1
|
Nadhif MH, Ghiffary MM, Irsyad M, Mazfufah NF, Nurhaliza F, Rahman SF, Rahyussalim AJ, Kurniawati T. Anatomically and Biomechanically Relevant Monolithic Total Disc Replacement Made of 3D-Printed Thermoplastic Polyurethane. Polymers (Basel) 2022; 14:4160. [PMID: 36236107 PMCID: PMC9571194 DOI: 10.3390/polym14194160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Various implant treatments, including total disc replacements, have been tried to treat lumbar intervertebral disc (IVD) degeneration, which is claimed to be the main contributor of lower back pain. The treatments, however, come with peripheral issues. This study proposes a novel approach that complies with the anatomical features of IVD, the so-called monolithic total disc replacement (MTDR). As the name suggests, the MTDR is a one-part device that consists of lattice and rigid structures to mimic the nucleus pulposus and annulus fibrosus, respectively. The MTDR can be made of two types of thermoplastic polyurethane (TPU 87A and TPU 95A) and fabricated using a 3D printing approach: fused filament fabrication. The MTDR design involves two configurations-the full lattice (FLC) and anatomy-based (ABC) configurations. The MTDR is evaluated in terms of its physical, mechanical, and cytotoxicity properties. The physical characterization includes the geometrical evaluations, wettability measurements, degradability tests, and swelling tests. The mechanical characterization comprises compressive tests of the materials, an analytical approach using the Voigt model of composite, and a finite element analysis. The cytotoxicity assays include the direct assay using hemocytometry and the indirect assay using a tetrazolium-based colorimetric (MTS) assay. The geometrical evaluation shows that the fabrication results are tolerable, and the two materials have good wettability and low degradation rates. The mechanical characterization shows that the ABC-MTDR has more similar mechanical properties to an IVD than the FLC-MTDR. The cytotoxicity assays prove that the materials are non-cytotoxic, allowing cells to grow on the surfaces of the materials.
Collapse
Affiliation(s)
- Muhammad Hanif Nadhif
- Medical Physiology and Biophysics Department, Faculty of Medicine, Universitas Indonesia, Kampus UI Salemba, Jakarta 10430, Indonesia
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
| | - Muhammad Maulana Ghiffary
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
| | - Muhammad Irsyad
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Mechanical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Nuzli Fahdia Mazfufah
- Stem Cells and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
| | - Fakhira Nurhaliza
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Biomedical Engineering Program, Electrical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Siti Fauziyah Rahman
- Biomedical Engineering Program, Electrical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Ahmad Jabir Rahyussalim
- Stem Cells and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Orthopedics and Traumatology Department, Faculty of Medicine/Ciptomangunkusumo Central Hospital, Jakarta 10430, Indonesia
- Integrated Service Unit of Stem Cell Medical Technology, Cipto Mangunkusumo Central Hospital, Jakarta 10430, Indonesia
| | - Tri Kurniawati
- Stem Cells and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Integrated Service Unit of Stem Cell Medical Technology, Cipto Mangunkusumo Central Hospital, Jakarta 10430, Indonesia
| |
Collapse
|
2
|
The effect of matrix stiffness on the chondrogenic differentiation of mesenchymal stem cells. J Mol Histol 2022; 53:805-816. [PMID: 36029427 DOI: 10.1007/s10735-022-10094-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 07/24/2022] [Indexed: 10/15/2022]
Abstract
Articular cartilage is one of the most important weight-bearing components in human body, thus the chondrogenesis of stem cells is reactive to many intracellular and extracellular mechanical signals. As a unique physical cue, matrix stiffness plays an integral role in commitment of stem cell fate. However, when examining the downstream effects of matrix stiffness, most studies used different soluble factors to assist physical inducing process, which may mask the chondrogenic effects of matrix stiffness. Here we fabricated polyacrylamide (PAAm) hydrogels with gradient stiffness to unravel the role of matrix stiffness in chondrogenic process of mesenchymal stem cells (MSCs), with or without TGF-β3 as induction factor. The results showed that with micromass culture mimicking relatively high cell density in vivo, the chondrogenic differentiation of MSCs can be promoted by soft substrates (about 0.5 kPa) independently with assembled cytoskeleton. Further analysis indicated that addition of TGF-β3 generally increased expression level of cartilage-related markers and masked the stiffness-derived expression pattern of hypertrophic markers. These results demonstrate how mechanical cues experienced in developmental context regulate commitment of stem cell fate and have significant impact on the design of tissue regeneration materials.
Collapse
|
3
|
Self-assembly and rheological behavior of chloramphenicol-based poly(ester ether)urethanes. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02545-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Ghaffari-Bohlouli P, Jafari H, Khatibi A, Bakhtiari M, Tavana B, Zahedi P, Shavandi A. Osteogenesis enhancement using poly (l-lactide-co-d, l-lactide)/poly (vinyl alcohol) nanofibrous scaffolds reinforced by phospho-calcified cellulose nanowhiskers. Int J Biol Macromol 2021; 182:168-178. [PMID: 33838184 DOI: 10.1016/j.ijbiomac.2021.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Electrospun poly (l-lactide-co-d, l-lactide) (PLDLLA)/poly (vinyl alcohol) (PVA) nanofibers were reinforced by various contents (0-1 wt%) of phospho-calcified cellulose nanowhiskers (PCCNWs) as scaffolds in bone applications. The hydrophilicity and rate of hydrolytic degradation of PLDLLA were improved by introducing 10 wt% of PVA. PCCNWs with inherent hydrophilic properties, high aspect ratio, and large elastic modulus enhanced the hydrophilicity, accelerated the rate of degradation, and improved the mechanical properties of the nanofibrous samples. Moreover, calcium phosphate and phosphate functional groups on the surface of PCCNWs possessing act as stimulating agents for cellular activities such as proliferation and differentiation. Besides the physico-chemical properties investigation of PLDLLA/PVA-PCCNWs nanofibrous samples, their cytotoxicity was also studied and they did not show any adverse side effect. Incorporation of PCCNWs (1 wt%) into the PLDLLA/PVA nanofibrous samples showed more enzymatic activities and deposited calcium. The micrograph images of the morphology of human mesenchymal stem cells (hMSCs) cultured on the nanofibrous sample containing 1 wt% of PCCNWs after 14 days of cell differentiation revealed their high potential for bone tissue engineering.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Hafez Jafari
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Alireza Khatibi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Mamak Bakhtiari
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Beeta Tavana
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran.
| | - Amin Shavandi
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
5
|
Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration. Stem Cells Int 2021; 2021:8830834. [PMID: 33824665 PMCID: PMC8007380 DOI: 10.1155/2021/8830834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is susceptible to damage, but its self-repair is hindered by its avascular nature. Traditional treatment methods are not able to achieve satisfactory repair effects, and the development of tissue engineering techniques has shed new light on cartilage regeneration. Mesenchymal stem cells (MSCs) are one of the most commonly used seed cells in cartilage tissue engineering. However, MSCs tend to lose their multipotency, and the composition and structure of cartilage-like tissues formed by MSCs are far from those of native cartilage. Thus, there is an urgent need to develop strategies that promote MSC chondrogenic differentiation to give rise to durable and phenotypically correct regenerated cartilage. This review provides an overview of recent advances in enhancement strategies for MSC chondrogenic differentiation, including optimization of bioactive factors, culture conditions, cell type selection, coculture, gene editing, scaffolds, and physical stimulation. This review will aid the further understanding of the MSC chondrogenic differentiation process and enable improvement of MSC-based cartilage tissue engineering.
Collapse
|
6
|
Ghaffari-Bohlouli P, Zahedi P, Shahrousvand M. Enhanced osteogenesis using poly (l-lactide-co-d, l-lactide)/poly (acrylic acid) nanofibrous scaffolds in presence of dexamethasone-loaded molecularly imprinted polymer nanoparticles. Int J Biol Macromol 2020; 165:2363-2377. [DOI: 10.1016/j.ijbiomac.2020.10.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
|
7
|
Moxon SR, Ferreira MJ, dos Santos P, Popa B, Gloria A, Katsarava R, Tugushi D, Serra AC, Hooper NM, Kimber SJ, Fonseca AC, Domingos MAN. A Preliminary Evaluation of the Pro-Chondrogenic Potential of 3D-Bioprinted Poly(ester Urea) Scaffolds. Polymers (Basel) 2020; 12:E1478. [PMID: 32630145 PMCID: PMC7408263 DOI: 10.3390/polym12071478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Degeneration of articular cartilage (AC) is a common healthcare issue that can result in significantly impaired function and mobility for affected patients. The avascular nature of the tissue strongly burdens its regenerative capacity contributing to the development of more serious conditions such as osteoarthritis. Recent advances in bioprinting have prompted the development of alternative tissue engineering therapies for the generation of AC. Particular interest has been dedicated to scaffold-based strategies where 3D substrates are used to guide cellular function and tissue ingrowth. Despite its extensive use in bioprinting, the application of polycaprolactone (PCL) in AC is, however, restricted by properties that inhibit pro-chondrogenic cell phenotypes. This study proposes the use of a new bioprintable poly(ester urea) (PEU) material as an alternative to PCL for the generation of an in vitro model of early chondrogenesis. The polymer was successfully printed into 3D constructs displaying adequate substrate stiffness and increased hydrophilicity compared to PCL. Human chondrocytes cultured on the scaffolds exhibited higher cell viability and improved chondrogenic phenotype with upregulation of genes associated with type II collagen and aggrecan synthesis. Bioprinted PEU scaffolds could, therefore, provide a potential platform for the fabrication of bespoke, pro-chondrogenic tissue engineering constructs.
Collapse
Affiliation(s)
- Samuel R. Moxon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (S.R.M.); (N.M.H.)
| | - Miguel J.S. Ferreira
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.J.S.F.); (B.P.)
| | - Patricia dos Santos
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal; (P.d.S.); (A.C.S.)
| | - Bogdan Popa
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.J.S.F.); (B.P.)
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials—National Research Council of Italy, V.le J.F. Kennedy 54—Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 240, David Aghmashenebeli Alley, Tbilisi 0159, Georgia; (R.K.); (D.T.)
| | - David Tugushi
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 240, David Aghmashenebeli Alley, Tbilisi 0159, Georgia; (R.K.); (D.T.)
| | - Armenio C. Serra
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal; (P.d.S.); (A.C.S.)
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (S.R.M.); (N.M.H.)
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK;
| | - Ana C. Fonseca
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal; (P.d.S.); (A.C.S.)
| | - Marco A. N. Domingos
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK;
- The Henry Royce Institute, The University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
8
|
Belleghem SMV, Mahadik B, Snodderly KL, Fisher JP. Overview of Tissue Engineering Concepts and Applications. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00081-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Moghaddam MM, Bonakdar S, Shariatpanahi MR, Shokrgozar MA, Faghihi S. The Effect of Physical Cues on the Stem Cell Differentiation. Curr Stem Cell Res Ther 2019; 14:268-277. [DOI: 10.2174/1574888x14666181227120706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Development of multicellular organisms is a very complex and organized process during which cells respond to various factors and features in extracellular environments. It has been demonstrated that during embryonic evolvement, under certain physiological or experimental conditions, unspecialized cells or stem cells can be induced to become tissue or organ-specific cells with special functions. Considering the importance of physical cues in stem cell fate, the present study reviews the role of physical factors in stem cells differentiation and discusses the molecular mechanisms associated with these factors.
Collapse
Affiliation(s)
- Mehrdad M. Moghaddam
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran
| | - Shahin Bonakdar
- National Cell Bank, Pasteur Institute of Iran, Tehran 3159915111, Iran
| | | | | | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran
| |
Collapse
|
10
|
Ghaffari-Bohlouli P, Shahrousvand M, Zahedi P, Shahrousvand M. Performance evaluation of poly (l-lactide-co-D, l-lactide)/poly (acrylic acid) blends and their nanofibers for tissue engineering applications. Int J Biol Macromol 2019; 122:1008-1016. [DOI: 10.1016/j.ijbiomac.2018.09.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/26/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
|
11
|
Chen L, Huang T, Qiao Y, Jiang F, Lan J, Zhou Y, Yang C, Yan S, Luo K, Su L, Li J. Perspective into
the regulation of cell‐generated forces toward stem cell migration and differentiation. J Cell Biochem 2018; 120:8884-8890. [PMID: 30536423 DOI: 10.1002/jcb.28251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Liujing Chen
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Tu Huang
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Yini Qiao
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Fulin Jiang
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Jingxiang Lan
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Yimei Zhou
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Cai Yang
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Shanyu Yan
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Kaihui Luo
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Liping Su
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Juan Li
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| |
Collapse
|
12
|
Wei Q, Jin J, Wang X, Shen Q, Zhou M, Bu S, Zhu Y. The growth and pluripotency of mesenchymal stem cell on the biodegradable polyurethane synthesized with ferric catalyst. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1095-1108. [DOI: 10.1080/09205063.2018.1426424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Qianqian Wei
- The Medical School, Ningbo University, Ningbo, China
| | - Jiachang Jin
- The Medical School, Ningbo University, Ningbo, China
| | - Xinyuan Wang
- The Medical School, Ningbo University, Ningbo, China
| | - Qijun Shen
- The Medical School, Ningbo University, Ningbo, China
| | - Mi Zhou
- The Medical School, Ningbo University, Ningbo, China
| | - Shizhong Bu
- The Medical School, Ningbo University, Ningbo, China
| | - Yabin Zhu
- The Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Elastic polyurethane bearing pendant TGF-β1 affinity peptide for potential tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:67-77. [DOI: 10.1016/j.msec.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 09/05/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022]
|
14
|
Wong CW, Chen YT, Chien CL, Yu TY, Rwei SP, Hsu SH. A simple and efficient feeder-free culture system to up-scale iPSCs on polymeric material surface for use in 3D bioprinting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:69-79. [DOI: 10.1016/j.msec.2017.08.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
|
15
|
Electrospun carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate composite nanofibers membrane scaffolds: Preparation, characterization and cytocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:29-40. [DOI: 10.1016/j.msec.2017.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/17/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022]
|
16
|
Hill MJ, Sarkar D. Polyurethane Microgel Based Microtissue: Interface-Guided Assembly and Spreading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6167-6181. [PMID: 28564546 PMCID: PMC7214101 DOI: 10.1021/acs.langmuir.7b01493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Colloidal gels are three-dimensional networks of microgel particles and can be utilized to design microtissues where the differential adhesive interactions between the particles and cells, guided by their surface energetics, are engineered to spatially assemble the cellular and colloidal components into three-dimensional microtissues. In this work we utilized a colloidal interaction approach to design cell-polyurethane (PU) microgel bimodal microtissues using endothelial cells (ECs) as a normal cell model and a nonmalignant breast cancer cell line (MCF-7) as a cancer cell model. PU microgels were developed from a library of segmental polyurethanes with poly(ethylene glycol) soft segment and aliphatic diisocyanate/l-tyrosine based chain extender as hard segment to modulate the interactions between PU colloidal particles and cells. The surface energies of the microgel particles and cells were estimated using Zisman's critical surface tension and van Oss-Good-Chaudhury theory (vOGCT) from liquid contact angle analysis. Binary interaction potentials between colloidal PU particles and cells and the ternary interaction between colloidal PU particle, cell, and collagen I/Matrigel were calculated to explain the formation of microtissues and their spreading in extraneous biomatrix respectively by using classical and extended DLVO theory (XDLVO). Furthermore, rheological analysis and in silico simulations were used to analyze the assembly and spreading of the PU microgel based microtissues. In vitro experiments showed that ECs and MCF-7 displayed more differentiated (EC spreading/MCF-7 lumen formation) character when mixed with microgel particles that were stable in aqueous medium and more undifferentiated character (EC nonspreading/MCF-7 spreading) when mixed with microgel particles unstable in aqueous medium.
Collapse
Affiliation(s)
- Michael J. Hill
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Debanjan Sarkar
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
17
|
Shie MY, Chang WC, Wei LJ, Huang YH, Chen CH, Shih CT, Chen YW, Shen YF. 3D Printing of Cytocompatible Water-Based Light-Cured Polyurethane with Hyaluronic Acid for Cartilage Tissue Engineering Applications. MATERIALS 2017; 10:ma10020136. [PMID: 28772498 PMCID: PMC5459153 DOI: 10.3390/ma10020136] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/19/2017] [Accepted: 02/03/2017] [Indexed: 12/03/2022]
Abstract
Diseases in articular cartilages have affected millions of people globally. Although the biochemical and cellular composition of articular cartilages is relatively simple, there is a limitation in the self-repair ability of the cartilage. Therefore, developing strategies for cartilage repair is very important. Here, we report on a new liquid resin preparation process of water-based polyurethane based photosensitive materials with hyaluronic acid with application of the materials for 3D printed customized cartilage scaffolds. The scaffold has high cytocompatibility and is one that closely mimics the mechanical properties of articular cartilages. It is suitable for culturing human Wharton’s jelly mesenchymal stem cells (hWJMSCs) and the cells in this case showed an excellent chondrogenic differentiation capacity. We consider that the 3D printing hybrid scaffolds may have potential in customized tissue engineering and also facilitate the development of cartilage tissue engineering.
Collapse
Affiliation(s)
- Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
- School of Dentistry, China Medical University, Taichung 40447, Taiwan.
| | - Wen-Ching Chang
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
| | - Li-Ju Wei
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
| | - Yu-Hsin Huang
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
| | - Chien-Han Chen
- School of Medicine, College of Medicine, China Medical University, Taichung 40447, Taiwan.
| | - Cheng-Ting Shih
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
| | - Yi-Wen Chen
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan.
| | - Yu-Fang Shen
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
| |
Collapse
|
18
|
Qu C, Kaitainen S, Kröger H, Lappalainen R, Lammi MJ. Behavior of Human Bone Marrow-Derived Mesenchymal Stem Cells on Various Titanium-Based Coatings. MATERIALS 2016; 9:ma9100827. [PMID: 28773947 PMCID: PMC5456604 DOI: 10.3390/ma9100827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022]
Abstract
The chemical composition and texture of titanium coatings can influence the growth characteristics of the adhered cells. An enhanced proliferation of the human mesenchymal stem cells (hMSCs) would be beneficial. The present study was aimed to investigate whether titanium deposited at different atmospheres would affect the cell growth properties, cellular morphology, and expression of surface markers of hMSCs. Titanium-based coatings were deposited on silicon wafers under oxygen, nitrogen, or argon atmospheres by ultra-short pulsed laser deposition using two different gas pressures followed by heating at 400 °C for 2 h. The characteristics of the coated surfaces were determined via contact angle, zeta potential, and scanning electron microscopy (SEM) techniques. Human MSCs were cultivated on differently coated silicon wafers for 48 h. Subsequently, the cell proliferation rates were analyzed with an MTT assay. The phenotype of hMSCs was checked via immunocytochemical stainings of MSC-associated markers CD73, CD90, and CD105, and the adhesion, spreading, and morphology of hMSCs on coated materials via SEM. The cell proliferation rates of the hMSCs were similar on all coated silicon wafers. The hMSCs retained the MSC phenotype by expressing MSC-associated markers and fibroblast-like morphology with cellular projections. Furthermore, no significant differences could be found in the size of the cells when cultured on all various coated surfaces. In conclusion, despite certain differences in the contact angles and the zeta potentials of various titanium-based coatings, no single coating markedly improved the growth characteristics of hMSCs.
Collapse
Affiliation(s)
- Chengjuan Qu
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio 70210, Finland.
- Department of Integrative Medical Biology, Umeå University, Umeå 90187, Sweden.
| | - Salla Kaitainen
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland.
| | - Heikki Kröger
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio 70210, Finland.
| | - Reijo Lappalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland.
| | - Mikko J Lammi
- Department of Integrative Medical Biology, Umeå University, Umeå 90187, Sweden.
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health of Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
19
|
Jaipaew J, Wangkulangkul P, Meesane J, Raungrut P, Puttawibul P. Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:173-182. [PMID: 27127042 DOI: 10.1016/j.msec.2016.03.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 12/22/2022]
Abstract
Osteoarthritis is a critical disease that comes from degeneration of cartilage tissue. In severe cases surgery is generally required. Tissue engineering using scaffolds with stem cell transplantation is an attractive approach and a challenge for orthopedic surgery. For sample preparation, silk fibroin (SF)/hyaluronic acid (HA) scaffolds in different ratios of SF/HA (w/w) (i.e., 100:0, 90:10, 80:20, and 70:30) were formed by freeze-drying. The morphological, mechanical, and physical clues were considered in this research. The morphological structure of the scaffolds was observed by scanning electron microscope. The mechanical and physical properties of the scaffolds were analyzed by compressive and swelling ratio testing, respectively. For the cell experiments, scaffolds were seeded and cultured with human umbilical cord-derived mesenchymal stem cells (HUMSCs). The cultured scaffolds were tested for cell viability, histochemistry, immunohistochemistry, and gene expression. The SF with HA scaffolds showed regular porous structures. Those scaffolds had a soft and elastic characteristic with a high swelling ratio and water uptake. The SF/HA scaffolds showed a spheroid structure of the cells in the porous structure particularly in the SF80 and SF70 scaffolds. Cells could express Col2a, Agg, and Sox9 which are markers for chondrogenesis. It could be deduced that SF/HA scaffolds showed significant clues for suitability in cartilage tissue engineering and in surgery for osteoarthritis.
Collapse
Affiliation(s)
- Jirayut Jaipaew
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110
| | - Piyanun Wangkulangkul
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110; Department of Surgery, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110.
| | - Pritsana Raungrut
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110
| | - Puttisak Puttawibul
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110; Department of Surgery, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110
| |
Collapse
|