1
|
Jeong HJ, Hoang LAP, Chen N, Zhu E, Wang A, Chen B, Wang EY, Ricupero CL, Lee CH. Engineering soft-hard tissue interfaces in dental and craniofacial system by spatially controlled bioactivities. Bioact Mater 2025; 45:246-256. [PMID: 39659726 PMCID: PMC11629151 DOI: 10.1016/j.bioactmat.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
The interface between soft and hard tissues is constituted by a gradient change of cell types and matrix compositions that are optimally designed for proper load transmission and injury protection. In the musculoskeletal system, the soft-hard tissue interfaces at tendon-bone, ligament-bone, and meniscus-bone have been extensively researched as regenerative targets. Similarly, extensive research efforts have been made to guide the regeneration of multi-tissue complexes in periodontium. However, the other soft-hard tissue interfaces in the dental and craniofacial system have been somewhat neglected. This review discusses the clinical significance of developing regenerative strategies for soft-hard tissue interfaces in the dental and craniofacial system. It also discusses the research progress in the field focused on bioengineering approaches using 3D scaffolds equipped with spatially controlled bioactivities. The remaining challenges, future perspectives, and considerations for the clinical translation of bioactive scaffolds are also discussed.
Collapse
Affiliation(s)
- Hun Jin Jeong
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Lan Anh P. Hoang
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Neeve Chen
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Elen Zhu
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Albert Wang
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Bozhi Chen
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Emma Y. Wang
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Christopher L. Ricupero
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Chang H. Lee
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| |
Collapse
|
2
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
3
|
Ozkendir O, Karaca I, Cullu S, Erdoğan OC, Yaşar HN, Dikici S, Owen R, Aldemir Dikici B. Engineering periodontal tissue interfaces using multiphasic scaffolds and membranes for guided bone and tissue regeneration. BIOMATERIALS ADVANCES 2024; 157:213732. [PMID: 38134730 DOI: 10.1016/j.bioadv.2023.213732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Periodontal diseases are one of the greatest healthcare burdens worldwide. The periodontal tissue compartment is an anatomical tissue interface formed from the periodontal ligament, gingiva, cementum, and bone. This multifaceted composition makes tissue engineering strategies challenging to develop due to the interface of hard and soft tissues requiring multiphase scaffolds to recreate the native tissue architecture. Multilayer constructs can better mimic tissue interfaces due to the individually tuneable layers. They have different characteristics in each layer, with modulation of mechanical properties, material type, porosity, pore size, morphology, degradation properties, and drug-releasing profile all possible. The greatest challenge of multilayer constructs is to mechanically integrate consecutive layers to avoid delamination, especially when using multiple manufacturing processes. Here, we review the development of multilayer scaffolds that aim to recapitulate native periodontal tissue interfaces in terms of physical, chemical, and biological characteristics. Important properties of multiphasic biodegradable scaffolds are highlighted and summarised, with design requirements, biomaterials, and fabrication methods, as well as post-treatment and drug/growth factor incorporation discussed.
Collapse
Affiliation(s)
- Ozgu Ozkendir
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Ilayda Karaca
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Selin Cullu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Oğul Can Erdoğan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Hüsniye Nur Yaşar
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Serkan Dikici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Robert Owen
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Betül Aldemir Dikici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey.
| |
Collapse
|
4
|
Alqahtani AM. Guided Tissue and Bone Regeneration Membranes: A Review of Biomaterials and Techniques for Periodontal Treatments. Polymers (Basel) 2023; 15:3355. [PMID: 37631412 PMCID: PMC10457807 DOI: 10.3390/polym15163355] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
This comprehensive review provides an in-depth analysis of the use of biomaterials in the processes of guided tissue and bone regeneration, and their indispensable role in dental therapeutic interventions. These interventions serve the critical function of restoring both structural integrity and functionality to the dentition that has been lost or damaged. The basis for this review is laid through the exploration of various relevant scientific databases such as Scopus, PubMed, Web of science and MEDLINE. From a meticulous selection, relevant literature was chosen. This review commences by examining the different types of membranes used in guided bone regeneration procedures and the spectrum of biomaterials employed in these operations. It then explores the manufacturing technologies for the scaffold, delving into their significant impact on tissue and bone regenerations. At the core of this review is the method of guided bone regeneration, which is a crucial technique for counteracting bone loss induced by tooth extraction or periodontal disease. The discussion advances by underscoring the latest innovations and strategies in the field of tissue regeneration. One key observation is the critical role that membranes play in guided reconstruction; they serve as a barrier, preventing the entry of non-ossifying cells, thereby promoting the successful growth and regeneration of bone and tissue. By reviewing the existing literature on biomaterials, membranes, and scaffold manufacturing technologies, this paper illustrates the vast potential for innovation and growth within the field of dental therapeutic interventions, particularly in guided tissue and bone regeneration.
Collapse
Affiliation(s)
- Ali M Alqahtani
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Al Fara, Abha 62223, Saudi Arabia
| |
Collapse
|
5
|
Miao G, Liang L, Li W, Ma C, Pan Y, Zhao H, Zhang Q, Xiao Y, Yang X. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration. Biomolecules 2023; 13:1062. [PMID: 37509098 PMCID: PMC10377653 DOI: 10.3390/biom13071062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Hydrogels have been widely applied to the fabrication of tissue engineering scaffolds via three-dimensional (3D) bioprinting because of their extracellular matrix-like properties, capacity for living cell encapsulation, and shapeable customization depending on the defect shape. However, the current hydrogel scaffolds show limited regeneration activity, especially in the application of periodontal tissue regeneration. In this study, we attempted to develop a novel multi-component hydrogel that possesses good biological activity, can wrap living cells for 3D bioprinting and can regenerate periodontal soft and hard tissue. The multi-component hydrogel consisted of gelatin methacryloyl (GelMA), sodium alginate (SA) and bioactive glass microsphere (BGM), which was first processed into hydrogel scaffolds by cell-free 3D printing to evaluate its printability and in vitro biological performances. The cell-free 3D-printed scaffolds showed uniform porous structures and good swelling capability. The BGM-loaded scaffold exhibited good biocompatibility, enhanced osteogenic differentiation, apatite formation abilities and desired mechanical strength. The composite hydrogel was further applied as a bio-ink to load with mouse bone marrow mesenchymal stem cells (mBMSCs) and growth factors (BMP2 and PDGF) for the fabrication of a scaffold for periodontal tissue regeneration. The cell wrapped in the hydrogel still maintained good cellular vitality after 3D bioprinting and showed enhanced osteogenic differentiation and soft tissue repair capabilities in BMP2- and PDGF-loaded scaffolds. It was noted that after transplantation of the cell- and growth factor-laden scaffolds in Beagle dog periodontal defects, significant regeneration of gingival tissue, periodontal ligament, and alveolar bone was detected. Importantly, a reconstructed periodontal structure was established in the treatment group eight weeks post-transplantation of the scaffolds containing the cell and growth factors. In conclusion, we developed a bioactive composite bio-ink for the fabrication of scaffolds applicable for the reconstruction and regeneration of periodontal tissue defects.
Collapse
Affiliation(s)
- Guohou Miao
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
| | - Liyu Liang
- Hospital of Stomatology, Zhongshan 528404, China
| | - Wenzhi Li
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
| | - Chaoyang Ma
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
| | - Yuqian Pan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
| | - Hongling Zhao
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
| | - Qing Zhang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, The Netherlands
| | - Yin Xiao
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Xuechao Yang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
6
|
Tabia Z, Akhtach S, Bricha M, El Mabrouk K. Tailoring the biodegradability and bioactivity of green-electrospun polycaprolactone fibers by incorporation of bioactive glass nanoparticles for guided bone regeneration. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Ahmad R, Srivastava S, Ghosh S, Khare SK. Phytochemical delivery through nanocarriers: a review. Colloids Surf B Biointerfaces 2021; 197:111389. [PMID: 33075659 DOI: 10.1016/j.colsurfb.2020.111389] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
In recent times, phytochemicals encapsulated or conjugated with nanocarriers for delivery to the specific sites have gained considerable research interest. Phytochemicals are mostly plant secondary metabolites which reported to be beneficial for human health and in disease theraphy. However, these compound are large size and polar nature of these compounds, make it difficult to cross the blood-brain barrier (BBB), endothelial lining of blood vessels, gastrointestinal tract and mucosa. Moreover, they are enzymatically degraded in the gastrointestinal tract. Therefore, encapsulation or conjugation of these compounds with nanocrriers could be an alternate way to enhance their bioefficacy by influencing their gastrointestinal stability, rate of absorption and dispersion. This review presents an overview of nanocarriers alternatives which improves therapeutic value and avoid toxicity, by releasing bioactive compounds specifically at target tissues with enhanced stability and bioavailability. Future investigations may emphasize on deciphering the structural changes in nanocarriers during digestion and absorption, the difference between in-vitro and in-vivo digestion simulations, and impact of nanocarriers on the metabolism of phytochemicals.
Collapse
Affiliation(s)
- Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sukriti Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shubhrima Ghosh
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
8
|
Lowen JM, Leach JK. Functionally graded biomaterials for use as model systems and replacement tissues. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909089. [PMID: 33456431 PMCID: PMC7810245 DOI: 10.1002/adfm.201909089] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 05/03/2023]
Abstract
The heterogeneity of native tissues requires complex materials to provide suitable substitutes for model systems and replacement tissues. Functionally graded materials have the potential to address this challenge by mimicking the gradients in heterogeneous tissues such as porosity, mineralization, and fiber alignment to influence strength, ductility, and cell signaling. Advancements in microfluidics, electrospinning, and 3D printing enable the creation of increasingly complex gradient materials that further our understanding of physiological gradients. The combination of these methods enables rapid prototyping of constructs with high spatial resolution. However, successful translation of these gradients requires both spatial and temporal presentation of cues to model the complexity of native tissues that few materials have demonstrated. This review highlights recent strategies to engineer functionally graded materials for the modeling and repair of heterogeneous tissues, together with a description of how cells interact with various gradients.
Collapse
Affiliation(s)
- Jeremy M. Lowen
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
9
|
Clitherow KH, Binaljadm TM, Hansen J, Spain SG, Hatton PV, Murdoch C. Medium-Chain Fatty Acids Released from Polymeric Electrospun Patches Inhibit Candida albicans Growth and Reduce the Biofilm Viability. ACS Biomater Sci Eng 2020; 6:4087-4095. [PMID: 32685674 PMCID: PMC7362581 DOI: 10.1021/acsbiomaterials.0c00614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 01/23/2023]
Abstract
Oral candidiasis is a very common oral condition among susceptible individuals, with the main causative organism being the fungus Candida albicans. Current drug delivery systems to the oral mucosa are often ineffective because of short drug/tissue contact times as well as increased prevalence of drug-resistant Candida strains. We evaluated the potency of saturated fatty acids as antifungal agents and investigated their delivery by novel electrospun mucoadhesive oral patches using agar disk diffusion and biofilm assays. Octanoic (C8) and nonanoic (C9) acids were the most effective at inhibiting C. albicans growth on disk diffusion assays, both in solution or when released from polycaprolactone (PCL) or polyvinylpyrrolidone/RS100 (PVP/RS100) electrospun patches. In contrast, dodecanoic acid (C12) displayed the most potent antifungal activity against pre-existing C. albicans biofilms in solution or when released by PCL or PVP/RS100 patches. Both free and patch-released saturated fatty acids displayed a significant toxicity to wild-type and azole-resistant strains of C. albicans. These data not only provide evidence that certain saturated fatty acids have the potential to be used as antifungal agents but also demonstrate that this therapy could be delivered directly to Candida-infected sites using electrospun mucoadhesive patches, demonstrating a potential new therapeutic approach to treat oral thrush.
Collapse
Affiliation(s)
- Katharina H Clitherow
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| | - Tahani M Binaljadm
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| | - Jens Hansen
- Afyx Therapeutics, Lergravsej 57, 2. tv, 2300 Copenhagen, Denmark
| | - Sebastian G Spain
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Paul V Hatton
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| |
Collapse
|
10
|
Production and Characterization of Porous Polymeric Membranes of PLA/PCL Blends with the Addition of Hydroxyapatite. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3020045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polymer membranes have been widely used in guided tissue regeneration (GTR) and guided bone regeneration (GBR). The literature recognizes that poly (lactic acid) (PLA)/poly (ε-caprolactone) (PCL) blends have better physicochemical properties and that a porous polymer surface facilitates cell adhesion and proliferation. In addition, hydroxyapatite (HAp) incorporated into the polymer matrix promotes osteoinduction properties and osteoconduction to the polymer-ceramic biocomposite. Therefore, polymer membranes of PLA/PCL blend with the addition of HAp could be an alternative to be used in GBR. HAp was obtained by precipitation using the mixture of solutions of tetrahydrate calcium nitrate and monobasic ammonium phosphate salts. The porous membranes of the PLA/PCL (80/20) blend with the addition of HAp were obtained by solvent casting with a controlled humidity method, with the dispersion of HAp in chloroform and subsequent solubilization with the components of the blend. The solution was poured into molds for solvent evaporation under a controlled humidity atmosphere. The membranes showed the formation of pores on their surface, together with dispersed HAp particles. The results showed an increase in the surface porosity and improved bioactivity properties with the addition of HAp. Moreover, in biological studies with cell culture, it was possible to observe that the membranes with HAp have no cytotoxic effect on MC3T3 cells. These results indicate a promising use of the new biomaterial for GBR.
Collapse
|
11
|
Navarro J, Swayambunathan J, Lerman M, Santoro M, Fisher JP. Development of keratin-based membranes for potential use in skin repair. Acta Biomater 2019; 83:177-188. [PMID: 30342286 DOI: 10.1016/j.actbio.2018.10.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
The layers in skin determine its protective and hemostasis functions. This layered microstructure cannot be naturally regenerated after severe burns; we aim to reconstruct it using guided tissue regeneration (GTR). In GTR, a membrane is used to regulate tissue growth by stopping fast-proliferating cells and allowing slower cells to migrate and reconstruct specialized microstructures. Here, we proposed the use of keratin membranes crosslinked via dityrosine bonding. Variables from the crosslinking process were grouped within an energy density (ED) parameter to manufacture and evaluate the membranes. Sol fraction, spectrographs, and thermograms were used to quantify the non-linear relation between ED and the resulting crosslinking degree (CD). Mechanical and swelling properties increased until an ED threshold was reached; at higher ED, the CD and properties of the membranes remained invariable indicating that all possible dityrosine bonds were formed. Transport assays showed that the membranes allow molecular diffusion; low ED membranes retain solutes within their structure while the high ED samples allow higher transport rates indicating that uncrosslinked proteins can be responsible of reducing transport. This was confirmed with lower transport of adipogenic growth factors to stem cells when using low ED membranes; high ED samples resulted in increased production of intracellular lipids. Overall, we can engineer keratin membranes with specific CD, a valuable tool to tune microstructural and transport properties.
Collapse
Affiliation(s)
- Javier Navarro
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Jay Swayambunathan
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Max Lerman
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Marco Santoro
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States.
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States.
| |
Collapse
|
12
|
Zahid S, Khan AS, Chaudhry AA, Ghafoor S, Ain QU, Raza A, Rahim MI, Goerke O, Rehman IU, Tufail A. Fabrication, in vitro and in vivo studies of bilayer composite membrane for periodontal guided tissue regeneration. J Biomater Appl 2018; 33:967-978. [PMID: 30509121 DOI: 10.1177/0885328218814986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Development of a guided occlusive biodegradable membrane with controlled morphology in order to restrict the ingrowth of epithelial cells is still a challenge in dental tissue engineering. A bilayer membrane with a non-porous upper layer (polyurethane) and porous lower layer (polycaprolactone and bioactive glass composite) with thermoelastic properties to sustain surgery treatment was developed by lyophilization. Morphology, porosity, and layers attachment were controlled by using the multi-solvent system. In vitro and in vivo biocompatibility, cell attachment, and cell proliferation were analyzed by immunohistochemistry and histology. The cell proliferation rate and cell attachment results showed good biocompatibility of both surfaces, though cell metabolic activity was better on the polycaprolactone-bioactive glass surface. Furthermore, the cells were viable, adhered, and proliferated well on the lower porous bioactive surface, while non-porous polyurethane surface demonstrated low cell attachment, which was deliberately designed and a pre-requisite for guided tissue regeneration/guided bone regeneration membranes. In addition, in vivo studies performed in a rat model for six weeks revealed good compatibility of membranes. Histological analysis (staining with hematoxylin and eosin) indicated no signs of inflammation or accumulation of host immune cells. These results suggested that the fabricated biocompatible bilayer membrane has the potential for use in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Saba Zahid
- 1 Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Abdul Samad Khan
- 2 Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aqif Anwar Chaudhry
- 1 Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sarah Ghafoor
- 3 Department of Oral Biology, University of Health Sciences Lahore, Khayaban-e-Jamia Punjab, Lahore, Pakistan
| | - Qurat Ul Ain
- 3 Department of Oral Biology, University of Health Sciences Lahore, Khayaban-e-Jamia Punjab, Lahore, Pakistan
| | - Ahtasham Raza
- 4 Department of Material Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Muhammad Imran Rahim
- 1 Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Oliver Goerke
- 5 Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr, Berlin, Germany
| | - Ihtesham Ur Rehman
- 4 Department of Material Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Asma Tufail
- 1 Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
13
|
Abstract
This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess to improve the regeneration of bone. Afterward, several techniques to engineer bone membranes by using "bulk"-like methods are discussed, where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach is discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible, the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties, or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.
Collapse
Affiliation(s)
- Sofia G Caridade
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| | - João F Mano
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| |
Collapse
|
14
|
Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces 2017; 159:217-231. [DOI: 10.1016/j.colsurfb.2017.07.038] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
|
15
|
Sun X, Xu C, Wu G, Ye Q, Wang C. Poly(Lactic-co-Glycolic Acid): Applications and Future Prospects for Periodontal Tissue Regeneration. Polymers (Basel) 2017; 9:E189. [PMID: 30970881 PMCID: PMC6432161 DOI: 10.3390/polym9060189] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022] Open
Abstract
Periodontal tissue regeneration is the ultimate goal of the treatment for periodontitis-affected teeth. The success of regenerative modalities relies heavily on the utilization of appropriate biomaterials with specific properties. Poly (lactic-co-glycolic acid) (PLGA), a synthetic aliphatic polyester, has been actively investigated for periodontal therapy due to its favorable mechanical properties, tunable degradation rates, and high biocompatibility. Despite the attractive characteristics, certain constraints associated with PLGA, in terms of its hydrophobicity and limited bioactivity, have led to the introduction of modification strategies that aimed to improve the biological performance of the polymer. Here, we summarize the features of the polymer and update views on progress of its applications as barrier membranes, bone grafts, and drug delivery carriers, which indicate that PLGA can be a good candidate material in the field of periodontal regenerative medicine.
Collapse
Affiliation(s)
- Xiaoyu Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China.
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 HV, The Netherlands.
| | - Chun Xu
- Laboratory of Regenerative Dentistry, School of Dentistry, The University of Queensland, Brisbane 4006, Australia.
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 HV, The Netherlands.
| | - Qingsong Ye
- Laboratory of Regenerative Dentistry, School of Dentistry, The University of Queensland, Brisbane 4006, Australia.
| | - Changning Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China.
| |
Collapse
|
16
|
Saarani NN, Jamuna-Thevi K, Shahab N, Hermawan H, Saidin S. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria. Dent Mater J 2017; 36:260-265. [PMID: 28111388 DOI: 10.4012/dmj.2016-177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A guided bone regeneration (GBR) membrane has been extensively used in the repair and regeneration of damaged periodontal tissues. One of the main challenges of GBR restoration is bacterial colonization on the membrane, constitutes to premature membrane degradation. Therefore, the purpose of this study was to investigate the antibacterial efficacy of triple-layered GBR membrane composed of poly(lactic-co-glycolic acid) (PLGA), nanoapatite (NAp) and lauric acid (LA) with two types of Gram-negative periodontal bacteria, Fusobacterium nucleatum and Porphyromonas gingivalis through a disc diffusion and bacterial count tests. The membranes exhibited a pattern of growth inhibition and killing effect against both bacteria. The increase in LA concentration tended to increase the bactericidal activities which indicated by higher diameter of inhibition zone and higher antibacterial percentage. It is shown that the incorporation of LA into the GBR membrane has retarded the growth and proliferation of Gram-negative periodontal bacteria for the treatment of periodontal disease.
Collapse
Affiliation(s)
- Nur Najiha Saarani
- Faculty of Biosciences & Medical Engineering, Universiti Teknologi Malaysia
| | - Kalitheerta Jamuna-Thevi
- Faculty of Biosciences & Medical Engineering, Universiti Teknologi Malaysia.,Advanced Materials Research Center
| | - Neelam Shahab
- Industrial Biotechnology Research Center, SIRIM Berhad
| | - Hendra Hermawan
- Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University
| | - Syafiqah Saidin
- Faculty of Biosciences & Medical Engineering, Universiti Teknologi Malaysia
| |
Collapse
|
17
|
Tevlek A, Hosseinian P, Ogutcu C, Turk M, Aydin HM. Bi-layered constructs of poly(glycerol-sebacate)-β-tricalcium phosphate for bone-soft tissue interface applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 72:316-324. [PMID: 28024592 DOI: 10.1016/j.msec.2016.11.082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 01/10/2023]
Abstract
This study aims to establish a facile protocol for the preparation of a bi-layered poly(glycerol-sebacate) (PGS)/β-tricalcium phosphate (β-TCP) construct and to investigate its potential for bone-soft tissue engineering applications. The layered structure was prepared by distributing the ceramic particles within a prepolymer synthesized in a microwave reactor followed by a cross-linking of the final construct in vacuum (<10mbar). The vacuum stage led to the separation of cross-linked elastomer (top) and ceramic (bottom) phases. Results showed that addition of β-TCP particles to the elastomer matrix after the polymerization led to an increase in compression strength (up to 14±2.3MPa). Tensile strength (σ), Young's modulus (E), and elongation at break (%) values were calculated as 0.29±0.03MPa and 0.21±0.03; 0.38±0.02 and 1.95±0.4; and 240±50% and 24±2% for PGS and PGS/β-TCP bi-layered constructs, respectively. Morphology was characterized by using Scanning Electron Microscopy (SEM) and micro-computed tomography (μ-CT). Tomography data revealed an open porosity of 35% for the construct, mostly contributed from the ceramic phase since the elastomer side has no pore. Homogeneous β-TCP distribution within the elastomeric structure was observed. Cell culture studies confirmed biocompatibility with poor elastomer-side and good bone-side cell attachment. In a further study to investigate the osteogenic properties, the construct were loaded with BMP-2 and/or TGF-β1. The PGS/β-TCP bi-layered constructs with improved mechanical and biological properties have the potential to be used in bone-soft tissue interface applications where soft tissue penetration is a problem.
Collapse
Affiliation(s)
- Atakan Tevlek
- Bioengineering Division, Institute of Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Pezhman Hosseinian
- Nanotechnology and Nanomedicine Division, Institute of Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Cansel Ogutcu
- Nanotechnology and Nanomedicine Division, Institute of Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Mustafa Turk
- Biology Department, Kirikkale University, Kirikkale, Turkey
| | - Halil Murat Aydin
- Environmental Engineering Department, Bioengineering Division, Centre for Bioengineering, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
18
|
Karahaliloglu Z, Kilicay E, Denkbas EB. Antibacterial chitosan/silk sericin 3D porous scaffolds as a wound dressing material. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1-14. [DOI: 10.1080/21691401.2016.1203796] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Zeynep Karahaliloglu
- Aksaray University, Faculty of Science and Arts Biology Department, Aksaray, Turkey
| | - Ebru Kilicay
- Zonguldak Vocational High School, Bülent Ecevit University, Turkey, Zonguldak
| | - Emir Baki Denkbas
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara, Turkey
| |
Collapse
|
19
|
Wang J, Wang L, Zhou Z, Lai H, Xu P, Liao L, Wei J. Biodegradable Polymer Membranes Applied in Guided Bone/Tissue Regeneration: A Review. Polymers (Basel) 2016; 8:E115. [PMID: 30979206 PMCID: PMC6431950 DOI: 10.3390/polym8040115] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 12/14/2022] Open
Abstract
Polymer membranes have been widely used in guided tissue regeneration (GTR) and guided bone regeneration (GBR). In this review, various commercially available membranes are described. Much attention is paid to the recent development of biodegradable polymers applied in GTR and GBR, and the important issues of biodegradable polymeric membranes, including their classification, latest experimental research and clinical applications, as well as their main challenges are addressed. Herein, natural polymers, synthetic polymers and their blends are all introduced. Pure polymer membranes are biodegradable and biocompatible, but they lack special properties such as antibacterial properties, osteoconductivity, and thus polymer membranes loaded with functional materials such as antibacterial agents and growth factors show many more advantages and have also been introduced in this review. Despite there still being complaints about polymer membranes, such as their low mechanical properties, uncontrollable degradation speed and some other drawbacks, these problems will undoubtedly be conquered and biodegradable polymers will have more applications in GTR and GBR.
Collapse
Affiliation(s)
- Jiaolong Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Lina Wang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
- College of Science, Nanchang Institute of Technology, Nanchang 330029, China.
| | - Ziyu Zhou
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
| | - Hanjian Lai
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Pan Xu
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Lan Liao
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
| | - Junchao Wei
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
20
|
Fernandes KR, Magri AMP, Kido HW, Ueno F, Assis L, Fernandes KPS, Mesquita-Ferrari RA, Martins VC, Plepis AM, Zanotto ED, Peitl O, Ribeiro D, van den Beucken JJ, Renno ACM. Characterization and biological evaluation of the introduction of PLGA into biosilicate®. J Biomed Mater Res B Appl Biomater 2016; 105:1063-1074. [DOI: 10.1002/jbm.b.33654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/11/2022]
Affiliation(s)
- K. R. Fernandes
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - A. M. P. Magri
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - H. W. Kido
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - F. Ueno
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - L. Assis
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - K. P. S. Fernandes
- Department of Rehabilitation Sciences and Biophotonics Applied to Health Sciences; Nove de Julho University (UNINOVE); São Paulo, São Paulo Brazil
| | - R. A. Mesquita-Ferrari
- Department of Rehabilitation Sciences and Biophotonics Applied to Health Sciences; Nove de Julho University (UNINOVE); São Paulo, São Paulo Brazil
| | - V. C. Martins
- Institute of Chemistry, University of São Paulo (USP); São Carlos, São Paulo Brazil
| | - A. M. Plepis
- Institute of Chemistry, University of São Paulo (USP); São Carlos, São Paulo Brazil
| | - E. D. Zanotto
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering; Federal University of São Carlos (UFSCar); Brazil
| | - O. Peitl
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering; Federal University of São Carlos (UFSCar); Brazil
| | - D. Ribeiro
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | | | - A. C. M. Renno
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| |
Collapse
|
21
|
Jamuna-Thevi K, Suleiman M, Sabri S. Strength Improvement of a Functionally Graded and Layered Composite Membrane for Guided Bone Regeneration in Orthopedics. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.matpr.2016.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
23
|
Li H, Qiao T, Song P, Guo H, Song X, Zhang B, Chen X. Star-shaped PCL/PLLA blended fiber membrane via electrospinning. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:420-32. [PMID: 25671790 DOI: 10.1080/09205063.2015.1015865] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Electrospun fiber mesh has been a candidate for guided bone regeneration membrane. However, its poor mechanics property has been limited in clinical application. In this study, various star-shaped poly(ε-caprolactones) (PCLs) are successfully synthesized by ring-opening polymerization and mixed with poly(l-lactide) (PLLA) to be made into blended membranes through electrospinning. Their corresponding properties are evaluated including morphology, thermodynamics, mechanics, and cytotoxicity. The blended fibers show smooth surface and well-distributed structure, which have slight differences in morphology with the change of arm number of star-shaped PCL. Crystallization of the fibrous membrane is influenced by star-shaped PCLs. Glass temperature drops from 64.23 °C for pure PLLA membrane to 53.62-49 °C for the blended membranes. The membranous tensile strength is depended strongly on star-shaped PCLs. The tensile strength goes up with arm number increasing; on the contrary, at the same arm number, the mechanics strength decreases with molecular weight increasing. And the fibrous membrane containing 20 wt.% star-shaped PCL shows better mechanics property compared to the other membranes. The star-shaped PCL/PLLA fiber membrane is not cytotoxicity.
Collapse
Affiliation(s)
- Haotian Li
- a School of Chemical Engineering , Changchun University of Technology , Changchun 130012 , P.R. China
| | | | | | | | | | | | | |
Collapse
|