1
|
Mir M, Chen J, Patel A, Pinezich MR, Hudock MR, Yoon A, Diane M, O'Neill J, Bacchetta M, Vunjak-Novakovic G, Kim J. Bioimpedance measurements of fibrotic and acutely injured lung tissues. Acta Biomater 2025; 194:270-287. [PMID: 39870150 PMCID: PMC11877686 DOI: 10.1016/j.actbio.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
In injured and diseased tissues, changes in molecular and cellular compositions, as well as tissue architecture, lead to alterations in both physiological and physical characteristics. Notably, the electrical properties of tissues, which can be characterized as bioelectrical impedance (bioimpedance), are closely linked to the health and pathological conditions of the tissues. This highlights the significant role of quantitatively characterizing these electrical properties in improving the accuracy and speed of diagnosis and prognosis. In this study, we investigate how diseases, injuries, and physical conditions can affect the electrical properties of lung tissues, using both rat and human lung tissue samples. Results showed that rat lung and trachea tissues exhibit a frequency-dependent behavior to alternating current (AC) across the frequency range of 0.1-300 kHz. The bioimpedance of the lung tissue increased with the level of aeration of the lung, which was manipulated by altering alveolar pressure (PALV: 1-15 cmH2O; bioimpedance level: 1.2-2.8 kΩ; AC frequency: 2 kHz). This increase is mainly because air is electrically nonconductive. The bioimpedance of rat lungs injured via intratracheal aspiration of hydrochloric acid (HCl; volume: 1 mL; AC frequency: 2 kHz) decreased by at least 82 % compared to that of healthy control lungs due to accumulation of fluids inside the airspace of the injured lungs. Moreover, using decellularized lung tissues, we determined the contributions of cellular components and tissue extracellular matrix (ECM) on the electrical characteristics of the lung tissues. Specifically, we observed a considerable increase in bioimpedance in fibrotic human lung tissues due to excessive ECM deposition (healthy: 70.8 Ω ± 10.2 Ω, fibrotic: 132.1 Ω ± 15.8 Ω, frequency: 2 kHz). Overall, the findings of this study can enhance our understanding of the correlation between electrical properties and pathological lung conditions, thereby improving diagnostic and prognostic capabilities and aiding in the treatment of lung diseases and injuries. STATEMENT OF SIGNIFICANCE: The bioelectrical properties of tissue are closely linked to both its physiological and physical characteristics. This underscores the importance of quantitatively characterizing these properties to improve the accuracy and speed of diagnosis and prognosis. In this study, we investigate how the bioelectrical properties of lung tissues are affected by different physical states and pathological conditions using rat and human lung tissues. As the burden of lung diseases continues to increase, our findings can contribute to improved treatment outcomes by enabling accurate and rapid assessment of lung tissue conditions.
Collapse
Affiliation(s)
- Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Aneri Patel
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Maria R Hudock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Alexander Yoon
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Mohamed Diane
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - John O'Neill
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University, Nashville, TN, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Medicine, Columbia University, New York, NY, USA
| | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| |
Collapse
|
2
|
Negishi J, Yamaguchi A, Tanaka D, Hashimoto Y, Zhang Y, Funamoto S. A Method for Fabricating Tissue-Specific Extracellular Matrix Blocks From Decellularized Tissue Powders. Adv Biol (Weinh) 2025; 9:e2400398. [PMID: 39601529 DOI: 10.1002/adbi.202400398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Decellularized tissues retain the extracellular matrix (ECM), shape, and composition that are unique to the source tissue. Previous studies using decellularized tissue lysates and powders have shown that tissue-specific ECM plays a key role in cellular function and wound healing. However, creating decellularized tissues composed of tissue-specific ECM with customizable shapes and structures for use as scaffolding materials remains challenging. In this study, a method for compacting decellularized tissue powder into blocks is developed using cold isostatic pressing (CIP). Custom-shaped ECM blocks and composite ECM blocks are fabricated using silicone molds. Additionally, an ECM block with a two-layer structure is obtained through a two-step CIP process. Cells are observed to infiltrate porous ECM blocks that are created using sodium chloride and transglutaminase. These results highlight the development of an effective method for producing ECM blocks using CIP with customizable shapes, compositions, and structures, making them suitable for use as cell culture scaffolds.
Collapse
Affiliation(s)
- Jun Negishi
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-006, Japan
| | - Ayana Yamaguchi
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Dan Tanaka
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Yoshihide Hashimoto
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-006, Japan
- Joining and Welding Research Institute, Osaka University, 11-1, Ibaraki, Osaka, 567-0047, Japan
| | - Yongwei Zhang
- Hangzhou Hopefan Biotechnology Co., Ltd., 199, Jintian Road, Jinnan Street, Linan District, Hangzhou, Zhejiang, 311399, China
| | - Seiichi Funamoto
- Brio Life Science, Inc., 503, 1-26-12, Takadano-baba, Shinjyuku-ku, Tokyo, 169-0075, Japan
| |
Collapse
|
3
|
Yun J, Cho M, Culver M, Pearce DP, Kim C, Witzenburg CM, Murphy WL, Gopalan P. Characterization of Decellularized Plant Leaf as an Emerging Biomaterial Platform. ACS Biomater Sci Eng 2024; 10:6144-6154. [PMID: 39214606 DOI: 10.1021/acsbiomaterials.4c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Decellularized plants have emerged as promising biomaterials for cell culture and tissue engineering applications due to their distinct material characteristics. This study explores the biochemical, mechanical, and structural properties of decellularized leaves that make them useful as biomaterials for cell culture. Five monocot leaf species were decellularized via alkali treatment, resulting in the effective removal of DNA and proteins. The Van Soest method was used to quantitatively evaluate the changes in cellulose, hemicellulose, and lignin content during decellularization. Tensile tests revealed considerable variations in mechanical strength depending on the plant species, the decellularization state, and the direction of applied mechanical force. Decellularized monocot leaves exhibited a notable reduction in mechanical strength and anisotropic properties depending on the leaf orientation. Imaging revealed inherent microgrooves on the epidermis of the monocot leaves. Permeability studies, including water uptake and biomolecule transport through decellularized leaves, confirmed excellent water uptake capability but limited biomolecule transport. Lastly, the plants were enzymatically degradable using typical plant enzymes, which were minimally cytotoxic to mammalian cells. Taken together, the features of decellularized plant leaves characterized in this study suggest ways in which they can be useful in cell culture and tissue engineering applications.
Collapse
Affiliation(s)
- Junsu Yun
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Mina Cho
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Matthew Culver
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| | - Daniel P Pearce
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| | - Chanul Kim
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| | - Colleen M Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| | - William L Murphy
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| |
Collapse
|
4
|
Gallo N, Natali ML, Curci C, Picerno A, Gallone A, Vulpi M, Vitarelli A, Ditonno P, Cascione M, Sallustio F, Rinaldi R, Sannino A, Salvatore L. Analysis of the Physico-Chemical, Mechanical and Biological Properties of Crosslinked Type-I Collagen from Horse Tendon: Towards the Development of Ideal Scaffolding Material for Urethral Regeneration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7648. [PMID: 34947245 PMCID: PMC8707771 DOI: 10.3390/ma14247648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022]
Abstract
Urethral stenosis is a pathological condition that consists in the narrowing of the urethral lumen because of the formation of scar tissue. Unfortunately, none of the current surgical approaches represent an optimal solution because of the high stricture recurrence rate. In this context, we preliminarily explored the potential of an insoluble type-I collagen from horse tendon as scaffolding material for the development of innovative devices for the regeneration of injured urethral tracts. Non-porous collagen-based substrates were produced and optimized, in terms of crosslinking density of the macromolecular structure, to either provide mechanical properties compliant with the urinary tract physiological stress and better sustain tissue regeneration. The effect of the adopted crosslinking strategy on the protein integrity and on the substrate physical-chemical, mechanical and biological properties was investigated in comparison with a decellularized matrix from porcine small intestinal submucosa (SIS patch), an extensively used xenograft licensed for clinical use in urology. The optimized production protocols allowed the preservation of the type I collagen native structure and the realization of a substrate with appealing end-use properties. The biological response, preliminarily investigated by immunofluorescence experiments on human adult renal stem/progenitor cells until 28 days, showed the formation of a stem-cell monolayer within 14 days and the onset of spheroids within 28 days. These results suggested the great potential of the collagen-based material for the development of scaffolds for urethral plate regeneration and for in vitro cellular studies.
Collapse
Affiliation(s)
- Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (M.L.N.); (A.S.); (L.S.)
| | - Maria Lucia Natali
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (M.L.N.); (A.S.); (L.S.)
- Typeone Biomaterials, Via Vittorio Veneto 64/C, 73036 Muro Leccese, Italy
| | - Claudia Curci
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.G.)
| | - Angela Picerno
- Nephrology Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Anna Gallone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.G.)
| | - Marco Vulpi
- Urology and Andrology Unit, Department of Emergency and Organ Transplant, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.V.); (A.V.); (P.D.)
| | - Antonio Vitarelli
- Urology and Andrology Unit, Department of Emergency and Organ Transplant, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.V.); (A.V.); (P.D.)
| | - Pasquale Ditonno
- Urology and Andrology Unit, Department of Emergency and Organ Transplant, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.V.); (A.V.); (P.D.)
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.C.); (R.R.)
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.C.); (R.R.)
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (M.L.N.); (A.S.); (L.S.)
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (M.L.N.); (A.S.); (L.S.)
- Typeone Biomaterials, Via Vittorio Veneto 64/C, 73036 Muro Leccese, Italy
| |
Collapse
|
5
|
Wu P, Xi X, Li R, Sun G. Engineering Polysaccharides for Tissue Repair and Regeneration. Macromol Biosci 2021; 21:e2100141. [PMID: 34219388 DOI: 10.1002/mabi.202100141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/11/2021] [Indexed: 12/22/2022]
Abstract
The success of repair or regeneration depends greatly on the architecture of 3D scaffolds that finely mimic natural extracellular matrix to support cell growth and assembly. Polysaccharides have excellent biocompatibility with intrinsic biological cues and they have been extensively investigated as scaffolds for tissue engineering and regenerative medicine (TERM). The physical and biochemical structures of natural polysaccharides, however, can barely meet all the requirements of tissue-engineered scaffolds. To take advantage of their inherent properties, many innovative approaches including chemical, physical, or joint modifications have been employed to improve their properties. Recent advancement in molecular and material building technology facilitates the fabrication of advanced 3D structures with desirable properties. This review focuses on the latest progress of polysaccharide-based scaffolds for TERM, especially those that construct advanced architectures for tissue regeneration.
Collapse
Affiliation(s)
- Pingli Wu
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xin Xi
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Ruochen Li
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Guoming Sun
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.,Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| |
Collapse
|
6
|
Kobayashi M, Ohara M, Hashimoto Y, Nakamura N, Fujisato T, Kimura T, Kishida A. Effect of luminal surface structure of decellularized aorta on thrombus formation and cell behavior. PLoS One 2021; 16:e0246221. [PMID: 33999919 PMCID: PMC8128234 DOI: 10.1371/journal.pone.0246221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Due to an increasing number of cardiovascular diseases, artificial heart valves and blood vessels have been developed. Although cardiovascular applications using decellularized tissue have been studied, the mechanisms of their functionality remain unknown. To determine the important factors for preparing decellularized cardiovascular prostheses that show good in vivo performance, the effects of the luminal surface structure of the decellularized aorta on thrombus formation and cell behavior were investigated. Various luminal surface structures of a decellularized aorta were prepared by heating, drying, and peeling. The luminal surface structure and collagen denaturation were evaluated by immunohistological staining, collagen hybridizing peptide (CHP) staining, and scanning electron microscopy (SEM) analysis. To evaluate the effects of luminal surface structure of decellularized aorta on thrombus formation and cell behavior, blood clotting tests and recellularization of endothelial cells and smooth muscle cells were performed. The results of the blood clotting test showed that the closer the luminal surface structure is to the native aorta, the higher the anti-coagulant property. The results of the cell seeding test suggest that vascular cells recognize the luminal surface structure and regulate adhesion, proliferation, and functional expression accordingly. These results provide important factors for preparing decellularized cardiovascular prostheses and will lead to future developments in decellularized cardiovascular applications.
Collapse
Affiliation(s)
- Mako Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Masako Ohara
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Minuma-ku, Saitama-shi, Saitama, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Naoko Nakamura
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Minuma-ku, Saitama-shi, Saitama, Japan
| | - Toshiya Fujisato
- Department of Biomedical Engineering, Osaka Institute of Technology, Asahi-ku, Osaka, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
7
|
Kobayashi M, Ohara M, Hashimoto Y, Nakamura N, Fujisato T, Kimura T, Kishida A. In vitro evaluation of surface biological properties of decellularized aorta for cardiovascular use. J Mater Chem B 2021; 8:10977-10989. [PMID: 33174886 DOI: 10.1039/d0tb01830a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to determine an in vitro evaluation method that could directly predict in vivo performance of decellularized tissue for cardiovascular use. We hypothesized that key factors for in vitro evaluation would be found by in vitro assessment of decellularized aortas that previously showed good performance in vivo, such as high patency. We chose porcine aortas, decellularized using three different decellularization methods: sodium dodecyl-sulfate (SDS), freeze-thawing, and high-hydrostatic pressurization (HHP). Immunohistological staining, a blood clotting test, scanning electron microscopy (SEM) analysis, and recellularization of endothelial cells were used for the in vitro evaluation. There was a significant difference in the remaining extracellular matrix (ECM) components, ECM structure, and the luminal surface structure between the three decellularized aortas, respectively, resulting in differences in the recellularization of endothelial cells. On the other hand, there was no difference observed in the blood clotting test. These results suggested that the blood clotting test could be a key evaluation method for the prediction of in vivo performance. In addition, evaluation of the luminal surface structure and the recellularization experiment should be packaged as an in vitro evaluation because the long-term patency was probably affected. The evaluation approach in this study may be useful to establish regulations and a quality management system for a cardiovascular prosthesis.
Collapse
Affiliation(s)
- Mako Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Masako Ohara
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Naoko Nakamura
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan
| | - Toshiya Fujisato
- Department of Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
8
|
He Z, Liu G, Ma X, Yang D, Li Q, Li N. Comparison of small-diameter decellularized scaffolds from the aorta and carotid artery of pigs. Int J Artif Organs 2020; 44:350-360. [PMID: 32988264 DOI: 10.1177/0391398820959350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM Tissue-specific extracellular matrix promotes tissue regeneration and repair. We aimed to identify the optimal decellularized matrices for tissue-engineered vascular graft (TEVG). METHODS Decellularized aorta of fetal pigs (DAFP, n = 6, group A), decellularized aorta of adult pigs (DAAP, n = 6, group B), and decellularized carotid artery of adult pigs (DCAP, n = 6, group C) were prepared. Scaffolds were compared using histology and ultrastructure. Endothelial cell (EC) and myofibroblast (MFB) infiltration assessments were performed in vitro. Cell infiltration was measured in vivo. Biomechanical properties were also determined. RESULTS Almost original cells were removed by the acellularization procedure, while the construction of the matrix basically remained. In vitro, monolayer ECs and multi-layer MFBs were formed onto the internal surface of the specimens after 3 weeks. In vivo, cell infiltration in group A significantly increased at the 6th and 8th week when compared with groups B and C (p < 0.01). The infiltrated cells were mainly MFBs and a few CD4+ T-lymphocytes/macrophages in the specimens. Groups A and B showed greater axial compliance than group C (p < 0.01). CONCLUSION DAFP was the most suitable for use as a small-caliber vascular graft.
Collapse
Affiliation(s)
- Zhijuan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guofeng Liu
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xu Ma
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Daping Yang
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingchun Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Kobayashi M, Kadota J, Hashimoto Y, Fujisato T, Nakamura N, Kimura T, Kishida A. Elastic Modulus of ECM Hydrogels Derived from Decellularized Tissue Affects Capillary Network Formation in Endothelial Cells. Int J Mol Sci 2020; 21:E6304. [PMID: 32878178 PMCID: PMC7503911 DOI: 10.3390/ijms21176304] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022] Open
Abstract
Recent applications of decellularized tissue have included the use of hydrogels for injectable materials and three-dimensional (3D) bioprinting bioink for tissue regeneration. Microvascular formation is required for the delivery of oxygen and nutrients to support cell growth and regeneration in tissues and organs. The aim of the present study was to evaluate the formation of capillary networks in decellularized extracellular matrix (d-ECM) hydrogels. The d-ECM hydrogels were obtained from the small intestine submucosa (SIS) and the urinary bladder matrix (UBM) after decellularizing with sodium deoxycholate (SDC) and high hydrostatic pressure (HHP). The SDC d-ECM hydrogel gradually gelated, while the HHP d-ECM hydrogel immediately gelated. All d-ECM hydrogels had low matrix stiffness compared to that of the collagen hydrogel, according to a compression test. D-ECM hydrogels with various elastic moduli were obtained, irrespective of the decellularization method or tissue source. Microvascular-derived endothelial cells were seeded on d-ECM hydrogels. Few cells attached to the SDC d-ECM hydrogel with no network formation, while on the HHP d-ECM hydrogel, a capillary network structure formed between elongated cells. Long, branched networks formed on d-ECM hydrogels with lower matrix stiffness. This suggests that the capillary network structure that forms on d-ECM hydrogels is closely related to the matrix stiffness of the hydrogel.
Collapse
Affiliation(s)
- Mako Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan; (M.K.); (J.K.); (Y.H.); (A.K.)
| | - Junpei Kadota
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan; (M.K.); (J.K.); (Y.H.); (A.K.)
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan; (M.K.); (J.K.); (Y.H.); (A.K.)
| | - Toshiya Fujisato
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan;
| | - Naoko Nakamura
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Saitama 337-8570, Japan;
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan; (M.K.); (J.K.); (Y.H.); (A.K.)
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan; (M.K.); (J.K.); (Y.H.); (A.K.)
| |
Collapse
|
10
|
Kimura T, Kondo M, Hashimoto Y, Fujisato T, Nakamura N, Kishida A. Surface Topography of PDMS Replica Transferred from Various Decellularized Aortic Lumens Affects Cellular Orientation. ACS Biomater Sci Eng 2019; 5:5721-5726. [PMID: 33405704 DOI: 10.1021/acsbiomaterials.8b01536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cells sense and respond to various surface topographies of substrates. Many types of topographical architectures have been developed for understanding cell-extracellular matrix (ECM) interactions and for their application in biomaterials. In the present study, as a topographical surface similar to native tissue, we developed a PDMS replica prepared using the transferring method of the decellularized aorta, which is an ECM assembly, and its cellular behaviors, such as orientation and elongation on it. Decellularized aortas were prepared by high hydrostatic pressure (HHP) and sodium dodecyl sulfate (SDS) methods for use as templates. Scanning electron microscopic observation of the SDS replica showed a randomly rough surface. Further, microscaled linear structures along the direction of the aortic longitudinal axis were observed on the HHP replica. These results indicated that the topographical surface of the HHP and SDS decellularized aorta could be replicated to their replicas at a microscale. Fibroblasts (NIH3T3) and endothelial cells (HUVECs) were cultured on their surfaces. Although they were randomly aligned on the SDS replica and flat surface, the high cellular alignment along with the direction of the aortic longitudinal axis was shown in the HHP replica and HHP decellularized aorta. These results suggest that the topographical structure similar to a native aorta could effectively induce the cell alignment, which is important to regulate cellular functions, and could provide important methodologies and knowledge for vascular biomaterials or culture substrates.
Collapse
Affiliation(s)
- Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Mayuka Kondo
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Toshiya Fujisato
- Department of Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Naoko Nakamura
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Saitama, Japan, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
11
|
Nakamura N, Ito A, Kimura T, Kishida A. Extracellular Matrix Induces Periodontal Ligament Reconstruction In Vivo. Int J Mol Sci 2019; 20:E3277. [PMID: 31277305 PMCID: PMC6650958 DOI: 10.3390/ijms20133277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/04/2022] Open
Abstract
One of the problems in dental implant treatment is the lack of periodontal ligament (PDL), which supports teeth, prevents infection, and transduces sensations such as chewiness. The objective of the present study was to develop a decellularized PDL for supporting an artificial tooth. To this end, we prepared mouse decellularized mandible bone with a PDL matrix by high hydrostatic pressure and DNase and detergent treatments and evaluated its reconstruction in vivo. After tooth extraction, the decellularized mandible bone with PDL matrix was implanted under the subrenal capsule in rat and observed that host cells migrated into the matrix and oriented along the PDL collagen fibers. The extracted decellularized tooth and de- and re-calcified teeth, which was used as an artificial tooth model, were re-inserted into the decellularized mandible bone and implanted under the subrenal capsule in rat. The reconstructed PDL matrix for the extracted decellularized tooth resembled the decellularized mandible bone without tooth extraction. This demonstrates that decellularized PDL matrix can reconstruct PDL tissue by controlling host cell migration, which could serve as a novel periodontal treatment approach.
Collapse
Affiliation(s)
- Naoko Nakamura
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Ai Ito
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
12
|
Zhang Y, Iwata T, Nam K, Kimura T, Wu P, Nakamura N, Hashimoto Y, Kishida A. Water absorption by decellularized dermis. Heliyon 2018; 4:e00600. [PMID: 29862362 PMCID: PMC5968173 DOI: 10.1016/j.heliyon.2018.e00600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
Water absorption by decellularized dermis was investigated and compared with biopolymer and synthetic polymer hydrogels (glutaraldehyde-crosslinked gelatin and crosslinked poly(acrylamide) hydrogel, respectively). Porcine dermis was decellularized in an aqueous sodium dodecyl sulfate (SDS) solution. Histological evaluation revealed that the SDS-treated dermis has much larger gaps between collagen fibrils than non-treated dermis, and that water absorption depends on these gaps. Decellularized dermis has low water absorptivity and the absorption obeys Fick's second law. During absorption, the water diffusion rate decreases with time and occurs in two steps. The first is rapid absorption into the large gaps, followed by slow absorption by the collagen fiber layer. Because of the gaps, decellularized dermis can absorb more water than native dermis and shows different water absorption behavior to glutaraldehyde-crosslinked gelatin and crosslinked poly(acrylamide) hydrogels.
Collapse
|
13
|
NAKAMURA N, KIMURA T, KISHIDA A. Medical Application of Decellularized Tissue-Polymer Complex. KOBUNSHI RONBUNSHU 2018. [DOI: 10.1295/koron.2017-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naoko NAKAMURA
- College of Systems Engineering and Science, Shibaura Institute of Technology
| | - Tsuyoshi KIMURA
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Akio KISHIDA
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
14
|
Nakamura N, Kimura T, Kishida A. Overview of the Development, Applications, and Future Perspectives of Decellularized Tissues and Organs. ACS Biomater Sci Eng 2016; 3:1236-1244. [DOI: 10.1021/acsbiomaterials.6b00506] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Naoko Nakamura
- Institute of Biomaterials
and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials
and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 Japan
| | - Akio Kishida
- Institute of Biomaterials
and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 Japan
| |
Collapse
|