1
|
Kansal A, Mahapatra S, Dvivedi A, Kumar P, Goswami M. In Vitro Degradation and Cytocompatibility Study of Biodegradable Porous Zinc Scaffolds Fabricated by Fused Deposition Modeling Based Rapid Tooling Method. J Biomed Mater Res B Appl Biomater 2025; 113:e35593. [PMID: 40354420 DOI: 10.1002/jbm.b.35593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
An integrative study is conducted on the static biodegradation behavior and cytocompatibility of organized porous network structured (OPNS) zinc scaffolds fabricated via the Fused Deposition Modeling based Rapid Tooling (FDM-RT) method. The degradation study investigates the corrosion mechanism over immersion time in simulated body fluid (SBF), whereas the cytocompatibility study incorporates MTT assay and direct cell counting tests. The results indicate that the scaffold morphology, including scaffold struts, interconnectivity, or porosity, along with the immersion period, significantly influence the degradation behavior. The static corrosion rates are determined to be 0.27 ± 0.006, 0.79 ± 0.01, and 1.35 ± 0.05 mm y-1 for bulk and porous zinc samples after 28 days. The higher corrosion rate of porous zinc alloys is mainly due to their higher surface area, which enhances exposure to the solution. Over time, protective layers form on both porous and bulk samples, leading to a gradual decrease in corrosion rate. The XRD results reveal that the corrosion protective layer is primarily composed of ZnO, Ca3(PO4)2, Zn (OH)2, and Zn3(PO4)2·4H2O. Moreover, MTT assay and direct cell counting of mouse fibroblast 3T3 cells on bulk and porous zinc samples suggest that the prepared zinc samples have potential for tissue engineering applications.
Collapse
Affiliation(s)
- Abhishek Kansal
- Department of Mechanical Engineering, Punjab Engineering College, Chandigarh, India
- Advanced Manufacturing Lab, Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sangita Mahapatra
- Divyadrishti Imaging Lab, Department of Physics, Indian Institute of Technology Roorkee, Roorkee, India
| | - Akshay Dvivedi
- Advanced Manufacturing Lab, Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pradeep Kumar
- Advanced Manufacturing Lab, Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Roorkee, India
| | - Mayank Goswami
- Divyadrishti Imaging Lab, Department of Physics, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
2
|
Liu S, Yuan C, Gao K, Shi R, Zhu B, Pang X. Degradation Characteristics and Biocompatibility of Zinc Alloy in Advanced Biomedical Bone Implants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8711-8725. [PMID: 40131826 DOI: 10.1021/acs.langmuir.4c05260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Biodegradable zinc-based alloys are regarded as a promising avenue of research for the development of bone fixation implants, offering potential solutions to clinical issues, such as stress shielding, secondary surgeries, and biocompatibility. In this study, a Zn-0.8Li-0.4Mg alloy was designed and fabricated and its potential for use as a clinical bone implant was evaluated. The alloy displays an ultimate tensile strength of 450 MPa and an elongation of 18%, thereby satisfying the requisite mechanical specifications for clinical bone implants. The results of the electrochemical and SBF in vitro corrosion tests indicate that the degradation mechanism evolves over time. The initial corrosion product layer is composed of a dense Li-containing corrosion product (LiOH/Li2CO3), which subsequently transforms into an Mg-containing corrosion product layer (MgO/Mg(OH)2) as corrosion progresses. Ultimately, due to the depletion of Li and the erosion by Cl-, it transitions to a corrosion product layer containing only the Zn and Ca/P layer. The overall degradation mechanism is jointly determined by the degree of local degradation and the corrosion resistance of the product layer. Cytotoxicity tests demonstrate that the Zn-0.8Li-0.4Mg alloy exhibits favorable biocompatibility.
Collapse
Affiliation(s)
- Saiyu Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chaoying Yuan
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kewei Gao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongjian Shi
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bin Zhu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaolu Pang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- State Key Laboratory of Nuclear Power Safety Technology and Equipment, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Zhang J, Chen Z, Rao L, He Y. Coronary bioresorbable metallic stents: Advancements and future perspectives. J Cardiol 2025; 85:69-78. [PMID: 39134302 DOI: 10.1016/j.jjcc.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 10/04/2024]
Abstract
Percutaneous coronary intervention is a critical treatment for coronary artery disease, particularly myocardial infarction, and is highly recommended in clinical guidelines. Traditional metallic stents, although initially effective, remain permanently in the artery and can lead to complications such as in-stent restenosis, late thrombosis, and chronic inflammation. Given the temporary need for stenting and the potential for late complications, bioresorbable stents have emerged as a promising alternative. However, bioresorbable polymeric stents have encountered significant clinical challenges due to their low mechanical strength and ductility, which increase the risks of thrombosis and local inflammation. Consequently, bioresorbable metals are being considered as a superior option for coronary stents. This review examines the progress of bioresorbable metallic stents from both preclinical and clinical perspectives, aiming to provide a theoretical foundation for future research. Iron, zinc, and magnesium are the primary materials used for these stents. Zinc-based bioresorbable stents have shown promise in preclinical studies due to their biocompatibility and vascular protective properties, although human clinical studies are still limited. Magnesium-based stents have demonstrated positive clinical outcomes, being fully absorbed within 12 months and showing low rates of late lumen loss and target lesion failure at 6- and 12-months post-implantation. Initial trials of iron-based stents have indicated favorable mid-term safety and efficacy, with complete absorption by the body within three years and consistent luminal expansion beyond six months post-implantation. Despite these advancements, further trials are needed for comprehensive validation. In conclusion, while current materials do not fully meet the ideal requirements, ongoing research should focus on developing bioresorbable stents with enhanced performance characteristics to better meet clinical needs.
Collapse
Affiliation(s)
- Junyan Zhang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhongxiu Chen
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yong He
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Davletshin A, Korznikova EA, Kistanov AA. Machine Learning Prediction of the Corrosion Rate of Zinc-Based Alloys Containing Copper, Lithium, Magnesium, and Silver. J Phys Chem Lett 2025; 16:114-122. [PMID: 39704467 DOI: 10.1021/acs.jpclett.4c03357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Implementation of machine learning (ML) techniques in materials science often requires large data sets. However, a proper choice of features and regression methods allows the construction of accurate ML models able to work with a relatively small data set. In this work, an extensive, although still limited, experimental data set of corrosion-related properties of Zn-based alloys used in biomedicine was created. On the basis of this data set, a robust and accurate model was built to predict the corrosion behavior of Zn-based alloys. This work highlights the effectiveness of ML methods for assessing the corrosion behavior of Zn-based alloys, which can facilitate their application in bioimplants.
Collapse
Affiliation(s)
- Artur Davletshin
- Center for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Elena A Korznikova
- The Laboratory of Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, Ufa 450076, Russia
- Polytechnic Institute (Branch) in Mirny, North-Eastern Federal University, Mirny 678170, Russia
| | - Andrey A Kistanov
- The Laboratory of Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, Ufa 450076, Russia
| |
Collapse
|
5
|
Lu C, Song C, Yu Y, Yang L, Zheng W, Luo F, Xiao Y, Luo J, Xu J. Biodegradable zinc alloys with high strength and suitable mechanical integrity as bone repair metals. Sci Rep 2024; 14:30558. [PMID: 39702751 DOI: 10.1038/s41598-024-78842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
Mechanical properties and integrity of biodegradable Zn alloys during degradation holds significant importance. In this study, a Zn-Mg-Mn alloy with tensile strength of 414 MPa and an elongation of 26% was developed. The strength contributions of as-extruded Zn alloy from grain boundary strengthening, precipitation strengthening, and second phase strengthening. Degradation of the Zn alloy in Hank's solution exhibited a decreasing trend with prolonged immersion, eventually stabilizing at 16 μm/year. Corrosion morphology analysis revealed that the corrosion modes transformed from pitting corrosion to severely localized corrosion with prolonged immersion time, eventually lead to formation of large holes. Although the tensile strength of the Zn alloys remained relatively unchanged following varied immersion time, a substantial decrease in elongation was observed. The decreased elongation primarily attributed to the formation of surface corrosion pits or holes, exacerbating crack propagation during tension. Biocompatibility assessments of Zn alloys demonstrated that a 50% concentration of Zn alloy leach solution cultured with C3H10 and RMSC cells yielded cellular activity exceeding 80%, indicating excellent cytocompatibility. Alkaline phosphatase (ALP) and alizarin red staining results further underscored the remarkable early and late osteogenic properties exhibited by Zn-Mg-Mn alloy.
Collapse
Affiliation(s)
- Chengwu Lu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Nanping First Hospital Affiliated to Fujian Medical University, Nanping, 353000, China
| | - Chao Song
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China
| | - Yunlong Yu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China
| | - Linhai Yang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Wu Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China
| | - Fenqi Luo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China
| | - Yuhua Xiao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China
| | - Jun Luo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China.
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China.
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China.
| | - Jie Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, China.
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, China.
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, China.
| |
Collapse
|
6
|
Sharma SK, Gajević S, Sharma LK, Pradhan R, Miladinović S, Ašonja A, Stojanović B. Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5157. [PMID: 39517433 PMCID: PMC11546690 DOI: 10.3390/ma17215157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Magnesium (Mg) has attracted considerable attention as a biodegradable material for medical implants owing to its excellent biocompatibility, mitigating long-term toxicity and stress shielding. Nevertheless, challenges arise from its rapid degradation and low corrosion resistance under physiological conditions. To overcome these challenges, titanium (biocompatibility and corrosion resistance) has been integrated into Mg. The incorporation of titanium significantly improves mechanical and corrosion resistance properties, thereby enhancing performance in biological settings. Mg-Ti alloys are produced through mechanical alloying and spark plasma sintering (SPS). The SPS technique transforms powder mixtures into bulk materials while preserving structural integrity, resulting in enhanced corrosion resistance, particularly Mg80-Ti20 alloy in simulated body fluids. Moreover, Mg-Ti alloy revealed no more toxicity when assessed on pre-osteoblastic cells. Furthermore, the ability of Mg-Ti-based alloy to create composites with polymers such as PLGA (polylactic-co-glycolic acid) widen their biomedical applications by regulating degradation and ensuring pH stability. These alloys promote temporary orthopaedic implants, offering initial load-bearing capacity during the healing process of fractures without requiring a second surgery for removal. To address scalability constraints, further research is necessary to investigate additional consolidation methods beyond SPS. It is essential to evaluate the relationship between corrosion and mechanical loading to confirm their adequacy in physiological environments. This review article highlights the importance of mechanical characterization and corrosion evaluation of Mg-Ti alloys, reinforcing their applicability in fracture fixation and various biomedical implants.
Collapse
Affiliation(s)
- Sachin Kumar Sharma
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Sandra Gajević
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | | | - Reshab Pradhan
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Slavica Miladinović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | - Aleksandar Ašonja
- Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia;
| | - Blaža Stojanović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| |
Collapse
|
7
|
Diaa AA, El-Mahallawy N, Shoeib M, Mouillard F, Ferté T, Masson P, Carradò A. Biodegradable PMMA coated Zn-Mg alloy with bimodal grain structure for orthopedic applications - A promising alternative. Bioact Mater 2024; 39:479-491. [PMID: 38883318 PMCID: PMC11179251 DOI: 10.1016/j.bioactmat.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
The study examines the impact of microstructure and polymethyl methacrylate (PMMA) grafting on the degradability of Zn-Mg alloys. The mechanical properties of a Zn alloy containing 0.68 wt% Mg and extruded at 200 °C are enhanced for degradable load-bearing applications, addressing a crucial need in the field. The material exhibits a bimodal grain size distribution that is random texture, consisting of secondary phases, grains, and sub-grains. With an elongation to failure of 16 %, the yield and ultimate tensile strengths are 325.9 and 414.5 MPa, respectively, and the compressive yield strength is 450.5 MPa. The "grafting-from" method was used to coat a few micrometers thick of PMMA on both bulk and scaffold Zn alloys to mitigate the corrosion rate. The last one is a porous structure, with a porosity of 65.8 %, considered as in the first approach of an orthopedic implant. After being immersed for 720 h, the PMMA-grafted bulk alloy's corrosion rate decreased from 0.43 to 0.25 mm/y. Similarly, the scaffold alloy's corrosion rate reduced from 1.24 to 0.49 mm/y. These results indicate that the method employed could be used for future orthopedic applications.
Collapse
Affiliation(s)
- Alia A Diaa
- Design and Production Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, 11517, Egypt
- Department of Design and Production Engineering, Faculty of Engineering and Materials Science, German University in Cairo, Cairo, 11835, Egypt
| | - Nahed El-Mahallawy
- Design and Production Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, 11517, Egypt
- Department of Design and Production Engineering, Faculty of Engineering and Materials Science, German University in Cairo, Cairo, 11835, Egypt
| | - Madiha Shoeib
- Central Metallurgical Research and Development Institute, El Tebbin, Cairo, 11722, Egypt
| | - Flavien Mouillard
- Institut de Physique et Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Tom Ferté
- Institut de Physique et Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Patrick Masson
- Institut de Physique et Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Adele Carradò
- Institut de Physique et Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS, Université de Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
8
|
Meng F, Du Y. Research Progress on Laser Powder Bed Fusion Additive Manufacturing of Zinc Alloys. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4309. [PMID: 39274701 PMCID: PMC11395926 DOI: 10.3390/ma17174309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
Zinc, along with magnesium and iron, is considered one of the most promising biodegradable metals. Compared with magnesium and iron, pure Zn exhibits poor mechanical properties, despite its mild biological corrosion behavior and beneficial biocompatibility. Laser powder bed fusion (LPBF), unlike traditional manufacturing techniques, has the capability to rapidly manufacture near-net-shape components. At present, although the combination of LPBF and Zn has made great progress, it is still in its infancy. Element loss and porosity are common processing problems for LPBF Zn, mainly due to evaporation during melting under a high-energy beam. The formation quality and properties of the final material are closely related to the alloy composition, design and processing. This work reviews the state of research and future perspective on LPBF zinc from comprehensive assessments such as powder characteristics, alloy composition, processing, formation quality, microstructure, and properties. The effects of powder characteristics, process parameters and evaporation on formation quality are introduced. The mechanical, corrosion, and biocompatibility properties of LPBF Zn and their test methodologies are introduced. The effects of microstructure on mechanical properties and corrosion properties are analyzed in detail. The practical medical application of Zn is introduced. Finally, current research status is summarized together with suggested directions for advancing knowledge about LPBF Zn.
Collapse
Affiliation(s)
- Fuxiang Meng
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yulei Du
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
9
|
Zheng Y, Huang C, Li Y, Gao J, Yang Y, Zhao S, Che H, Yang Y, Yao S, Li W, Zhou J, Zadpoor AA, Wang L. Mimicking the mechanical properties of cortical bone with an additively manufactured biodegradable Zn-3Mg alloy. Acta Biomater 2024; 182:139-155. [PMID: 38750914 DOI: 10.1016/j.actbio.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Additively manufactured (AM) biodegradable zinc (Zn) alloys have recently emerged as promising porous bone-substituting materials, due to their moderate degradation rates, good biocompatibility, geometrically ordered microarchitectures, and bone-mimicking mechanical properties. While AM Zn alloy porous scaffolds mimicking the mechanical properties of trabecular bone have been previously reported, mimicking the mechanical properties of cortical bone remains a formidable challenge. To overcome this challenge, we developed the AM Zn-3Mg alloy. We used laser powder bed fusion to process Zn-3Mg and compared it with pure Zn. The AM Zn-3Mg alloy exhibited significantly refined grains and a unique microstructure with interlaced α-Zn/Mg2Zn11 phases. The compressive properties of the solid Zn-3Mg specimens greatly exceeded their tensile properties, with a compressive yield strength of up to 601 MPa and an ultimate strain of >60 %. We then designed and fabricated functionally graded porous structures with a solid core and achieved cortical bone-mimicking mechanical properties, including a compressive yield strength of >120 MPa and an elastic modulus of ≈20 GPa. The biodegradation rates of the Zn-3Mg specimens were lower than those of pure Zn and could be adjusted by tuning the AM process parameters. The Zn-3Mg specimens also exhibited improved biocompatibility as compared to pure Zn, including higher metabolic activity and enhanced osteogenic behavior of MC3T3 cells cultured with the extracts from the Zn-3Mg alloy specimens. Altogether, these results marked major progress in developing AM porous biodegradable metallic bone substitutes, which paved the way toward clinical adoption of Zn-based scaffolds for the treatment of load-bearing bony defects. STATEMENT OF SIGNIFICANCE: Our study presents a significant advancement in the realm of biodegradable metallic bone substitutes through the development of an additively manufactured Zn-3Mg alloy. This novel alloy showcases refined grains and a distinctive microstructure, enabling the fabrication of functionally graded porous structures with mechanical properties resembling cortical bone. The achieved compressive yield strength and elastic modulus signify a critical leap toward mimicking the mechanical behavior of load-bearing bone. Moreover, our findings reveal tunable biodegradation rates and enhanced biocompatibility compared to pure Zn, emphasizing the potential clinical utility of Zn-based scaffolds for treating load-bearing bony defects. This breakthrough opens doors for the wider adoption of zinc-based materials in regenerative orthopedics.
Collapse
Affiliation(s)
- Yuzhe Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chengcong Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.
| | - Jiaqi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Youwen Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shangyan Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Haodong Che
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yabin Yang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shenglian Yao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, No. 49 NorthGarden Road, Haidian District, Beijing, 100191, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Luning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.
| |
Collapse
|
10
|
Hussain M, Khan SM, Shafiq M, Abbas N, Sajjad U, Hamid K. Advances in biodegradable materials: Degradation mechanisms, mechanical properties, and biocompatibility for orthopedic applications. Heliyon 2024; 10:e32713. [PMID: 39027458 PMCID: PMC11254538 DOI: 10.1016/j.heliyon.2024.e32713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Mg-based and Zn-based biodegradable materials have the potential to become the next-generation implant materials to treat bone diseases, because of their desired degradation and mechanical properties. This article reviews the status of these implant materials. The required properties of biodegradable materials such as biodegradability, mechanical properties, and biocompatibility for performance evaluation were briefly discussed. The influence of fabrication techniques, microstructure, alloying elements, and post-processing techniques on the properties of Mg and Zn-based materials was addressed. The degradation mechanism by dissolution, oxidation, and interaction with human body cells was discussed. The biocompatibility of Mg and Zn-based biodegradable materials was analyzed. The significance of in vitro and in vivo biocompatibility testing was highlighted, emphasizing the superiority of in vivo results over cell line studies. This article identifies the many Mg and Zn-based biodegradable materials and summarizes the key findings.
Collapse
Affiliation(s)
- Muzamil Hussain
- Institute of Polymer & Textile Engineering, University of the Punjab, Lahore, 54000, Pakistan
| | - Shahzad Maqsood Khan
- Institute of Polymer & Textile Engineering, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Shafiq
- Institute of Polymer & Textile Engineering, University of the Punjab, Lahore, 54000, Pakistan
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Uzair Sajjad
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Khalid Hamid
- Process and Power Research Group, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
11
|
Yuan K, Deng C, Tan L, Wang X, Yan W, Dai X, Du R, Zheng Y, Zhang H, Wang G. Structural and temporal dynamics analysis of zinc-based biomaterials: History, research hotspots and emerging trends. Bioact Mater 2024; 35:306-329. [PMID: 38362138 PMCID: PMC10867564 DOI: 10.1016/j.bioactmat.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Objectives To examine the 16-year developmental history, research hotspots, and emerging trends of zinc-based biodegradable metallic materials from the perspective of structural and temporal dynamics. Methods The literature on zinc-based biodegradable metallic materials in WoSCC was searched. Historical characteristics, the evolution of active topics and development trends in the field of zinc-based biodegradable metallic materials were analyzed using the bibliometric tools CiteSpace and HistCite. Results Over the past 16 years, the field of zinc-based biodegradable metal materials has remained in a hotspot stage, with extensive scientific collaboration. In addition, there are 45 subject categories and 51 keywords in different research periods, and 80 papers experience citation bursts. Keyword clustering anchored 3 emerging research subfields, namely, #1 plastic deformation #4 additive manufacturing #5 surface modification. The keyword alluvial map shows that the longest-lasting research concepts in the field are mechanical property, microstructure, corrosion behavior, etc., and emerging keywords are additive manufacturing, surface modification, dynamic recrystallization, etc. The most recent research on reference clustering has six subfields. Namely, #0 microstructure, #2 sem, #3 additive manufacturing, #4 laser powder bed fusion, #5 implant, and #7 Zn-1Mg. Conclusion The results of the bibliometric study provide the current status and trends of research on zinc-based biodegradable metallic materials, which can help researchers identify hot spots and explore new research directions in the field.
Collapse
Affiliation(s)
- Kunshan Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Chengchen Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Lili Tan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenhua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Ruolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
12
|
Cao X, Wang X, Chen J, Geng X, Tian H. 3D Printing of a Porous Zn-1Mg-0.1Sr Alloy Scaffold: A Study on Mechanical Properties, Degradability, and Biosafety. J Funct Biomater 2024; 15:109. [PMID: 38667566 PMCID: PMC11051303 DOI: 10.3390/jfb15040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the use of zinc (Zn) alloys as degradable metal materials has attracted considerable attention in the field of biomedical bone implant materials. This study investigates the fabrication of porous scaffolds using a Zn-1Mg-0.1Sr alloy through a three-dimensional (3D) printing technique, selective laser melting (SLM). The results showed that the porous Zn-1Mg-0.1Sr alloy scaffold featured a microporous structure and exhibited a compressive strength (CS) of 33.71 ± 2.51 MPa, a yield strength (YS) of 27.88 ± 1.58 MPa, and an elastic modulus (E) of 2.3 ± 0.8 GPa. During the immersion experiments, the immersion solution showed a concentration of 2.14 ± 0.82 mg/L for Zn2+ and 0.34 ± 0.14 mg/L for Sr2+, with an average pH of 7.61 ± 0.09. The porous Zn-1Mg-0.1Sr alloy demonstrated a weight loss of 12.82 ± 0.55% and a corrosion degradation rate of 0.36 ± 0.01 mm/year in 14 days. The Cell Counting Kit-8 (CCK-8) assay was used to check the viability of the cells. The results showed that the 10% and 20% extracts significantly increased the activity of osteoblast precursor cells (MC3T3-E1), with a cytotoxicity grade of 0, which indicates safety and non-toxicity. In summary, the porous Zn-1Mg-0.1Sr alloy scaffold exhibits outstanding mechanical properties, an appropriate degradation rate, and favorable biosafety, making it an ideal candidate for degradable metal bone implants.
Collapse
Affiliation(s)
- Xiangyu Cao
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.C.); (X.W.); (J.C.)
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Xinguang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.C.); (X.W.); (J.C.)
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Jiazheng Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.C.); (X.W.); (J.C.)
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Xiao Geng
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.C.); (X.W.); (J.C.)
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Hua Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.C.); (X.W.); (J.C.)
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| |
Collapse
|
13
|
Jablonská E, Mrázková L, Kubásek J, Vojtěch D, Paulin I, Ruml T, Lipov J. Characterization of hFOB 1.19 Cell Line for Studying Zn-Based Degradable Metallic Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:915. [PMID: 38399166 PMCID: PMC10890055 DOI: 10.3390/ma17040915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
In vitro testing is the first important step in the development of new biomaterials. The human fetal osteoblast cell line hFOB 1.19 is a very promising cell model; however, there are vast discrepancies in cultivation protocols, especially in the cultivation temperature and the presence of the selection reagent, geneticin (G418). We intended to use hFOB 1.19 for the testing of Zn-based degradable metallic materials. However, the sensitivity of hFOB 1.19 to zinc ions has not yet been studied. Therefore, we compared the toxicity of zinc towards hFOB 1.19 under different conditions and compared it with that of the L929 mouse fibroblast cell line. We also tested the cytotoxicity of three types of Zn-based biomaterials in two types of media. The presence of G418 used as a selection reagent decreased the sensitivity of hFOB 1.19 to Zn2+. hFOB 1.19 cell line was more sensitive to Zn2+ at elevated (restrictive) temperatures. hFOB 1.19 cell line was less sensitive to Zn2+ than L929 cell line (both as ZnCl2 and extracts of alloys). Therefore, the appropriate cultivation conditions of hFOB 1.19 during biomaterial testing should be chosen with caution.
Collapse
Affiliation(s)
- Eva Jablonská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (L.M.); (T.R.); (J.L.)
| | - Lucie Mrázková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (L.M.); (T.R.); (J.L.)
| | - Jiří Kubásek
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (J.K.); (D.V.)
| | - Dalibor Vojtěch
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (J.K.); (D.V.)
| | - Irena Paulin
- Institute of Metals and Technology, Ljubljana, Lepi pot 11, SI-1000 Ljubljana, Slovenia;
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (L.M.); (T.R.); (J.L.)
| | - Jan Lipov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (L.M.); (T.R.); (J.L.)
| |
Collapse
|
14
|
Zhong C, Zhu H, Sheng Y, Wo J, You D, Sun G, Yu Z, Li W, Wang X. Biocompatibility and osteogenic potential of choline phosphate chitosan-coated biodegradable Zn1Mg. Acta Biomater 2024; 175:395-410. [PMID: 38096961 DOI: 10.1016/j.actbio.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
Zinc alloys have demonstrated considerable potentials as implant materials for biodegradable vascular and orthopedic applications. However, the high initial release of Zn2+ can trigger intense immune responses that impede tissue healing. To address this challenge and enhance the osteogenic capacity of zinc alloys, the surface of Zn1Mg was subjected to CO2 plasma modification (Zn1Mg-PP) followed by grafting with choline phosphate chitosan (Zn1Mg-PP-PCCs). This study aims to investigate the in vitro and in vivo biocompatibility of the surface-modified Zn1Mg. The effect of the surface modification on the inflammatory response and osteogenic repair process was investigated. Compared with unmodified Zn1Mg, the degradation rate of Zn1Mg-PP-PCCs was significantly decreased, avoiding the cytotoxicity triggered by the release of large amounts of Zn2+. Moreover, PCCs significantly enhanced the cell-material adhesion, promoted the proliferation of osteoblasts (MC3T3-E1) and upregulated the expression of key osteogenic factors in vitro. Notably, the in vivo experiments revealed that the surface modification of Zn1Mg suppressed inhibited the expression of inflammatory cytokines, promoting the secretion of anti-inflammatory factors, thereby reducing inflammation and promoting bone tissue repair. Furthermore, histological analysis of tissue sections exhibited strong integration between the material and the bone, along with well-defined new bone formation and reduced osteoclast aggregation on the surface. This was attributed to the improved immune microenvironment by PCCs, which promoted osteogenic differentiation of osteoblasts. These findings highlight that the preparation of PCCs coatings on zinc alloy surfaces effectively inhibited ion release and modulated the immune environment to promote bone tissue repair. STATEMENT OF SIGNIFICANCE: Surface modification of biodegradable Zn alloys facilitates the suppression of intense immune responses caused by excessive ion release concentrations from implants. We modified the surface of Zn1Mg with choline phosphate chitosan (PCCs) and investigated the effects of surface modification on the inflammatory response and osteogenic repair process. In vitro results showed that the PCCs coating effectively reduced the degradation rate of Zn1Mg to avoid cytotoxicity caused by high Zn2+ concentration, favoring the proliferation of osteoblasts. In addition, in vivo results indicated that Zn1Mg-PP-PCCs attenuated inflammation to promote bone repair by modulating the release of inflammation-related factors. The surface-modified Zn1Mg implants demonstrated strong osseointegration, indicating that the PCCs coating effectively modulated the immune microenvironment and promoted bone healing.
Collapse
Affiliation(s)
- Chen Zhong
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Haoran Zhu
- Guandgong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Heyuan 517000, China
| | - Yinying Sheng
- Institute of Corrosion Science and Technology, Guangzhou 510530, China.
| | - Jin Wo
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Deqiang You
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Guodong Sun
- Guandgong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Heyuan 517000, China; Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | - Zhentao Yu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Xiaojian Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China; Shaoguan Research Institute of Jinan University, 168 Muxi Avenue, Shaoguan 512029, China.
| |
Collapse
|
15
|
Chen S, Du T, Zhang H, Qi J, Zhang Y, Mu Y, Qiao A. Methods for improving the properties of zinc for the application of biodegradable vascular stents. BIOMATERIALS ADVANCES 2024; 156:213693. [PMID: 37992478 DOI: 10.1016/j.bioadv.2023.213693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Biodegradable stents can support vessels for an extended period, maintain vascular patency, and progressively degrade once vascular remodeling is completed, thereby reducing the constraints of traditional metal stents. An ideal degradable stent must have good mechanical properties, degradation behavior, and biocompatibility. Zinc has become a new type of biodegradable metal after magnesium and iron, owing to its suitable degradation rate and good biocompatibility. However, zinc's poor strength and ductility make it unsuitable as a vascular stent material. Therefore, this paper reviewed the primary methods for improving the overall properties of zinc. By discussing the mechanical properties, degradation behavior, and biocompatibility of various improvement strategies, we found that alloying is the most common, simple, and effective method to improve mechanical properties. Deformation processing can further improve the mechanical properties by changing the microstructures of zinc alloys. Surface modification is an important means to improve the biological activity, blood compatibility and corrosion resistance of zinc alloys. Meanwhile, structural design can not only improve the mechanical properties of the vascular stents, but also endow the stents with special properties such as negative Poisson 's ratio. Manufacturing zinc alloys with excellent degradation properties, improved mechanical properties and strong biocompatibility and exploring their mechanism of interaction with the human body remain areas for future research.
Collapse
Affiliation(s)
- Shiliang Chen
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| | - Hanbing Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jing Qi
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yanping Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yongliang Mu
- School of Metallurgy, Northeastern University, Shenyang, China
| | - Aike Qiao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| |
Collapse
|
16
|
Tong X, Han Y, Zhou R, Zeng J, Wang C, Yuan Y, Zhu L, Huang S, Ma J, Li Y, Wen C, Lin J. Mechanical properties, corrosion and degradation behaviors, and in vitro cytocompatibility of a biodegradable Zn-5La alloy for bone-implant applications. Acta Biomater 2023; 169:641-660. [PMID: 37541605 DOI: 10.1016/j.actbio.2023.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/04/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Zinc (Zn) and its alloys are used in bone-fixation devices as biodegradable bone-implant materials due to their good biosafety, biological function, biodegradability, and formability. Unfortunately, the clinical application of pure Zn is hindered by its insufficient mechanical properties and slow degradation rate. In this study, a Zn-5 wt.% lanthanum (Zn-5La) alloy with enhanced mechanical properties, suitable degradation rate, and cytocompatibility was developed through La alloying and hot extrusion. The hot-extruded (HE) Zn-5La alloy showed ultimate tensile strength of 286.3 MPa, tensile yield strength of 139.7 MPa, elongation of 35.7%, compressive yield strength of 262.7 MPa, and microhardness of 109.7 HV. The corrosion resistance of the HE Zn-5La in Hanks' and Dulbecco's modified Eagle medium (DMEM) solutions gradually increased with prolonged immersion time. Further, the HE Zn-5La exhibited an electrochemical corrosion rate of 36.7 μm/y in Hanks' solution and 11.4 μm/y in DMEM solution, and a degradation rate of 49.5 μm/y in Hanks' solution and 30.3 μm/y in DMEM solution, after 30 d of immersion. The corrosion resistance of both HE Zn and Zn-5La in DMEM solution was higher than in Hanks' solution. The 25% concentration extract of the HE Zn-5La showed a cell viability of 106.5%, indicating no cytotoxicity toward MG-63 cells. We recommend the HE Zn-5La alloy as a promising candidate material for biodegradable bone-implant applications. STATEMENT OF SIGNIFICANCE: This work reports the mechanical properties, corrosion and degradation behaviors, in vitro cytocompatibility and antibacterial ability of biodegradable Zn-5La alloy for bone-implant applications. Our findings demonstrate that the hot-extruded (HE) Zn-5La alloy showed an ultimate tensile strength of 286.3 MPa, a yield strength of 139.7 MPa, an elongation of 35.7%, compressive yield strength of 262.7 MPa, and microhardness of 109.7 HV. HE Zn-5La exhibited appropriate degradation rates in Hanks' and DMEM solutions. Furthermore, the HE Zn-5La alloy showed good cytocompatibility toward MG-63 and MC3T3-E1 cells and greater antibacterial ability against S. aureus.
Collapse
Affiliation(s)
- Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China; School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Yue Han
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Runqi Zhou
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jun Zeng
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Cheng Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yifan Yuan
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Li Zhu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jianfeng Ma
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
17
|
Zhang M, Wang X, Zhang S, Wang T, Wang X, Liu S, Zhao L, Cui C. Fabrication and Properties of a Biodegradable Zn-Ca Composite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6432. [PMID: 37834567 PMCID: PMC10573115 DOI: 10.3390/ma16196432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In recent years, Zn and its alloys have become some of the most promising degradable metals as in vivo implants due to their acceptable biocompatibility and more suitable degradation rate compared with Mg-based and Fe-based alloys. However, the degradation rate of Zn-based materials after implantation in the body for orthopedic applications is relatively slow, leading to long-term retention of the implants after fulfilling their missions. Moreover, the excessive release of Zn2+ during the degradation process of Zn-based implants usually leads to high cytotoxicity and delayed osseointegration. To provide a feasible solution to the problem faced by Zn-based implants, a Zn-Ca composite was fabricated by an air pressure infiltration method in this work. The XRD pattern of the composite suggests that the composite is fully composed of Zn-Ca intermetallic compounds. The degradation tests in vitro show that the composite has a much higher degradation rate than pure Zn, and the high Ca content regions in the composite can preferentially degrade as sacrificial anodes. In addition, the composite can efficiently induce Ca-P deposition during immersion tests in Hank's solution. Cytotoxicity tests indicate that L-929 cells exhibit around 82% cell viability (Grade 1) even after being cultured in the 100% extract prepared from the Zn-Ca composite for 1 day and show excellent cell viability.
Collapse
Affiliation(s)
- Mengsi Zhang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xinyuan Wang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Zhang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Tiebao Wang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xin Wang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shuiqing Liu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lichen Zhao
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chunxiang Cui
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
18
|
Hassan N, Krieg T, Zinser M, Schröder K, Kröger N. An Overview of Scaffolds and Biomaterials for Skin Expansion and Soft Tissue Regeneration: Insights on Zinc and Magnesium as New Potential Key Elements. Polymers (Basel) 2023; 15:3854. [PMID: 37835903 PMCID: PMC10575381 DOI: 10.3390/polym15193854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The utilization of materials in medical implants, serving as substitutes for non-functional biological structures, supporting damaged tissues, or reinforcing active organs, holds significant importance in modern healthcare, positively impacting the quality of life for millions of individuals worldwide. However, certain implants may only be required temporarily to aid in the healing process of diseased or injured tissues and tissue expansion. Biodegradable metals, including zinc (Zn), magnesium (Mg), iron, and others, present a new paradigm in the realm of implant materials. Ongoing research focuses on developing optimized materials that meet medical standards, encompassing controllable corrosion rates, sustained mechanical stability, and favorable biocompatibility. Achieving these objectives involves refining alloy compositions and tailoring processing techniques to carefully control microstructures and mechanical properties. Among the materials under investigation, Mg- and Zn-based biodegradable materials and their alloys demonstrate the ability to provide necessary support during tissue regeneration while gradually degrading over time. Furthermore, as essential elements in the human body, Mg and Zn offer additional benefits, including promoting wound healing, facilitating cell growth, and participating in gene generation while interacting with various vital biological functions. This review provides an overview of the physiological function and significance for human health of Mg and Zn and their usage as implants in tissue regeneration using tissue scaffolds. The scaffold qualities, such as biodegradation, mechanical characteristics, and biocompatibility, are also discussed.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50923 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50923 Cologne, Germany
| | - Max Zinser
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department for Oral and Craniomaxillofacial and Plastic Surgery, University of Cologne, Kerpener Strasse 62, 50931 Cologne, Germany
| | - Kai Schröder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
19
|
Zhang Z, Liu A, Fan J, Wang M, Dai J, Jin X, Deng H, Wang X, Liang Y, Li H, Zhao Y, Wen P, Li Y. A drug-loaded composite coating to improve osteogenic and antibacterial properties of Zn-1Mg porous scaffolds as biodegradable bone implants. Bioact Mater 2023; 27:488-504. [PMID: 37180641 PMCID: PMC10173180 DOI: 10.1016/j.bioactmat.2023.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Zinc (Zn) alloy porous scaffolds produced by additive manufacturing own customizable structures and biodegradable functions, having a great application potential for repairing bone defect. In this work, a hydroxyapatite (HA)/polydopamine (PDA) composite coating was constructed on the surface of Zn-1Mg porous scaffolds fabricated by laser powder bed fusion, and was loaded with a bioactive factor BMP2 and an antibacterial drug vancomycin. The microstructure, degradation behavior, biocompatibility, antibacterial performance and osteogenic activities were systematically investigated. Compared with as-built Zn-1Mg scaffolds, the rapid increase of Zn2+, which resulted to the deteriorated cell viability and osteogenic differentiation, was inhibited due to the physical barrier of the composite coating. In vitro cellular and bacterial assay indicated that the loaded BMP2 and vancomycin considerably enhanced the cytocompatibility and antibacterial performance. Significantly improved osteogenic and antibacterial functions were also observed according to in vivo implantation in the lateral femoral condyle of rats. The design, influence and mechanism of the composite coating were discussed accordingly. It was concluded that the additively manufactured Zn-1Mg porous scaffolds together with the composite coating could modulate biodegradable performance and contribute to effective promotion of bone recovery and antibacterial function.
Collapse
Affiliation(s)
- Zhenbao Zhang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Aobo Liu
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiadong Fan
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Menglin Wang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Jiabao Dai
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiang Jin
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Huanze Deng
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Xuan Wang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yijie Liang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Haixia Li
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yantao Zhao
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
- Corresponding author. Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Peng Wen
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Corresponding author. State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China.
| | - Yanfeng Li
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Medical School of Chinese PLA, Beijing, 100039, China
- Corresponding author. Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
20
|
Roesner M, Zankovic S, Kovacs A, Benner M, Barkhoff R, Seidenstuecker M. Biocompatibility Assessment of Zinc Alloys as a New Potential Material for Bioabsorbable Implants for Osteosynthesis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5224. [PMID: 37569926 PMCID: PMC10419914 DOI: 10.3390/ma16155224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
In the last several years, zinc and its alloys have come into focus as bioabsorbable materials by qualifying themselves with an excellent corrosion rate, mechanical properties, anti-bacterial effects. and considerable biocompatibility. In this study, the biocompatibility of zinc-silver alloys containing 3.3 wt% silver (ZnAg3) was assessed by evaluating their cell viability, the proliferation rate, and the cell toxicity. Two alloys were investigated in which one was phosphated and the other was non-phosphated. The alloys were tested on human osteoblasts (hOb), which are, to a large extent, responsible for bone formation and healing processes. The performance of the phosphated alloy did not differ significantly from the non-phosphated alloy. The results showed a promising biocompatibility with hOb for both alloys equally in all conducted assays, qualifying ZnAg3 for further investigations such as in vivo studies.
Collapse
Affiliation(s)
- Maria Roesner
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (M.R.); (S.Z.)
| | - Sergej Zankovic
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (M.R.); (S.Z.)
| | - Adalbert Kovacs
- Limedion GmbH, Coatings and Surface Analysis, Am Schäferstock 2-4, 68163 Mannheim, Germany; (A.K.); (M.B.)
| | - Moritz Benner
- Limedion GmbH, Coatings and Surface Analysis, Am Schäferstock 2-4, 68163 Mannheim, Germany; (A.K.); (M.B.)
- Quadralux e.K., Am Schäferstock 2-4, 68163 Mannheim, Germany;
| | - Roland Barkhoff
- Quadralux e.K., Am Schäferstock 2-4, 68163 Mannheim, Germany;
| | - Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (M.R.); (S.Z.)
| |
Collapse
|
21
|
Kong L, Heydari Z, Lami GH, Saberi A, Baltatu MS, Vizureanu P. A Comprehensive Review of the Current Research Status of Biodegradable Zinc Alloys and Composites for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4797. [PMID: 37445111 DOI: 10.3390/ma16134797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Zinc (Zn)-based biodegradable materials show moderate degradation rates in comparison with other biodegradable materials (Fe and Mg). Biocompatibility and non-toxicity also make them a viable option for implant applications. Furthermore, Pure Zn has poor mechanical behavior, with a tensile strength of around 100-150 MPa and an elongation of 0.3-2%, which is far from reaching the strength required as an orthopedic implant material (tensile strength is more than 300 MPa, elongation more than 15%). Alloy and composite fabrication have proven to be excellent ways to improve the mechanical performance of Zn. Therefore, their alloys and composites have emerged as an innovative category of biodegradable materials. This paper summarizes the most important recent research results on the mechanical and biological characteristics of biodegradable Zn-based implants for orthopedic applications and the most commonly added components in Zn alloys and composites.
Collapse
Affiliation(s)
- Lingyun Kong
- School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Zahra Heydari
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | - Ghadeer Hazim Lami
- Department of Material Engineering, South Tehran Branch, Islamic Azad University, Tehran 1777613651, Iran
| | - Abbas Saberi
- Department of Material Engineering, South Tehran Branch, Islamic Azad University, Tehran 1777613651, Iran
- Department of Biomedical Engineering, Islamic Azad University, South Tehran Branch, Tehran 1777613651, Iran
| | - Madalina Simona Baltatu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania
| | - Petrica Vizureanu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania
| |
Collapse
|
22
|
Gąsior G, Grodzicka M, Jędrzejewski T, Wiśniewski M, Radtke A. Comparative Study of Porous Iron Foams for Biodegradable Implants: Structural Analysis and In Vitro Assessment. J Funct Biomater 2023; 14:293. [PMID: 37367257 DOI: 10.3390/jfb14060293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
Biodegradable metal systems are the future of modern implantology. This publication describes the preparation of porous iron-based materials using a simple, affordable replica method on a polymeric template. We obtained two iron-based materials with different pore sizes for potential application in cardiac surgery implants. The materials were compared in terms of their corrosion rate (using immersion and electrochemical methods) and their cytotoxic activity (indirect test on three cell lines: mouse L929 fibroblasts, human aortic smooth muscle cells (HAMSC), and human umbilical vein endothelial cells (HUVEC)). Our research proved that the material being too porous might have a toxic effect on cell lines due to rapid corrosion.
Collapse
Affiliation(s)
- Gabriela Gąsior
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland
| | - Marlena Grodzicka
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland
| | - Tomasz Jędrzejewski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska Street 1, 87-100 Toruń, Poland
| | - Marek Wiśniewski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland
| | - Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland
| |
Collapse
|
23
|
Liu Q, Li A, Liu S, Fu Q, Xu Y, Dai J, Li P, Xu S. Cytotoxicity of Biodegradable Zinc and Its Alloys: A Systematic Review. J Funct Biomater 2023; 14:206. [PMID: 37103296 PMCID: PMC10144193 DOI: 10.3390/jfb14040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Zinc-based biodegradable metals (BMs) have been developed for biomedical implant materials. However, the cytotoxicity of Zn and its alloys has caused controversy. This work aims to investigate whether Zn and its alloys possess cytotoxic effects and the corresponding influence factors. According to the guidelines of the PRISMA statement, an electronic combined hand search was conducted to retrieve articles published in PubMed, Web of Science, and Scopus (2013.1-2023.2) following the PICOS strategy. Eighty-six eligible articles were included. The quality of the included toxicity studies was assessed utilizing the ToxRTool. Among the included articles, extract tests were performed in 83 studies, and direct contact tests were conducted in 18 studies. According to the results of this review, the cytotoxicity of Zn-based BMs is mainly determined by three factors, namely, Zn-based materials, tested cells, and test system. Notably, Zn and its alloys did not exhibit cytotoxic effects under certain test conditions, but significant heterogeneity existed in the implementation of the cytotoxicity evaluation. Furthermore, there is currently a relatively lower quality of current cytotoxicity evaluation in Zn-based BMs owing to the adoption of nonuniform standards. Establishing a standardized in vitro toxicity assessment system for Zn-based BMs is required for future investigations.
Collapse
Affiliation(s)
- Qian Liu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - An Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shizhen Liu
- The School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK
| | - Qingyun Fu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingtao Dai
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
24
|
Srivastava A, Kumari N, Agarwal M, Bhati P, Bhatnagar N. Fabrication and characterization of bioresorbable radiopaque PLLA/PCL/Mg alloy composite tubes for cardiovascular stent application. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2182783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Alok Srivastava
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Nisha Kumari
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Mohit Agarwal
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Pooja Bhati
- Department of Mechanical and Automation Engineering, Indira Gandhi Delhi Technical University for Women, New Delhi, India
| | - Naresh Bhatnagar
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
25
|
Su Y, Fu J, Zhou J, Georgas E, Du S, Qin YX, Wang Y, Zheng Y, Zhu D. Blending with transition metals improves bioresorbable zinc as better medical implants. Bioact Mater 2023; 20:243-258. [PMID: 35702610 PMCID: PMC9166432 DOI: 10.1016/j.bioactmat.2022.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
Zinc (Zn) is a new class of bioresorbable metal that has potential for cardiovascular stent material, orthopedic implants, wound closure devices, etc. However, pure Zn is not ideal for these applications due to its low mechanical strength and localized degradation behavior. Alloying is the most common/effective way to overcome this limitation. Still, the choice of alloying element is crucial to ensure the resulting alloy possesses sufficient mechanical strength, suitable degradation rate, and acceptable biocompatibility. Hereby, we proposed to blend selective transition metals (i.e., vanadium-V, chromium-Cr, and zirconium-Zr) to improve Zn's properties. These selected transition metals have similar properties to Zn and thus are beneficial for the metallurgy process and mechanical property. Furthermore, the biosafety of these elements is of less concern as they all have been used as regulatory approved medical implants or a component of an implant such as Ti6Al4V, CoCr, or Zr-based dental implants. Our study showed the first evidence that blending with transition metals V, Cr, or Zr can improve Zn's properties as bioresorbable medical implants. In addition, three in vivo implantation models were explored in rats: subcutaneous, aorta, and femoral implantations, to target the potential clinical applications of bioresorbable Zn implants. Tensile strength and elongation of Zn alloys can reach over 220 MPa and 30%, respectively. Three in vivo implantation models to investigate and compare biodegradations behavior at different locations of the body. Zn–Zr and Zn–V alloys can induce pro-regenerative inflammation responses in aortas. All Zn alloys can promote osteointegration in femur.
Collapse
|
26
|
Wątroba M, Bednarczyk W, Szewczyk PK, Kawałko J, Mech K, Grünewald A, Unalan I, Taccardi N, Boelter G, Banzhaf M, Hain C, Bała P, Boccaccini AR. In vitro cytocompatibility and antibacterial studies on biodegradable Zn alloys supplemented by a critical assessment of direct contact cytotoxicity assay. J Biomed Mater Res B Appl Biomater 2023; 111:241-260. [PMID: 36054531 PMCID: PMC10086991 DOI: 10.1002/jbm.b.35147] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 12/15/2022]
Abstract
In vitro cytotoxicity assessment is indispensable in developing new biodegradable implant materials. Zn, which demonstrates an ideal corrosion rate between Mg- and Fe-based alloys, has been reported to have excellent in vivo biocompatibility. Therefore, modifications aimed at improving Zn's mechanical properties should not degrade its biological response. As sufficient strength, ductility and corrosion behavior required of load-bearing implants has been obtained in plastically deformed Zn-3Ag-0.5Mg, the effect of simultaneous Ag and Mg additions on in vitro cytocompatibility and antibacterial properties was studied, in relation to Zn and Zn-3Ag. Direct cell culture on samples and indirect extract-based tests showed almost no significant differences between the tested Zn-based materials. The diluted extracts of Zn, Zn-3Ag, and Zn-3Ag-0.5Mg showed no cytotoxicity toward MG-63 cells at a concentration of ≤12.5%. The cytotoxic effect was observed only at high Zn2+ ion concentrations and when in direct contact with metallic samples. The highest LD50 (lethal dose killing 50% of cells) of 13.4 mg/L of Zn2+ ions were determined for the Zn-3Ag-0.5Mg. Similar antibacterial activity against Escherichia coli and Staphylococcus aureus was observed for Zn and Zn alloys, so the effect is attributed mainly to the released Zn2+ ions exhibiting bactericidal properties. Most importantly, our experiments indicated the limitations of water-soluble tetrazolium salt-based cytotoxicity assays for direct tests on Zn-based materials. The discrepancies between the WST-8 assay and SEM observations are attributed to the interference of Zn2+ ions with tetrazolium salt, therefore favoring its transformation into formazan, giving false cell viability quantitative results.
Collapse
Affiliation(s)
- Maria Wątroba
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland.,Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Wiktor Bednarczyk
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Jakub Kawałko
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Krakow, Poland
| | - Krzysztof Mech
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Krakow, Poland
| | - Alina Grünewald
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Irem Unalan
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Gabriela Boelter
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, UK
| | - Manuel Banzhaf
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, UK
| | - Caroline Hain
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland.,Institute for Applied Laser Photonics and Surface Technologies ALPS, Bern University of Applied Sciences, Biel/Bienne, Switzerland
| | - Piotr Bała
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland.,Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Krakow, Poland
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
27
|
Du S, Shen Y, Zheng Y, Cheng Y, Xu X, Chen D, Xia D. Systematic in vitro and in vivo study on biodegradable binary Zn-0.2 at% Rare Earth alloys (Zn-RE: Sc, Y, La-Nd, Sm-Lu). Bioact Mater 2023; 24:507-523. [PMID: 36685807 PMCID: PMC9841038 DOI: 10.1016/j.bioactmat.2023.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Biomedical implants and devices for tissue engineering in clinics, mainly made of polymers and stiff metallic materials, require possibly secondary surgery or life-long medicine. Biodegradable metals for biomedical implants and devices exhibit huge potential to improve the prognosis of patients. In this work, we developed a new type of biodegradable binary zinc (Zn) alloys with 16 rare earth elements (REEs) including Sc, Y, La to Nd, and Sm to Lu, respectively. The effects of REEs on the alloy microstructure, mechanical properties, corrosion behavior and in vitro and in vivo biocompatibility of Zn were systematically investigated using pure Zn as control. All Zn-RE alloys generally exhibited improved mechanical properties, and biocompatibilities compared to pure Zn, especially the tensile strength and ductility of Zn-RE alloys were dramatically enhanced. Among the Zn-RE alloys, different REEs presented enhancement effects at varied extent. Y, Ho and Lu were the three elements displaying greatest improvements in majority of alloys properties, while Eu, Gd and Dy exhibited least improvement. Furthermore, the Zn-RE alloys were comparable with other Zn alloys and also exhibited superior properties to Mg-RE alloys. The in vivo experiment using Zn-La, Zn-Ce, and Zn-Nd alloys as tibia bone implants in rabbit demonstrated the excellent tissue biocompatibility and much more obvious osseointegration than the pure Zn control group. This work presented the significant potential of the developed Zn-RE binary alloys as novel degradable metal for biomedical implants and devices.
Collapse
Affiliation(s)
- Shaokang Du
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yunong Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yan Cheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia,Corresponding author.
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China,Corresponding author.
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China,Corresponding author.
| |
Collapse
|
28
|
Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur. Bioact Mater 2023; 19:12-23. [PMID: 35415313 PMCID: PMC8980439 DOI: 10.1016/j.bioactmat.2022.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Additive manufacturing has received attention for the fabrication of medical implants that have customized and complicated structures. Biodegradable Zn metals are revolutionary materials for orthopedic implants. In this study, pure Zn porous scaffolds with diamond structures were fabricated using customized laser powder bed fusion (L-PBF) technology. First, the mechanical properties, corrosion behavior, and biocompatibility of the pure Zn porous scaffolds were characterized in vitro. The scaffolds were then implanted into the rabbit femur critical-size bone defect model for 24 weeks. The results showed that the pure Zn porous scaffolds had compressive strength and rigidity comparable to those of cancellous bone, as well as relatively suitable degradation rates for bone regeneration. A benign host response was observed using hematoxylin and eosin (HE) staining of the heart, liver, spleen, lungs, and kidneys. Moreover, the pure Zn porous scaffold showed good biocompatibility and osteogenic promotion ability in vivo. This study showed that pure Zn porous scaffolds with customized structures fabricated using L-PBF represent a promising biodegradable solution for treating large bone defects. L-PBF used to fabricate pure Zn porous scaffolds for bone implants. Degradation rates and mechanical strength suitable for bone implants. Pure Zn porous scaffolds showed good in vitro cytocompatibility with MC3T3-E1 cells. Pure Zn porous scaffolds have potential for large bone defect applications with osteogenic ability.
Collapse
|
29
|
Jena B, Singh SS, Behera SK, Mishra S, Chakrabortty S, Meher D, Mulia B, Tripathy SK, Kumar R, Jeon BH, Lundborg CS, Mishra A. To decipher the phytochemical agent and mechanism for Urginea indica mediated green synthesis of Ag nanoparticles and investigation of its antibacterial activity against Methicillin-resistant Staphylococcus aureus. ENVIRONMENTAL RESEARCH 2023; 216:114700. [PMID: 36370814 DOI: 10.1016/j.envres.2022.114700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Globally, Methicillin-Resistant Staphylococcus aureus bacteraemia is one of the commonest bloodstream infections associated with clinical complications and high mortality. Thence, devising effective and targeted biogenic silver based strategies are in great demand. However, limited insights regarding the biosynthesis methodologies impedes the possible scale up and commercial potentials. We, hereby demonstrate the biosynthesis of Ag nanoparticles using the phytochemical agent extracted and purified from bulb extract of Urginea indica. The chemical structure of the phytochemical agent is investigated by various chromatographic and spectroscopic techniques and was found closely relatable to N-ethylacetamide. Ag nanoparticles synthesis by this agent was found to have a strong Surface Plasmon band at 402 nm. X-ray diffraction and transmission electron microscopy further validated the formation of Ag nanoparticles with face-centred cubic structure with a size range of 20-30 nm. The biogenic metal nanoparticles have shown potential antibacterial activity against S. aureus and MRSA (within a range of 10-50 μg/mL). The nanoparticles have also shown promising anti-biofim activity against the above mentioned strains. The nanoparticles were expected to induce ROS mediated bactericidal mechamism. Cell viability and in-vitro infection studies advocate noticeable biocompatibility and future clinical potential of the developed nanoparticles against Staphylococcus infections.
Collapse
Affiliation(s)
- Bhumika Jena
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Swati Sucharita Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Susanta Kumar Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India; IMGENIX India Pvt. Ltd., Bhubaneswar, 751024, India
| | - Smrutirekha Mishra
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Dayanidhi Meher
- Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Bansidhar Mulia
- Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Suraj K Tripathy
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Ramesh Kumar
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | | | - Amrita Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| |
Collapse
|
30
|
Śmigiel J, Piszczek P, Wrzeszcz G, Jędrzejewski T, Golińska P, Radtke A. The Composites of PCL and Tetranuclear Titanium(IV)-Oxo Complex with Acetylsalicylate Ligands-Assessment of Their Biocompatibility and Antimicrobial Activity with the Correlation to EPR Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2022; 16:297. [PMID: 36614635 PMCID: PMC9822129 DOI: 10.3390/ma16010297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In our research, we have focused on the biological studies on composite materials produced by the dispersion of titanium(IV)-oxo complex (TOC) with acetylsalicylate ligands in a poly(ε-caprolactone) (PCL) matrix, which is a biodegradable thermoplastic polymer increasingly used in the production of medical devices. Using PCL as a matrix for the biologically active compounds, such as antimicrobial agents, antibiotics or other active medical substances, from which these individuals can be gradually released is fully understable. Composites of PCL + nTOC (n = 10, 15 and 20 wt.%) have been produced and, in such a form, the biological properties of TOCs have been estimated. Direct and indirect cytotoxicity studies have been performed in vitro on L929 and human umbilical vein endothelial cells (HUVEC) cell lines. The antibacterial and antifungal activity of the PCL + TOC samples have been assessed against two Staphylococcus aureus (ATCC 6538 and ATCC 25923) reference strains, two Escherichia coli (ATCC 8739 and ATCC 25922) reference strains and yeast of Candida albicans ATCC 10231. Obtained results have been correlated with electron paramagnetic resonance (EPR) spectroscopy data. We could conclude that photoexcitation by visible light of the surface of PCL + nTOC composite foils lead to the formation of different paramagnetic species, mainly O-, which slowly disappears over time; however, their destructive effect on bacteria and cells has been proven.
Collapse
Affiliation(s)
- Julia Śmigiel
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Piotr Piszczek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Grzegorz Wrzeszcz
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Tomasz Jędrzejewski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
31
|
Hussain M, Ullah S, Raza MR, Abbas N, Ali A. Recent Developments in Zn-Based Biodegradable Materials for Biomedical Applications. J Funct Biomater 2022; 14:1. [PMID: 36662048 PMCID: PMC9865652 DOI: 10.3390/jfb14010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Zn-based biodegradable alloys or composites have the potential to be developed to next-generation orthopedic implants as alternatives to conventional implants to avoid revision surgeries and to reduce biocompatibility issues. This review summarizes the current research status on Zn-based biodegradable materials. The biological function of Zn, design criteria for orthopedic implants, and corrosion behavior of biodegradable materials are briefly discussed. The performance of many novel zinc-based biodegradable materials is evaluated in terms of biodegradation, biocompatibility, and mechanical properties. Zn-based materials perform a significant role in bone metabolism and the growth of new cells and show medium degradation without the release of excessive hydrogen. The addition of alloying elements such as Mg, Zr, Mn, Ca, and Li into pure Zn enhances the mechanical properties of Zn alloys. Grain refinement by the application of post-processing techniques is effective for the development of many suitable Zn-based biodegradable materials.
Collapse
Affiliation(s)
- Muzamil Hussain
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Punjab 57000, Pakistan
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Muhammad Rafi Raza
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Punjab 57000, Pakistan
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Ahsan Ali
- Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
32
|
Zemková M, Minárik P, Jablonská E, Veselý J, Bohlen J, Kubásek J, Lipov J, Ruml T, Havlas V, Král R. Concurrence of High Corrosion Resistance and Strength with Excellent Ductility in Ultrafine-Grained Mg-3Y Alloy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217571. [PMID: 36363162 PMCID: PMC9657410 DOI: 10.3390/ma15217571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/12/2023]
Abstract
In the field of magnesium-based degradable implantable devices, the Mg-Y-RE-Zr alloying system (WE-type) has gained popularity due to its satisfying degradation rate together with mechanical strength. However, utilization of RE and Zr in the WE-type alloys was originally driven to improve Mg-based alloys for high-temperature applications in the industry, while for medical purposes, there is a question of whether the amount of alloying elements may be further optimized. For this reason, our paper presents the Mg-3Y (W3) magnesium alloy as an alternative to the WE43 alloy. This study shows that the omission of RE and Zr elements did not compromise the corrosion resistance and the degradation rate of the W3 alloy when compared with the WE43 alloy; appropriate biocompatibility was preserved as well. It was shown that the decrease in the mechanical strength caused by the omission of RE and Zr from the WE43 alloy could be compensated for by severe plastic deformation, as achieved in this study, by equal channel angular pressing. Ultrafine-grained W3 alloy exhibited compression yield strength of 362 ± 6 MPa and plastic deformation at maximum stress of 18 ± 1%. Overall, the early results of this study put forward the motion of avoiding RE elements and Zr in magnesium alloy as a suitable material for biodegradable applications and showed that solo alloying of yttrium is sufficient for maintaining desirable properties of the material at once.
Collapse
Affiliation(s)
- Mária Zemková
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha, Czech Republic
| | - Peter Minárik
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha, Czech Republic
- Research Centre, University of Žilina, Univerzitná 8215/1, 01026 Žilina, Slovakia
| | - Eva Jablonská
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Jozef Veselý
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha, Czech Republic
| | - Jan Bohlen
- Helmholtz-Zentrum Hereon, Institute of Material and Process Design, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Jiří Kubásek
- Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Jan Lipov
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Tomáš Ruml
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Vojtěch Havlas
- Second Faculty of Medicine, Charles University, V Úvalu 84, 150 06 Praha, Czech Republic
| | - Robert Král
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha, Czech Republic
| |
Collapse
|
33
|
Yang M, Yang L, Peng S, Deng F, Li Y, Yang Y, Shuai C. Laser additive manufacturing of zinc: formation quality, texture, and cell behavior. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
34
|
Liu Y, Du T, Qiao A, Mu Y, Yang H. Zinc-Based Biodegradable Materials for Orthopaedic Internal Fixation. J Funct Biomater 2022; 13:jfb13040164. [PMID: 36278633 PMCID: PMC9589944 DOI: 10.3390/jfb13040164] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional inert materials used in internal fixation have caused many complications and generally require removal with secondary surgeries. Biodegradable materials, such as magnesium (Mg)-, iron (Fe)- and zinc (Zn)-based alloys, open up a new pathway to address those issues. During the last decades, Mg-based alloys have attracted much attention by researchers. However, the issues with an over-fast degradation rate and release of hydrogen still need to be overcome. Zn alloys have comparable mechanical properties with traditional metal materials, e.g., titanium (Ti), and have a moderate degradation rate, potentially serving as a good candidate for internal fixation materials, especially at load-bearing sites of the skeleton. Emerging Zn-based alloys and composites have been developed in recent years and in vitro and in vivo studies have been performed to explore their biodegradability, mechanical property, and biocompatibility in order to move towards the ultimate goal of clinical application in fracture fixation. This article seeks to offer a review of related research progress on Zn-based biodegradable materials, which may provide a useful reference for future studies on Zn-based biodegradable materials targeting applications in orthopedic internal fixation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Aike Qiao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yongliang Mu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Correspondence: ; Tel.: +86-(010)-6739-6657
| |
Collapse
|
35
|
Ren H, Pan C, Liu Y, Liu D, He X, Li X, Sun X. Fabrication, in vitro and in vivo properties of porous Zn–Cu alloy scaffolds for bone tissue engineering. MATERIALS CHEMISTRY AND PHYSICS 2022; 289:126458. [DOI: 10.1016/j.matchemphys.2022.126458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
36
|
Lin L, Rui L, Tao Y, Li Q, Chiang WH, Xu H. Surface modification of metal substrates using dielectric barrier discharge plasma and the wettability study. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Cheng Z, Xu Y, Wang X, Xie Q, Liu H, Shao Y, Xia D, Chu C, Feng F, Bai J. Effect of Cu and Mg addition on the mechanical and degradation properties of Zn alloy wires. J Biomater Appl 2022; 37:891-902. [DOI: 10.1177/08853282221123934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, Zn-xCu (-0.1 Mg) wires with a diameter of 0.3 mm were obtained by hot extrusion and cold drawing. The microstructures, mechanical properties, and degradation behaviour were investigated to evaluate their feasibility as biodegradable metals. During the drawing process of the Zn-xCu alloys, many granular CuZn5 phases were dynamically precipitated, and the grains were significantly refined, along with a significant work softening with the tensile strength decreasing and the elongation increasing (from 161 MPa to 92 MPa and 22%–103% for Zn-0.2Cu). With the increase of Cu additions, the phenomenon of work softening was more intense and there was an opposite trend in the strength changes between the as-extruded rods (increase) and as-drawn wires (decrease). With 0.1 wt.% Mg added, the stable rod-like Mg2Zn11 phase was formed in as-extruded Zn-xCu-0.1 Mg rods, which obviously improved the strength, and inhibited the dynamic precipitation of granular CuZn5 phase and work softening phenomenon in the drawing process (from 332 MPa to 313 MPa and 11%–46% for Zn-0.2Cu-0.1 Mg). In addition, due to the micro-galvanic effect induced by the precipitates, alloying accelerated the degradation of Zn alloy wires, especially Zn-1Cu-0.1 Mg, which was related to the shape, distribution, and potential of the phases.
Collapse
Affiliation(s)
- Zhaojun Cheng
- Southeast University, Nanjing, China
- Institute of Biomedical Devices (Suzhou), Suzhou, China
| | - Yan Xu
- Southeast University, Nanjing, China
| | | | | | - Huan Liu
- Hohai University, Nanjing, China
| | - Yi Shao
- Southeast University, Nanjing, China
- Institute of Biomedical Devices (Suzhou), Suzhou, China
| | - Dandan Xia
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | | | - Feng Feng
- Southeast University, Nanjing, China
| | - Jing Bai
- Southeast University, Nanjing, China
- Institute of Biomedical Devices (Suzhou), Suzhou, China
- Jiangsu Key Laboratory for Light Metal Alloys, Nanjing, China
| |
Collapse
|
38
|
Yao R, Han S, Sun Y, Zhao Y, Shan R, Liu L, Yao X, Hang R. Fabrication and characterization of biodegradable Zn scaffold by vacuum heating-press sintering for bone repair. BIOMATERIALS ADVANCES 2022; 138:212968. [PMID: 35913245 DOI: 10.1016/j.bioadv.2022.212968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Bone repair materials with excellent mechanical properties are highly desirable, especially in load-bearing sits. However, the currently used ceramic- and polymer-based ones mainly show poor mechanical properties. Recently, biodegradable metals have attracted extensive attention due to their reliable mechanical strength and degradability. As biodegradable metals, zinc-based materials are promising due to their suitable degradation rate and good biocompatibility. Here, we fabricated biodegradable porous Zn scaffolds with relatively high mechanical properties by vacuum heating-press sintering using NaCl particles as space holders. The microstructure, actual porosity, compressive mechanical properties, in vitro degradation behavior and the vitality of osteoblasts of porous Zn scaffolds were tested and investigated. The results show the porosities of the prepared porous Zn scaffolds are ranging from 11.3 % to 63.3 %, and the pore sizes are similar to the size range of the screened NaCl particles (200-500 μm). Compressive yield strength of 14.2-73.7 MPa and compressive elastic modulus of 1.9-6.7 GPa are shown on porous Zn scaffolds, some of which approach to that of cancellous bone (2-12 MPa and 0.1-5 GPa). Compared to bulk Zn, although the porous structures cause a partial loss of strength, the reliable mechanical properties are still retained. In addition, the porous structures not only greatly increase the degradation rate, but also promote the proliferation of osteoblasts. Based on these results, biodegradable porous Zn scaffolds (porosity in the 40 %-50 %) fabricated by vacuum heating-press sintering method show high application potential for clinical bone repair.
Collapse
Affiliation(s)
- Runhua Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shuyang Han
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yonghua Sun
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuyu Zhao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruifeng Shan
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lin Liu
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
39
|
Current Status and Outlook of Temporary Implants (Magnesium/Zinc) in Cardiovascular Applications. METALS 2022. [DOI: 10.3390/met12060999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medical application materials must meet multiple requirements, and the designed material must mimic the structure, shape. and support the formation of the replacing tissue. Magnesium (Mg) and Zinc alloys (Zn), as a “smart” biodegradable material and as “the green engineering material in the 21st century”, have become an outstanding implant material due to their natural degradability, smart biocompatibility, and desirable mechanical properties. Magnesium and Zinc are recognized as the next generation of cardiovascular stents and bioresorbable scaffolds. At the same time, improving the properties and corrosion resistance of these alloys is an urgent challenge. particularly to promote the application of magnesium alloys. A relatively fast deterioration rate of magnesium-based materials generally results in premature mechanical integrity compromise and local hydrogen build-up, resulting in restricted applicability. This review article aims to give a comprehensive comparison between Zn-based alloys and Mg-based alloys, focusing primarily on degradation and biocompatibility for cardiovascular applications. The recent clinical trials using these biodegradable metals have also been addressed.
Collapse
|
40
|
Xu Y, Xu Y, Zhang W, Li M, Wendel HP, Geis-Gerstorfer J, Li P, Wan G, Xu S, Hu T. Biodegradable Zn-Cu-Fe Alloy as a Promising Material for Craniomaxillofacial Implants: An in vitro Investigation into Degradation Behavior, Cytotoxicity, and Hemocompatibility. Front Chem 2022; 10:860040. [PMID: 35734444 PMCID: PMC9208203 DOI: 10.3389/fchem.2022.860040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Zinc-based nanoparticles, nanoscale metal frameworks and metals have been considered as biocompatible materials for bone tissue engineering. Among them, zinc-based metals are recognized as promising biodegradable materials thanks to their moderate degradation rate ranging between magnesium and iron. Nonetheless, materials’ biodegradability and the related biological response depend on the specific implant site. The present study evaluated the biodegradability, cytocompatibility, and hemocompatibility of a hot-extruded zinc-copper-iron (Zn-Cu-Fe) alloy as a potential biomaterial for craniomaxillofacial implants. Firstly, the effect of fetal bovine serum (FBS) on in vitro degradation behavior was evaluated. Furthermore, an extract test was used to evaluate the cytotoxicity of the alloy. Also, the hemocompatibility evaluation was carried out by a modified Chandler-Loop model. The results showed decreased degradation rates of the Zn-Cu-Fe alloy after incorporating FBS into the medium. Also, the alloy exhibited acceptable toxicity towards RAW264.7, HUVEC, and MC3T3-E1 cells. Regarding hemocompatibility, the alloy did not significantly alter erythrocyte, platelet, and leukocyte counts, while the coagulation and complement systems were activated. This study demonstrated the predictable in vitro degradation behavior, acceptable cytotoxicity, and appropriate hemocompatibility of Zn-Cu-Fe alloy; therefore, it might be a candidate biomaterial for craniomaxillofacial implants.
Collapse
Affiliation(s)
- Yan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
| | - Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ming Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Materials Engineering, Sichuan Engineering Technical College, Deyang, China
| | - Hans-Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Tao Hu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Enhanced Mechanical Performance of a Biodegradable Fe–Mn Alloy Manufactured by Metal Injection Molding and Minor Carbon Addition. METALS 2022. [DOI: 10.3390/met12050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
At present, FeMn-based degradable alloys prepared by direct sintering generally face the problems of Mn volatilization, difficult densification, and poor mechanical properties. In this work, a Fe-35Mn-0.5C alloy with low Mn volatility, high density, and favorable mechanical properties is fabricated by the metal injection molding (MIM) process. The effects of sintering pressure and minor carbon addition on microstructure and mechanical properties were studied. The corresponding mechanical deformation mechanism was discussed. The results show that a significant reduction in the proportion of Mn volatilization to less than 0.5% and higher relative density of 97 ± 0.30% are achieved in the MIM-treated Fe-35Mn-0.5C alloy by pressurized sintering at 5 atm and 0.5 wt.% carbon addition. The optimized tensile properties are attained, with an ultimate tensile strength of 772 MPa, yield strength of 290 MPa, and elongation of 35% at room temperature, which meets the mechanical needs of metallic materials for biologically implantable medical devices.
Collapse
|
42
|
Palai D, Roy T, Prasad PS, Hazra C, Dhara S, Sen R, Das S, Das K. Influence of Copper on the Microstructural, Mechanical, and Biological Properties of Commercially Pure Zn-Based Alloys for a Potential Biodegradable Implant. ACS Biomater Sci Eng 2022; 8:1443-1463. [PMID: 35344329 DOI: 10.1021/acsbiomaterials.1c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three Zn-based alloys (Zn1Cu, Zn2Cu, and Zn3Cu) were developed by the addition of Cu (1, 2, and 3 wt %) into commercially pure Zn. This report systematically investigates the potential for these newly developed Zn-based alloys as biodegradable materials. Microstructural studies reveal the presence of spherical-shaped nanosized precipitates of ε-CuZn4 in the Zn1Cu alloy, whereas Zn2Cu and Zn3Cu alloys exhibit the presence of both micron- and nanosized precipitates of ε-CuZn4. The mechanical properties such as hardness, tensile and compressive strengths improve significantly with an increase in the amount of Cu in the alloy. The Zn3Cu alloy exhibits the highest yield strength (225 ± 9 MPa) and ultimate tensile strength (330 ± 12 MPa) among all of the alloys, which are ∼2.7 and 2 times higher than those of pure Zn. In vitro degradation behavior is evaluated by the potentiodynamic polarization study and immersion testing in Hank's solution for 20 and 75 days. The corrosion rate after both polarization and immersion testing follows the order of pure Zn < Zn1Cu < Zn3Cu < Zn2Cu. An electrochemical impedance spectroscopy (EIS) study also concludes that Zn2Cu shows the lowest corrosion resistance. The % cell viability values of 3T3 fibroblasts cells after 5 days of culture in a 50% diluted extract of pure Zn, Zn2Cu, and Zn3Cu alloys are 76 ± 0.024, 86.18 ± 0.033, and 92.9 ± 0.026%, respectively, establishing the improved cytocompatibility of the alloys as compared to pure Zn. Furthermore, an antibacterial study also reveals that the Zn3Cu alloy exhibits 80, 67, and 100% increases in the zone of inhibition (ZOI) for Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa bacteria, respectively, as compared to that of pure Zn.
Collapse
Affiliation(s)
- Debajyoti Palai
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Trina Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - P Siva Prasad
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Chinmay Hazra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Siddhartha Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Karabi Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
43
|
Tong X, Zhu L, Wang K, Shi Z, Huang S, Li Y, Ma J, Wen C, Lin J. Impact of gadolinium on mechanical properties, corrosion resistance, and biocompatibility of Zn-1Mg-xGd alloys for biodegradable bone-implant applications. Acta Biomater 2022; 142:361-373. [PMID: 35189378 DOI: 10.1016/j.actbio.2022.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 02/03/2023]
Abstract
Zinc (Zn) and its alloys are currently regarded as one of the promising families of biodegradable metals for implant applications owing to their suitable biodegradability and biofunctionality. However, the inadequate mechanical properties of as-cast (AC) pure Zn restricted the practical clinical bone-implant applications due to its coarse grain size and hexagon close-packed crystal structure. Here, the impact of gadolinium (Gd) on the mechanical properties, corrosion resistance, hemolysis percentage, anticoagulant activity, and cytotoxicity of AC and hot-rolled (HR) Zn-1Mg-xGd (x = 0.1, 0.2, and 0.3) (wt.%) alloys were investigated for biodegradable bone-implant applications. Tensile testing showed that the HR Zn-1Mg-0.3Gd alloy exhibited the highest tensile strength of 288.1 MPa, tensile yield strength of 250.9 MPa, and elongation of 13.2%. Electrochemical corrosion and immersion tests revealed that the corrosion rates of both AC and HR specimens increased with increasing Gd content in Hanks' solution, and the HR Zn-1Mg-xGd specimens exhibited higher corrosion rates compared to their AC counterparts. The HR Zn-1Mg-xGd specimens showed an increasing hemolysis percentages and decreasing activated partial thromboplastin time (APTT) values with increasing Gd addition. The alloy extracts of HR samples at ≤ 25% concentration exhibited no cytotoxicity toward MG-63 cells, and the HR Zn-1Mg-0.3Gd alloy displayed the highest cell viability among all three alloy extracts at 12.5% concentration. Overall, the HR Zn-1Mg-0.3Gd can be considered a promising biodegradable implant material for bone-implant materials owing to its high mechanical strength and ductility, suitable degradation rate, and satisfying biocompatibility. STATEMENT OF SIGNIFICANCE: In this work, Zn-1Mg-xGd (x = 0.1, 0.2, and 0.3 wt.%) alloys were developed by alloying with gadolinium (Gd) and hot-rolling, and their mechanical properties, corrosion behavior, hemolysis percentage, anticoagulant activity, and cytotoxicity were investigated for biodegradable implant application. Our findings demonstrated that the hot-rolled Zn-1Mg-0.3Gd alloy exhibit the highest ultimate tensile strength of 288.1 MPa, yield strength of 250.9 MPa, and elongation of 13.2%. Hot-rolled Zn-1Mg-xGd alloys show slowly increasing hemolysis percentages and decreasing activated partial thromboplastin time (APTT) values with increasing Gd addition. Extracts of hot-rolled Zn-1Mg-xGd alloys at a concentration of ≤ 25% show no cytotoxicity towards MG-63 cells, and Zn-1Mg-0.3Gd exhibit good cytocompatibility among all three alloys at a concentration of 12.5%.
Collapse
|
44
|
Zhang S, Yuan P, Wang X, Wang T, Zhao L, Cui C. Fabrication and Properties of Zn-3Mg-1Ti Alloy as a Potential Biodegradable Implant Material. MATERIALS (BASEL, SWITZERLAND) 2022; 15:940. [PMID: 35160886 PMCID: PMC8839224 DOI: 10.3390/ma15030940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/26/2022]
Abstract
A Zn-3Mg-1Ti alloy was fabricated by ultrasonic treatment of Zn-Mg alloy melt using a Ti ultrasonic radiation rod. The microstructure, phase structure, mechanical properties, degradation property, and in vitro cytotoxicity were investigated systematically. The obtained Zn-3Mg-1Ti alloy is composed of the Zn, Mg2Zn11, and TiZn16. Owing to the grain refinement and second phase reinforcement, the mechanical properties of Zn-3Mg-1Ti alloy is improved. In addition, the Zn-3Mg-1Ti alloy exhibits minimal cytotoxicity compared to pure Zn and Zn-1Ti alloy. Electrochemical tests show that the Zn-3Mg-1Ti alloy has an appropriate degradation rate in Hank's solution.
Collapse
Affiliation(s)
| | | | | | | | - Lichen Zhao
- Key Laboratory for New Type of Functional Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300400, China; (S.Z.); (P.Y.); (X.W.); (T.W.)
| | - Chunxiang Cui
- Key Laboratory for New Type of Functional Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300400, China; (S.Z.); (P.Y.); (X.W.); (T.W.)
| |
Collapse
|
45
|
Compositional Tailoring of Mg-2Zn-1Ca Alloy Using Manganese to Enhance Compression Response and In-Vitro Degradation. MATERIALS 2022; 15:ma15030810. [PMID: 35160756 PMCID: PMC8836902 DOI: 10.3390/ma15030810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023]
Abstract
The present study investigates Mg–2Zn–1Ca/XMn alloys as biodegradable implants for orthopedic fracture fixation applications. The effect of the presence and progressive addition of manganese (X = 0.3, 0.5, and 0.7 wt.%) on the degradation, and post-corrosion compressive response were investigated. Results suggest that the addition of manganese at 0.5 wt.% improved the corrosion resistance of Mg–2Zn–1Ca alloys. The pH values stabilized for the 0.5Mn-containing alloy and displayed a lower corrosion rate when compared to other Mg–2Zn–1Ca/Mn alloys. Mg–2Zn–1Ca showed a progressive reduction in the compressive strength properties at the end of day 21 whereas Mg–2Zn–1Ca/0.3Mn and Mg–2Zn–1Ca/0.5Mn samples showed a decrease until day 14 and stabilized around the same strength range after day 21. The ability of Mg–2Zn–1Ca/0.5Mn alloy to develop a network of protective hydroxide and phosphate layers has resulted in the corrosion control of the alloy. Mg–2Zn–1Ca/0.7Mn displays segregation of Mn particles at the grain boundaries resulting in decreased corrosion protection. The mechanism behind the corrosion protection of Mg–2Zn–1Ca alloys was discussed.
Collapse
|
46
|
Yuan W, Xia D, Wu S, Zheng Y, Guan Z, Rau JV. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioact Mater 2022; 7:192-216. [PMID: 34466727 PMCID: PMC8379348 DOI: 10.1016/j.bioactmat.2021.05.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, zinc and its alloys have been proposed as promising candidates for biodegradable metals (BMs), owning to their preferable corrosion behavior and acceptable biocompatibility in cardiovascular, bone and gastrointestinal environments, together with Mg-based and Fe-based BMs. However, there is the desire for surface treatment for Zn-based BMs to better control their biodegradation behavior. Firstly, the implantation of some Zn-based BMs in cardiovascular environment exhibited intimal activation with mild inflammation. Secondly, for orthopedic applications, the biodegradation rates of Zn-based BMs are relatively slow, resulting in a long-term retention after fulfilling their mission. Meanwhile, excessive Zn2+ release during degradation will cause in vitro cytotoxicity and in vivo delayed osseointegration. In this review, we firstly summarized the current surface modification methods of Zn-based alloys for the industrial applications. Then we comprehensively summarized the recent progress of biomedical bulk Zn-based BMs as well as the corresponding surface modification strategies. Last but not least, the future perspectives towards the design of surface bio-functionalized coatings on Zn-based BMs for orthopedic and cardiovascular applications were also briefly proposed.
Collapse
Affiliation(s)
- Wei Yuan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Dandan Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Zhenpeng Guan
- Orthopedics Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Rd, Shijingshan District, Beijing, 100144, China
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133, Rome, Italy
- Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991, Moscow, Russia
| |
Collapse
|
47
|
Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects. Biomaterials 2021; 280:121301. [PMID: 34922270 DOI: 10.1016/j.biomaterials.2021.121301] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
Abstract
The need for the development of load-bearing, absorbable wound closure devices is driving the research for novel materials that possess both good biodegradability and superior mechanical characteristics. Biodegradable metals (BMs), namely: magnesium (Mg), zinc (Zn) and iron (Fe), which are currently being investigated for absorbable vascular stent and orthopaedic implant applications, are slowly gaining research interest for the fabrication of wound closure devices. The current review presents an overview of the traditional and novel BM-based intracutaneous and transcutaneous wound closure devices, and identifies Zn as a promising substitute for the traditional materials used in the fabrication of absorbable load-bearing sutures, internal staples, and subcuticular staples. In order to further strengthen Zn to be used in highly stressed situations, nutrient elements (NEs), including calcium (Ca), Mg, Fe, and copper (Cu), are identified as promising alloying elements for the strengthening of Zn-based wound closure device material that simultaneously provide potential therapeutic benefit to the wound healing process during implant biodegradation process. The influence of NEs on the fundamental characteristics of biodegradable Zn are reviewed and critically assessed with regard to the mechanical properties and biodegradability requirements of different wound closure devices. The opportunities and challenges in the development of Zn-based wound closure device materials are presented to inspire future research on this rapidly growing field.
Collapse
|
48
|
Bagshaw OR, Moradi F, Moffatt CS, Hettwer HA, Liang P, Goldman J, Drelich JW, Stuart JA. Bioabsorbable metal zinc differentially affects mitochondria in vascular endothelial and smooth muscle cells. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100027. [PMID: 36824572 PMCID: PMC9934485 DOI: 10.1016/j.bbiosy.2021.100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element having various structural, catalytic and regulatory interactions with an estimated 3000 proteins. Zinc has drawn recent attention for its use, both as pure metal and alloyed, in arterial stents due to its biodegradability, biocompatibility, and low corrosion rates. Previous studies have demonstrated that zinc metal implants prevent the development of neointimal hyperplasia, which is a common cause of restenosis following coronary intervention. This suppression appears to be smooth muscle cell-specific, as reendothelization of the neointima is not inhibited. To better understand the basis of zinc's differential effects on rat aortic smooth muscle (RASMC) versus endothelial (RAENDO) cells, we conducted a transcriptomic analysis of both cell types following one-week continuous treatment with 5 µM or 50 µM zinc. This analysis indicated that genes whose protein products regulate mitochondrial functions, including oxidative phosphorylation and fusion/fission, are differentially affected by zinc in the two cell types. To better understand this, we performed Seahorse metabolic flux assays and quantitative imaging of mitochondrial networks in both cell types. Zinc treatment differently affected energy metabolism and mitochondrial structure/function in the two cell types. For example, both basal and maximal oxygen consumption rates were increased by zinc in RASMC but not in RAENDO. Zinc treatment increased apparent mitochondrial fusion in RASMC cells but increased mitochondrial fission in RAENDO cells. These results provide some insight into the mechanisms by which zinc treatment differently affects the two cell types and this information is important for understanding the role of zinc treatment in vascular cells and improving its use in biodegradable metal implants.
Collapse
Affiliation(s)
- Olivia R.M. Bagshaw
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Fereshteh Moradi
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Christopher S. Moffatt
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Hillary A. Hettwer
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, United States
| | - Jaroslaw W. Drelich
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, United States
| | - Jeffrey A. Stuart
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| |
Collapse
|
49
|
García-Mintegui C, Córdoba LC, Buxadera-Palomero J, Marquina A, Jiménez-Piqué E, Ginebra MP, Cortina JL, Pegueroles M. Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility. Bioact Mater 2021; 6:4430-4446. [PMID: 34027233 PMCID: PMC8121665 DOI: 10.1016/j.bioactmat.2021.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022] Open
Abstract
In the recent decades, zinc (Zn) and its alloys have been drawing attention as promising candidates for bioresorbable cardiovascular stents due to its degradation rate more suitable than magnesium (Mg) and iron (Fe) alloys. However, its mechanical properties need to be improved in order to meet the criteria for vascular stents. This work investigates the mechanical properties, biodegradability and biocompatibility of Zn-Mg and Zn-Cu alloys in order to determine a proper alloy composition for optimal stent performance. Nanoindentation measurements are performed to characterize the mechanical properties at the nanoscale as a function of the Zn microstructure variations induced by alloying. The biodegradation mechanisms are discussed and correlated to microstructure, mechanical performance and bacterial/cell response. Addition of Mg or Cu alloying elements refined the microstructure of Zn and enhanced yield strength (YS) and ultimate tensile strength (UTS) proportional to the volume fraction of secondary phases. Zn-1Mg showed the higher YS and UTS and better performance in terms of degradation stability in Hanks' solution. Zn-Cu alloys presented an antibacterial effect for S. aureus controlled by diffusion mechanisms and by contact. Biocompatibility was dependent on the degradation rate and the nature of the corrosion products.
Collapse
Affiliation(s)
- Claudia García-Mintegui
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019, Barcelona, Spain
- Resource Recovery and Environmental Management Group, UPC, EEBE, 08019, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain
| | - Laura Catalina Córdoba
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), 08028, Barcelona, Spain
| | - Judit Buxadera-Palomero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain
| | - Andrea Marquina
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019, Barcelona, Spain
| | - Emilio Jiménez-Piqué
- Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain
- Structural Integrity, Micromechanics and Reliability of Materials Group, Department of Materials Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), 08028, Barcelona, Spain
| | - José Luis Cortina
- Resource Recovery and Environmental Management Group, UPC, EEBE, 08019, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain
| | - Marta Pegueroles
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain
| |
Collapse
|
50
|
Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater 2021; 6:2569-2612. [PMID: 33615045 PMCID: PMC7876544 DOI: 10.1016/j.bioactmat.2021.01.030] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Metals and alloys, including stainless steel, titanium and its alloys, cobalt alloys, and other metals and alloys have been widely used clinically as implant materials, but implant-related infection or inflammation is still one of the main causes of implantation failure. The bacterial infection or inflammation that seriously threatens human health has already become a worldwide complaint. Antibacterial metals and alloys recently have attracted wide attention for their long-term stable antibacterial ability, good mechanical properties and good biocompatibility in vitro and in vivo. In this review, common antibacterial alloying elements, antibacterial standards and testing methods were introduced. Recent developments in the design and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, antibacterial titanium alloy, antibacterial zinc and alloy, antibacterial magnesium and alloy, antibacterial cobalt alloy, and other antibacterial metals and alloys. Researches on the antibacterial properties, mechanical properties, corrosion resistance and biocompatibility of antibacterial metals and alloys have been summarized in detail for the first time. It is hoped that this review could help researchers understand the development of antibacterial alloys in a timely manner, thereby could promote the development of antibacterial metal alloys and the clinical application.
Collapse
Affiliation(s)
- Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| | - Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Ruoxian Wang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Shan Fu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| |
Collapse
|