IL is supposed to be recycled from the composite membrane through immersing in distilled water, which makes the fabrication process green and sustainable.
Collapse
Affiliation(s)
- Xing Zhong
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Rong Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Zehong Wang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wei Wang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Dan Yu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
12
|
Keratinous materials: Structures and functions in biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110612. [PMID: 32204061 DOI: 10.1016/j.msec.2019.110612] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 11/21/2022]
Abstract
Keratins are a family of fibrous proteins anticipated to possess wide-ranging biomedical applications due to their abundance, physicochemical properties and intrinsic biological activity. This review mainly focuses on the biomaterials derived from three major sources of keratins; namely human hair, wool and feather, that have effective applications in tissue engineering, wound healing and drug delivery. This article offers five viewpoints regarding keratin i) an introduction to keratin protein extraction and keratin-based scaffold fabrication methods ii) applications in nerve and bone tissue engineering iii) a review on the keratin dressings applied to different types of wounds to facilitate wound healing and thereby repair the skin iv) the utilization of keratinous materials as a carrier system for therapeutics with a controlled manner v) a discussion regarding the main challenges for using keratin in biomedical applications as well as its future prospects.
Collapse
|
13
|
Li Y, Guo R, Lu W, Zhu D. Research progress on resource utilization of leather solid waste. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2019. [DOI: 10.1186/s42825-019-0008-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Suarato G, Bertorelli R, Athanassiou A. Borrowing From Nature: Biopolymers and Biocomposites as Smart Wound Care Materials. Front Bioeng Biotechnol 2018; 6:137. [PMID: 30333972 PMCID: PMC6176001 DOI: 10.3389/fbioe.2018.00137] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022] Open
Abstract
Wound repair is a complex and tightly regulated physiological process, involving the activation of various cell types throughout each subsequent step (homeostasis, inflammation, proliferation, and tissue remodeling). Any impairment within the correct sequence of the healing events could lead to chronic wounds, with potential effects on the patience quality of life, and consequent fallouts on the wound care management. Nature itself can be of inspiration for the development of fully biodegradable materials, presenting enhanced bioactive potentialities, and sustainability. Naturally-derived biopolymers are nowadays considered smart materials. They provide a versatile and tunable platform to design the appropriate extracellular matrix able to support tissue regeneration, while contrasting the onset of adverse events. In the past decades, fabrication of bioactive materials based on natural polymers, either of protein derivation or polysaccharide-based, has been extensively exploited to tackle wound-healing related problematics. However, in today's World the exclusive use of such materials is becoming an urgent challenge, to meet the demand of environmentally sustainable technologies to support our future needs, including applications in the fields of healthcare and wound management. In the following, we will briefly introduce the main physico-chemical and biological properties of some protein-based biopolymers and some naturally-derived polysaccharides. Moreover, we will present some of the recent technological processing and green fabrication approaches of novel composite materials based on these biopolymers, with particular attention on their applications in the skin tissue repair field. Lastly, we will highlight promising future perspectives for the development of a new generation of environmentally-friendly, naturally-derived, smart wound dressings.
Collapse
Affiliation(s)
- Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Genoa, Italy
- In vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rosalia Bertorelli
- In vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | | |
Collapse
|
15
|
Transparent biocompatible wool keratin film prepared by mechanical compression of porous keratin hydrogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:19-25. [PMID: 30033245 DOI: 10.1016/j.msec.2018.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/12/2018] [Accepted: 05/05/2018] [Indexed: 12/12/2022]
Abstract
We could prepare a transparent wool keratin film by mechanical compression of the keratin hydrogel, which was prepared by our method previously reported. Optical transmittance of the keratin film was approximately 70% at 400 nm and 80% at 550 nm. The keratin film had higher mechanical strength than the keratin hydrogel estimated from the tensile test. Young's modulus of the keratin film and that of keratin hydrogel were 0.582 ± 0.294 MPa and 0.041 ± 0.008 MPa, respectively. We evaluated degradability of keratin film by tryptic digestion in vitro and that also by implantation test in vivo. The keratin film showed slower degradation rate in the presence of trypsin in vitro, and also that as a subcutaneous implant in mouse in vivo. Biocompatibility is also a key factor for application of keratin as biomaterials. Within several days after subcutaneous implantation of the sample in mouse, an apparent symptom of acute inflammation of tissues, such as swelling of the reddish skin, was not observed. Keratin film remained in the original morphology of sheet-like structure while keratin hydrogel was degraded with many cracks and gaps after implantation for several weeks. We concluded from those results that keratin film was mostly biocompatible without provoking inflammation nor encapsulation, mechanically stronger than the keratin hydrogel, and was more resistant to degradation than the keratin hydrogel.
Collapse
|
16
|
Esparza Y, Bandara N, Ullah A, Wu J. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:446-453. [PMID: 29853111 DOI: 10.1016/j.msec.2018.04.067] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/25/2018] [Accepted: 04/22/2018] [Indexed: 10/17/2022]
Abstract
Hydrogel prepared from keratin shows potential applications in tissue engineering. However, the importance of the keratin sources has not been considered. The objectives of this study were to characterize and compare the rheological (storage modulus), physical (porosity, pore size, swelling capacity, and water contact angle) and in vitro cell compatibility of hydrogel scaffolds prepared from various keratin sources. Keratins were characterized by means of their molecular weight, amino acid composition, thermal and conformational properties. Hydrogels from chicken feather keratins demonstrated substantially higher storage modulus (G') than hair and wool keratin hydrogels. However, higher swelling capacity (>3000%) was determined in hair and wool over feather keratin (1500%) hydrogels. Our results suggest that small molecular weight and β-sheet conformation of feather keratin (~10 kDa) facilitated the self-assembly of rigid hydrogels through disulfide bond re-oxidation. Whereas, high molecular weight (10-75 kDa) stretchable α-helix conformation in hair and wool keratins resulted in weaker hydrogels. The cell cultures using fibroblasts showed the highest proliferation rate on chicken feather keratin hydrogel scaffolds. After 15 days of culture, partial breakdown of keratin fibers was observed. Results indicate that stiffer avian keratins can be used to fabricate more mechanically robust biomaterials than mammalian keratins.
Collapse
Affiliation(s)
- Yussef Esparza
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Nandika Bandara
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
17
|
Esparza Y, Ullah A, Wu J. Molecular mechanism and characterization of self-assembly of feather keratin gelation. Int J Biol Macromol 2018; 107:290-296. [DOI: 10.1016/j.ijbiomac.2017.08.168] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 11/24/2022]
|
18
|
Xia T, Liu W, Yang L. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine. J Biomed Mater Res A 2017; 105:1799-1812. [DOI: 10.1002/jbm.a.36034] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College; Chongqing University; Chongqing 400044 China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College; Chongqing University; Chongqing 400044 China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College; Chongqing University; Chongqing 400044 China
| |
Collapse
|
19
|
Ham TR, Lee RT, Han S, Haque S, Vodovotz Y, Gu J, Burnett LR, Tomblyn S, Saul JM. Tunable Keratin Hydrogels for Controlled Erosion and Growth Factor Delivery. Biomacromolecules 2015; 17:225-36. [PMID: 26636618 DOI: 10.1021/acs.biomac.5b01328] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tunable erosion of polymeric materials is an important aspect of tissue engineering for reasons that include cell infiltration, controlled release of therapeutic agents, and ultimately to tissue healing. In general, the biological response to proteinaceous polymeric hydrogels is favorable (e.g., minimal inflammatory response). However, unlike synthetic polymers, achieving tunable erosion with natural materials is a challenge. Keratins are a class of intermediate filament proteins that can be obtained from several sources, including human hair, and have gained increasing levels of use in tissue engineering applications. An important characteristic of keratin proteins is the presence of a large number of cysteine residues. Two classes of keratins with different chemical properties can be obtained by varying the extraction techniques: (1) keratose by oxidative extraction and (2) kerateine by reductive extraction. Cysteine residues of keratose are "capped" by sulfonic acid and are unable to form covalent cross-links upon hydration, whereas cysteine residues of kerateine remain as sulfhydryl groups and spontaneously form covalent disulfide cross-links. Here, we describe a straightforward approach to fabricate keratin hydrogels with tunable rates of erosion by mixing keratose and kerateine. SEM imaging and mechanical testing of freeze-dried materials showed similar pore diameters and compressive moduli, respectively, for each keratose-kerateine mixture formulation (∼1200 kPa for freeze-dried materials and ∼1.5 kPa for hydrogels). However, the elastic modulus (G') determined by rheology varied in proportion with the keratose-kerateine ratios, as did the rate of hydrogel erosion and the release rate of thiol from the hydrogels. The variation in keratose-kerateine ratios also led to tunable control over release rates of recombinant human insulin-like growth factor 1.
Collapse
Affiliation(s)
- Trevor R Ham
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States.,Department of Biomedical Engineering, University of Akron , Auburn Science and Engineering Center 275, West Tower, Akron, Ohio 44325, United States
| | - Ryan T Lee
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Sangheon Han
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Salma Haque
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University , 2015 Fyffe Court, Columbus, Ohio 43210, United States
| | - Junnan Gu
- Department of Food Science and Technology, The Ohio State University , 2015 Fyffe Court, Columbus, Ohio 43210, United States
| | - Luke R Burnett
- KeraNetics, LLC , 200 East First Street, Box 4, Suite 102, Winston-Salem, North Carolina 27101, United States
| | - Seth Tomblyn
- KeraNetics, LLC , 200 East First Street, Box 4, Suite 102, Winston-Salem, North Carolina 27101, United States
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|