1
|
Ghalandarzadeh A, Ganjali M, Hosseini M. Tailoring zirconia surface topography via femtosecond laser-induced nanoscale features: effects on osteoblast cells and antibacterial properties. Biomed Mater 2024; 19:055017. [PMID: 39016135 DOI: 10.1088/1748-605x/ad606f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
The performance and long-term durability of dental implants hinge on the quality of bone integration and their resistance to bacteria. This research aims to introduce a surface modification strategy for zirconia implants utilizing femtosecond laser ablation techniques, exploring their impact on osteoblast cell behavior and bacterial performance, as well as the integral factors influencing the soft tissue quality surrounding dental implants. Ultrafast lasers were employed to craft nanoscale groove geometries on zirconia surfaces, with thorough analyses conducted using x-ray diffraction, scanning electron microscopy, atomic force microscopy, and water contact angle measurements. The study evaluated the response of human fetal osteoblastic cell lines to textured zirconia ceramics by assessing alkaline phosphatase activity, collagen I, and interleukin 1βsecretion over a 7 day period. Additionally, the antibacterial behavior of the textured surfaces was investigated usingFusobacterium nucleatum, a common culprit in infections associated with dental implants. Ciprofloxacin (CIP), a widely used antibacterial antibiotic, was loaded onto zirconia ceramic surfaces. The results of this study unveiled a substantial reduction in bacterial adhesion on textured zirconia surfaces. The fine biocompatibility of these surfaces was confirmed through the MTT assay and observations of cell morphology. Moreover, the human fetal osteoblastic cell line exhibited extensive spreading and secreted elevated levels of collagen I and interleukin 1βin the modified samples. Drug release evaluations demonstrated sustained CIP release through a diffusion mechanism, showcasing excellent antibacterial activity against pathogenic bacteria, includingStreptococcus mutans, Pseudomonas aeruginosa, andEscherichia coli.
Collapse
Affiliation(s)
- Arash Ghalandarzadeh
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, PO Box: 16846, Tehran, Iran
| | - Monireh Ganjali
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, PO Box: 31787-316, Karaj, Iran
| | - Milad Hosseini
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| |
Collapse
|
2
|
Sun H, Yang Y, Yu L, Liu K, Fei Y, Guo C, Zhou Y, Hu J, Shi L, Ji H. Inhibition of Inflammatory Response and Promotion of Osteogenic Activity of Zinc-Doped Micro-Arc Titanium Oxide Coatings. ACS OMEGA 2022; 7:14920-14932. [PMID: 35557686 PMCID: PMC9089342 DOI: 10.1021/acsomega.2c00579] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 05/31/2023]
Abstract
An early and sustained immune response can lead to chronic inflammation after the implant is placed in the body. The implantable materials with immunomodulatory effects can reduce the body's immune response and promote the formation of ideal osseointegration between the implants and bone tissue. In this study, zinc-coated titanium micro-arc oxide coating was prepared on titanium surface by micro-arc oxidation. The physical properties, anti-inflammation, and osteogenesis of the material were evaluated. We have physically characterized the surface structure of the coatings by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM) and detected the release of Zn2+ from the coating surface by inductively coupled optical plasma emission spectrometry (ICP-OES). The BMSCs were inoculated on the surface of the coating, and the biocompatibility of the coating was evaluated by CCK-8 analysis and living and dead cell staining. The osteogenic effect of the layer on BMSCs was evaluated by alkaline phosphatase (ALP) assays, osteocalcin (OCN) immunofluorescence, and quantitative polymerase chain reaction (q-PCR). The survival status of RAW264.7 on the coating surface and the mRNA expression of the associated proinflammatory markers, tumor necrosis factor-α (TNF-α), cluster of differentiation 86 (CD86), and inducible nitric oxide (INOS) were detected by CCK-8 analysis and q-PCR. In parallel, the cell counting kit-8 (CCK-8) analysis and q-PCR screened and evaluated the effective concentration of Zn2+ anti-inflammatory in vitro. The results show that the coating has good physical characterization, and Zn is uniformly bound to the surface of titanium and shows stable release and good biocompatibility to BMSCs, downregulating the expression of inflammation-related genes promoting the bone formation of BMSCs. We have successfully prepared zinc-coated micro-arc titanium oxide coating on the titanium surface, which has good osteogenesis and great anti-inflammatory potential and provides a new way for osseointegration in the implant.
Collapse
Affiliation(s)
- Haishui Sun
- School
of Stomatology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Yiming Yang
- College
of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai 200011, China
- National
Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai
Key Laboratory of Stomatology, Shanghai 200072, China
- Department
of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Yu
- School
of Stomatology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Ke Liu
- School
of Stomatology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Yifan Fei
- Department
of Oral & Maxillofacial-Head & Neck Oncology, Ninth People’s
Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai 200011, China
| | - Chaoyang Guo
- School
of Stomatology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Yuqi Zhou
- School
of Stomatology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jingzhou Hu
- Department
of Oral & Maxillofacial-Head & Neck Oncology, Ninth People’s
Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai 200011, China
| | - Lei Shi
- Department
of Oral and Maxillofacial Surgery, Gansu
Provincial Hospital, Lanzhou 730000, China
| | - Honghai Ji
- School
of Stomatology, Weifang Medical University, Weifang 261053, Shandong, China
| |
Collapse
|
3
|
Wang X, Mei L, Jiang X, Jin M, Xu Y, Li J, Li X, Meng Z, Zhu J, Wu F. Hydroxyapatite-Coated Titanium by Micro-Arc Oxidation and Steam-Hydrothermal Treatment Promotes Osseointegration. Front Bioeng Biotechnol 2021; 9:625877. [PMID: 34490219 PMCID: PMC8417371 DOI: 10.3389/fbioe.2021.625877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/13/2021] [Indexed: 02/04/2023] Open
Abstract
Titanium (Ti)-based alloys are widely used in tissue regeneration with advantages of improved biocompatibility, high mechanical strength, corrosion resistance, and cell attachment. To obtain bioactive bone–implant interfaces with enhanced osteogenic capacity, various methods have been developed to modify the surface physicochemical properties of bio-inert Ti and Ti alloys. Nano-structured hydroxyapatite (HA) formed by micro-arc oxidation (MAO) is a synthetic material, which could facilitate osteoconductivity, osteoinductivity, and angiogenesis on the Ti surface. In this paper, we applied MAO and steam–hydrothermal treatment (SHT) to produce HA-coated Ti, hereafter called Ti–M–H. The surface morphology of Ti–M–H1 was observed by scanning electron microscopy (SEM), and the element composition and the roughness of Ti–M–H1 were analyzed by energy-dispersive X-ray analysis, an X-ray diffractometer (XRD), and Bruker stylus profiler, demonstrating the deposition of nano-HA particles on Ti surfaces that were composed of Ca, P, Ti, and O. Then, the role of Ti–M–H in osteogenesis and angiogenesis in vitro was evaluated. The data illustrated that Ti–M–H1 showed a good compatibility with osteoblasts (OBs), which promoted adhesion, spreading, and proliferation. Additionally, the secretion of ALP, Col-1, and extracellular matrix mineralization was increased by OBs treated with Ti–M–H1. Ti–M–H1 could stimulate endothelial cells to secrete vascular endothelial growth factor and promote the formation of capillary-like networks. Next, it was revealed that Ti–M–H1 also suppressed inflammation by activating macrophages, while releasing multiple active factors to mediate osteogenesis and angiogenesis. Finally, in vivo results uncovered that Ti–M–H1 facilitated a higher bone-to-implant interface and was more attractive for the dendrites, which promoted osseointegration. In summary, MAO and SHT-treated Ti–M–H1 not only promotes in vitro osteogenesis and angiogenesis but also induces M2 macrophages to regulate the immune environment, which enhances the crosstalk between osteogenesis and angiogenesis and ultimately accelerates the process of osseointegration in vivo.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China.,Department of Orthopedics, Huzhou Traditional Chinese Medicine Hospital, Affiliated to Zhejiang Chinese Medical University, Huzhou, China
| | - Lina Mei
- Internal Medicine, Huzhou Maternity and Child Health Care Hospital, Huzhou, China
| | - Xuesheng Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Mingchao Jin
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Yan Xu
- Department of Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Xiongfeng Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Zhipeng Meng
- Department of Anaesthesiology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Junkun Zhu
- Orthopedics Rehabilitation Department, Lishui Municipal Central Hospital, Lishui, China
| | - Fengfeng Wu
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| |
Collapse
|
4
|
Zeolite Socony Mobil-Five Coating on Ti-24 Nb-4 Zr-7.9 Sn Promotes Biocompatibility and Osteogenesis In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5529368. [PMID: 34368350 PMCID: PMC8346306 DOI: 10.1155/2021/5529368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022]
Abstract
The aim of this study was to evaluate the biocompatibility and osteogenic potential of a Zeolite Socony Mobil-5 (ZSM-5) coating on a Ti-24 Nb-4 Zr-7.9 Sn (Ti-2448) surface. ZSM-5-modified Ti-2448 (ZSM-5/Ti-2448) and Ti-2448 (control) groups were employed. The physical and chemical properties of the two types of samples were evaluated by scanning electron microscopy, Fourier-transform infrared spectroscopy, nitrogen adsorption/desorption, and contact angle methods. The surface of the ZSM-5/Ti-2448 was rougher than that of the original Ti-2448, while the contact angle of the ZSM-5/Ti-2448 was smaller than that of Ti-2448. In addition, the ZSM-5/Ti-2448 largely increased the specific surface area and introduced silanol groups. A bone-like apatite layer could be formed on the surface of ZSM-5/Ti-2448 after 14 days of incubation in a simulated body fluid. ZSM-5/Ti-2448 was not cytotoxic. The number and alkaline phosphatase (ALP) activity of osteoblasts on ZSM-5/Ti-2448 were significantly higher than those on Ti-2448 surfaces, obtained in vitro using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide and ALP activity assays. Few inflammatory cells were observed around ZSM-5/Ti-2448 after insertion into the femurs of Japanese white rabbits after 4, 12, and 26 weeks through hematoxylin-eosin staining. The average gray scale of transforming growth factor-β1 (TGF-β1) on ZSM-5/Ti-2448 peaked earlier than that on Ti-2448, according to immunohistochemical staining. These results indicate that ZSM-5/Ti-2448 has a good biocompatibility and improved early osteogenic potential compared to a noncoated Ti-2448.
Collapse
|
5
|
Dias Corpa Tardelli J, Lima da Costa Valente M, Theodoro de Oliveira T, Cândido Dos Reis A. Influence of chemical composition on cell viability on titanium surfaces: A systematic review. J Prosthet Dent 2021; 125:421-425. [PMID: 32178882 DOI: 10.1016/j.prosdent.2020.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/23/2022]
Abstract
STATEMENT OF PROBLEM A consensus on which dental implant alloy and surface treatment provide the best cell viability is unclear. PURPOSE The purpose of this systematic review was to provide information on the influence of surface and intrinsic titanium alloy chemical components on cell viability. MATERIAL AND METHODS The PubMed, LILACS, COCHRANE library, and Science Direct databases were electronically searched for the terms dental implants AND titanium AND cytotoxicity. Inclusion criteria were research articles that studied titanium or its alloys for chemical composition and cell viability and were published in English between 1999 and 2019. Articles that did not study titanium and its alloys, articles with nondental or biomedical implants, and articles that were not found in their entirety were excluded. RESULTS A total of 1226 articles selected by title or abstract according to the inclusion and exclusion criteria resulted in 51 articles that were reduced to 27 after reading in full. The treatments analyzed were arc fusion, electron beam physical deposition, plasma electrolytic oxidation, coating addition, micro arc oxidation, anodization, thermochemical process, BMP-2 immobilization, pressure-assisted sintering, and alkali heat treatment. CONCLUSIONS The evaluated literature did not allow a determination of the best surface treatment for cell viability because of the heterogeneity of the studies regarding the type of alloy, cell used in the MTT assay, study, and implant purpose (biomedical or dental). The cytotoxic effect of chemical components was dependent on dose, time, size, temperature, and cell type. The niobium, tantalum, zirconium, and molybdenum elements have been most often added in the development of less toxic Ti alloys with lower modulus of elasticity and increased strength.
Collapse
Affiliation(s)
- Juliana Dias Corpa Tardelli
- Graduate student, Graduate Dentistry, Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Mariana Lima da Costa Valente
- Postgraduate student, Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Thaisa Theodoro de Oliveira
- Postgraduate student, Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Associate Professor, Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
6
|
Liu X, Li S, Meng Y, Fan Y, Liu J, Shi C, Ren F, Wu L, Wang J, Sun H. Osteoclast differentiation and formation induced by titanium implantation through complement C3a. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111932. [PMID: 33641923 DOI: 10.1016/j.msec.2021.111932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022]
Abstract
Titanium implantation is widely used for dental replacement with advantages of excellent mechanical strength, corrosion resistance, chemical stability and biocompatibility. Some patients, however, are subject to the failure of implantation due to bone resorption, which closely related to the inflammatory responses without clear mechanisms. In this study, first we found that there were inflammatory responses and increases of osteoclasts in the surrounding tissues near by the titanium implant. Further, data revealed that the C3 was increased in the serum and surrounding tissues near by the titanium implant, and activated by classical and alternative pathways. Next, we recognized that the C3a/C3aR, no C3b played an important role in stimulating secretions of pro-inflammatory cytokines of TNF-α and MMP9 via transcription factors NF-kB and NFATc1. This cascade of responses to titanium implant leaded the differentiation and proliferation of osteoclasts in vivo and in vitro, bone resorption of surrounding tissues of Ti implant. These suggest that the cleaved C3a fragment plays predominant roles in the activation of osteoclast. Therefore, the blocking C3a activation should provide potential to prevent bone resorption and prolong the survival of biomaterial implants.
Collapse
Affiliation(s)
- Xiaohan Liu
- Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China; Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China; Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110002, China
| | - Siwen Li
- Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China; Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China; Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110002, China
| | - Yuan Meng
- Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China; Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110002, China
| | - Yu Fan
- Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China; Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110002, China
| | - Jie Liu
- Centre of Science Experiment, China Medical University, Shenyang, 110122, China
| | - Ce Shi
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Feilong Ren
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wu
- Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China; Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110002, China.
| | - Jinyan Wang
- Department of Immunology, Basic Medical Sciences, China Medical University, Shenyang, 110122, China.
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China; Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110002, China.
| |
Collapse
|
7
|
Marczewski M, Jurczyk MU, Kowalski K, Miklaszewski A, Wirstlein PK, Jurczyk M. Composite and Surface Functionalization of Ultrafine-Grained Ti23Zr25Nb Alloy for Medical Applications. MATERIALS 2020; 13:ma13225252. [PMID: 33233693 PMCID: PMC7699683 DOI: 10.3390/ma13225252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022]
Abstract
In this study, the ultrafine-grained Ti23Zr25Nb-based composites with 45S5 Bioglass and Ag, Cu, or Zn additions were produced by application of the mechanical alloying technique. Additionally, the base Ti23Zr25Nb alloy was electrochemically modified in the two stages of processing: electrochemical etching in the solution of H3PO4 and HF followed by electrochemical deposition in Ca(NO3)2, (NH4)2HPO4, and HCl. The in vitro cytocompatibility studies were also done with comparison to the commercially pure titanium. The established cell lines of Normal Human Osteoblasts (NHost, CC-2538) and Human Periodontal Ligament Fibroblasts (HPdLF, CC-7049) were used. The culture was conducted among the tested materials. Ultrafine-grained titanium-based composites modified with 45S5 Bioglass and Ag, Cu, or Zn metals have higher biocompatibility than the reference material in the form of a microcrystalline Ti. Proliferation activity was at a stable level with contact with studied materials. In vitro evaluation research showed that the ultrafine-grained Ti23Zr25Nb-based composites with 45S5 Bioglass and Ag, Cu, or Zn additions, with a Young modulus below 50 GPa, can be further used in the biomedical field.
Collapse
Affiliation(s)
- Mateusz Marczewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (A.M.); (M.J.)
- Correspondence: ; Tel.: +48-61-665-3508
| | - Mieczysława U. Jurczyk
- Division of Mother’s and Child’s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland;
| | - Kamil Kowalski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (A.M.); (M.J.)
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (A.M.); (M.J.)
| | - Przemysław K. Wirstlein
- Department of Gynaecology and Obstetrics, Division of Reproduction, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland;
| | - Mieczysław Jurczyk
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (A.M.); (M.J.)
| |
Collapse
|
8
|
Comparison of the osteoblastic activity of low elastic modulus Ti-24Nb-4Zr-8Sn alloy and pure titanium modified by physical and chemical methods. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:111018. [PMID: 32487417 DOI: 10.1016/j.msec.2020.111018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Ti-24Nb-4Zr-8Sn (Ti2448) alloy is a novel low elastic modulus β-titanium alloy without toxic elements. It also has the advantage of high strength, so it has potential application prospects for implantation. To develop its osteogenic effects, it can be modified by electrochemical, and physical processes. The main research aim of this study was to explore the bioactivity of Ti2448 alloy modified by sandblasted, large-grit, acid-etched (SLA), micro-arc oxidation (MAO) and anodic oxidation (AO), and to determine which of the three surface modifications is the best way for developing the osteogenesis of bone marrow mesenchymal stem cells (BMMSCs). In vitro studies, the cytoskeleton, focal adhesion and proliferation of BMMSCs showed that both pure titanium and Ti2448 alloy have good biocompatibility. The osteogenic differentiation of BMMSCs with the Ti2448 alloy were examined by detecting alkaline phosphatase (ALP), mineralization nodules and osteogenic proteins and were better than that with pure titanium. These results showed that the Ti2448 alloy treated by SLA has a better effect on osteogenesis than pure titanium, and AO is the best way of three surface treatments to improve osteogenesis in this study.
Collapse
|
9
|
Cheng Z, Cao X, Xu X, Shen Q, Yu T, Jin J. Effect of Ultrasonic Surface Impact on the Fatigue Properties of Ti3Zr2Sn3Mo25Nb. MATERIALS 2020; 13:ma13092107. [PMID: 32370179 PMCID: PMC7254257 DOI: 10.3390/ma13092107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/05/2022]
Abstract
The effect of nano grain surface layer generated by ultrasonic impact on the fatigue behaviors of a titanium alloy Ti3Zr2Sn3Mo25Nb (TLM) was investigated. Three vibration strike-numbers of 24,000 times, 36,000 times and 48,000 times per unit are chosen to treat the surface of TLM specimens. Nanocrystals with an average size of 30 nm are generated. The dislocation motion plays an important role in the transformation of nanograins. Ultrasonic surface impact improves the mechanical properties of TLM, such as hardness, surface residual stress, tensile strength and fatigue strength. More vibration strike numbers will cause a higher enhancement. With a vibration strike number of 48,000 times per square millimeter the rotating-bending fatigue strength of TLM at 107 cycles is improved by 23.7%. All the fatigue cracks initiate from the surface of untreated specimens, while inner cracks appear after the fatigue life of 106 cycles with the ultrasonic surface impact. The crystal slip in the crack initiation zone is the main way of growth for microcracks. Crack cores are usually formed at the junction of crystals. The stress intensity factor of TLM titanium alloy is approximately 7.0 MPa·m1/2.
Collapse
Affiliation(s)
- Zhangjianing Cheng
- College of Civil Engineering, Tongji University, Shanghai 200092, China;
| | - Xiaojian Cao
- School of Transportation & Civil engineering, Nantong University, Nantong 226019, China; (X.X.); (Q.S.); (T.Y.); (J.J.)
- Correspondence:
| | - Xiaoli Xu
- School of Transportation & Civil engineering, Nantong University, Nantong 226019, China; (X.X.); (Q.S.); (T.Y.); (J.J.)
| | - Qiangru Shen
- School of Transportation & Civil engineering, Nantong University, Nantong 226019, China; (X.X.); (Q.S.); (T.Y.); (J.J.)
| | - Tianchong Yu
- School of Transportation & Civil engineering, Nantong University, Nantong 226019, China; (X.X.); (Q.S.); (T.Y.); (J.J.)
| | - Jiang Jin
- School of Transportation & Civil engineering, Nantong University, Nantong 226019, China; (X.X.); (Q.S.); (T.Y.); (J.J.)
| |
Collapse
|
10
|
Liu X, Hu Y, Wu L, Li S. Effects of collimated and focused low-intensity pulsed ultrasound stimulation on the mandible repair in rabbits. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:98. [PMID: 32175391 DOI: 10.21037/atm.2019.12.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background This study was to evaluate the effects of low-intensity collimated pulse ultrasound (LICU) and low-intensity focused-pulse ultrasound (LIFU) stimulation on the osteogenesis in the porous silicon carbide (SiC) scaffold implanted in the rabbit mandible. Methods Rabbits were randomly divided into LIFU group, LICU group and control group (without ultrasound treatment). The intensities of LICU and LIFU were 30 and 300 mW/cm2, respectively. The subcutaneous and subperiosteal temperatures were measured continuously during the 20-min ultrasound treatment. Then, the porous SiC scaffolds were implanted into the mandible, followed by LICU or LIFU once daily, and the quantity and structure of bone were assessed by methylene blue-acid fuchsin staining and micro-CT at 3, 6 and 9 weeks after implantation. Results The changes in the subcutaneous and subperiosteal temperatures during LICU and LIFU were less than 1 °C. The bone mass increased and the structure of bone tissues became more mature over time. The bone mass and mean pore occupancy fraction (POF) in the LIFU group were significantly greater than in the LICU group at three time points (P<0.05). Bone ingrowth in different directions was observed, and the new bone formation in the mesial, distal, top, and lingual sides of the implants in the LIFU group was greater than in the LICU group and control group (P<0.05). Conclusions LIFU and LICU may effectively promote bone formation in the mandible scaffold, and LIFU significantly accelerates bone formation in both buccal side and lingual side of the scaffold.
Collapse
Affiliation(s)
- Xiaohan Liu
- Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Ying Hu
- Department of Pediatric Dentistry, Dalian Stomatological Hospital, Dalian 116021, China
| | - Lin Wu
- Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Shujun Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
11
|
Kunrath MF, Hübler R. A bone preservation protocol that enables evaluation of osseointegration of implants with micro- and nanotextured surfaces. Biotech Histochem 2018; 94:261-270. [PMID: 30556450 DOI: 10.1080/10520295.2018.1552017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Development of surface treatments has enabled secure attachment of dental implants in less than 1 month. Consequently, it is necessary to characterize accurately the osseointegration of the implant surface in the region of the bone-implant contact (BIC). We developed a method for sample preparation that preserves both bone and BIC to permit analysis of the contact interface. We prepared eight nanotextured implants and implanted them in rabbit tibias. After healing for 30 days, outcomes were analyzed using both our bone preservation protocol and routine decalcification followed by preparation of histological sections stained by hematoxylin and eosin (H & E). Pull-out tests for implant osseointegration were performed after healing. Non-implanted samples of rabbit mandible were used as a control for assessing organic and mineralized bone characteristics and bone structure. Our bone preservation protocol enabled evaluation of many of the same bone characteristics as histological sections stained with H & E. Our protocol enables analysis of implant samples, implant surfaces and osseointegration without risk of BIC damage.
Collapse
Affiliation(s)
- M F Kunrath
- a Dentistry University , School of Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre , Brazil
| | - R Hübler
- b Materials and Nanoscience Laboratory , Physics University, Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
12
|
do Prado RF, Esteves GC, Santos ELDS, Bueno DAG, Cairo CAA, Vasconcellos LGOD, Sagnori RS, Tessarin FBP, Oliveira FE, Oliveira LDD, Villaça-Carvalho MFL, Henriques VAR, Carvalho YR, De Vasconcellos LMR. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. PLoS One 2018; 13:e0196169. [PMID: 29771925 PMCID: PMC5957353 DOI: 10.1371/journal.pone.0196169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/06/2018] [Indexed: 11/18/2022] Open
Abstract
Titanium (Ti) and Ti-6 Aluminium-4 Vanadium alloys are the most common materials in implants composition but β type alloys are promising biomaterials because they present better mechanical properties. Besides the composition of biomaterial, many factors influence the performance of the biomaterial. For example, porous surface may modify the functional cellular response and accelerate osseointegration. This paper presents in vitro and in vivo evaluations of powder metallurgy-processed porous samples composed by different titanium alloys and pure Ti, aiming to show their potential for biomedical applications. The porous surfaces samples were produced with different designs to in vitro and in vivo tests. Samples were characterized with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and elastic modulus analyses. Osteogenic cells from newborn rat calvaria were plated on discs of different materials: G1—commercially pure Ti group (CpTi); G2—Ti-6Al-4V alloy; G3—Ti-13 Niobium-13 Zirconium alloy; G4—Ti-35 Niobium alloy; G5—Ti-35 Niobium-7 Zirconium-5 Tantalum alloy. Cell adhesion and viability, total protein content, alkaline phosphatase activity, mineralization nodules and gene expression (alkaline phosphatase, Runx-2, osteocalcin and osteopontin) were assessed. After 2 and 4 weeks of implantation in rabbit tibia, bone ingrowth was analyzed using micro-computed tomography (μCT). EDS analysis confirmed the material production of each group. Metallographic and SEM analysis revealed interconnected pores, with mean pore size of 99,5μm and mean porosity of 42%, without significant difference among the groups (p>0.05). The elastic modulus values did not exhibit difference among the groups (p>0.05). Experimental alloys demonstrated better results than CpTi and Ti-6Al-4V, in gene expression and cytokines analysis, especially in early experimental periods. In conclusion, our data suggests that the experimental alloys can be used for biomedical application since they contributed to excellent cellular behavior and osseointegration besides presenting lower elastic modulus.
Collapse
Affiliation(s)
- Renata Falchete do Prado
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
- * E-mail: ,
| | - Gabriela Campos Esteves
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Evelyn Luzia De Souza Santos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Daiane Acácia Griti Bueno
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Carlos Alberto Alves Cairo
- Division of Materials, Air and Space Institute, Praça Mal. do Ar Eduardo Gomes, São José dos Campos, São Paulo, Brazil
| | - Luis Gustavo Oliveira De Vasconcellos
- Department of Prosthodontic and Dental Material, Institute of Science and Technology São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Renata Silveira Sagnori
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (Unicamp), Piracicaba, São Paulo, Brazil
| | - Fernanda Bastos Pereira Tessarin
- Department of Restorative Dentistry, Institute of Science and Technology São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Felipe Eduardo Oliveira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Luciane Dias De Oliveira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Maria Fernanda Lima Villaça-Carvalho
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | | | - Yasmin Rodarte Carvalho
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Luana Marotta Reis De Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
13
|
Nune KC, Misra RDK, Gai X, Li SJ, Hao YL. Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure. J Biomater Appl 2017; 32:1032-1048. [DOI: 10.1177/0885328217748860] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The objective of the study described here is to fundamentally elucidate the biological response of 3D printed Ti-6Al-4V alloy mesh structures that were surface modified to introduce titania nanotubes with an average pore size of ∼80 nm via an electrochemical anodization process from the perspective of enhancing bioactivity. The bioactivity of the mesh structures were analyzed through immersion test in simulated body fluid, which confirmed the nucleation and growth of fine globular nanoscale apatite on the nanoporous titania-modified (anodized) mesh structure surface, and agglomerated apatite with fine flakes of apatite crystals on as-fabricated mesh structure surface, that were rich in calcium and phosphorous. The cellular activity of bioactive anodized mesh structure was explored in terms of cell–material interactions involving adhesion, proliferation, synthesis of extracellular and intracellular proteins, differentiation, and mineralization. Cells adhered with a sheet-like morphology on as-fabricated mesh structure, whereas, on anodized mesh structure, numerous filopodia-like cellular extensions interacting with nanotube pores were observed. The formation of a bioactive nanoscale apatite, cell–nanotube interactions as imaged via electron microscopy, higher expression of proteins (actin, vinculin, fibronectin, and alkaline phosphatase (ALP)), and calcium content points toward the determining role of anodized mesh structure in modulating osteoblasts functions. The unique combination of nanoporous bioactive titania and interconnected porous architecture of anodized titanium alloy mesh structure provided a multimodal roughness surface ranging from nano to micro to macroscale, which helps in attaining strong primary and secondary fixation of the implant device along with the pathway for supply of nutrients and oxygen to cells and tissue.
Collapse
Affiliation(s)
- KC Nune
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, TX, USA
| | - RDK Misra
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, TX, USA
| | - X Gai
- Shenyang National Laboratory for Materials Science, Institute of Metals Research, Chinese Academy of Sciences, Shenyang, China
| | - SJ Li
- Shenyang National Laboratory for Materials Science, Institute of Metals Research, Chinese Academy of Sciences, Shenyang, China
| | - YL Hao
- Shenyang National Laboratory for Materials Science, Institute of Metals Research, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
14
|
Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1201-1215. [DOI: 10.1016/j.msec.2016.10.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 11/22/2022]
|
15
|
Liu X, Tian A, You J, Zhang H, Wu L, Bai X, Lei Z, Shi X, Xue X, Wang H. Antibacterial abilities and biocompatibilities of Ti-Ag alloys with nanotubular coatings. Int J Nanomedicine 2016; 11:5743-5755. [PMID: 27843315 PMCID: PMC5098752 DOI: 10.2147/ijn.s113674] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose To endow implants with both short- and long-term antibacterial activities without impairing their biocompatibility, novel Ti–Ag alloy substrates with different proportions of Ag (1, 2, and 4 wt% Ag) were generated with nanotubular coverings (TiAg-NT). Methods Unlike commercial pure Ti and titania nanotube, the TiAg-NT samples exhibited short-term antibacterial activity against Staphylococcus aureus (S. aureus), as confirmed by scanning electron microscopy and double staining with SYTO 9 and propidium iodide. A film applicator coating assay and a zone of inhibition assay were performed to investigate the long-term antibacterial activities of the samples. The cellular viability and cytotoxicity were evaluated through a Cell Counting Kit-8 assay. Annexin V-FITC/propidium iodide double staining was used to assess the level of MG63 cell apoptosis on each sample. Results All of the TiAg-NT samples, particularly the nanotube-coated Ti–Ag alloy with 2 wt% Ag (Ti2%Ag-NT), could effectively inhibit bacterial adhesion and kill the majority of adhered S. aureus on the first day of culture. Additionally, the excellent antibacterial abilities exhibited by the TiAg-NT samples were sustained for at least 30 days. Although Ti2%Ag-NT had less biocompatibility than titania nanotube, its performance was satisfactory, as demonstrated by the higher cellular viability and lower cell apoptosis rate obtained with it compared with those achieved with commercial pure Ti. The Ti1%Ag-NT and Ti4%Ag-NT samples did not yield good cell viability. Conclusion This study indicates that the TiAg-NT samples can prevent biofilm formation and maintain their antibacterial ability for at least 1 month. Ti2%Ag-NT exhibited better antibacterial ability and biocompatibility than commercial pure Ti, which could be attributed to the synergistic effect of the presence of Ag (2 wt%) and the morphology of the nanotubes. Ti2%Ag-NT may offer a potential implant material that is capable of preventing implant-related infection.
Collapse
Affiliation(s)
- Xingwang Liu
- Department of Orthopedics, The People's Hospital of China Medical University
| | - Ang Tian
- Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological Utilization Technology and Boron Materials, Northeastern University
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology
| | - Hangzhou Zhang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University
| | - Lin Wu
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Xizhuang Bai
- Department of Orthopedics, The People's Hospital of China Medical University
| | - Zeming Lei
- Department of Orthopedics, The People's Hospital of China Medical University
| | - Xiaoguo Shi
- Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological Utilization Technology and Boron Materials, Northeastern University
| | - Xiangxin Xue
- Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological Utilization Technology and Boron Materials, Northeastern University
| | - Hanning Wang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University
| |
Collapse
|
16
|
Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology. COATINGS 2016. [DOI: 10.3390/coatings6010007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|