1
|
Sharma P, Ganguly M, Doi A. Analytical developments in the synergism of copper particles and cysteine: a review. NANOSCALE ADVANCES 2024; 6:3476-3493. [PMID: 38989510 PMCID: PMC11232554 DOI: 10.1039/d4na00321g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024]
Abstract
Cysteine, a sulfur-containing amino acid, is a vital candidate for physiology. Coinage metal particles (both clusters and nanoparticles) are highly interesting for their spectacular plasmonic properties. In this case, copper is the most important candidate for its cost-effectiveness and abundance. However, rapid oxidation destroys the stability of copper particles, warranting the necessity of suitable capping agents and experimental conditions. Cysteine can efficiently carry out such a role. On the contrary, cysteine sensing is a vital step for biomedical science. This review article is based on a comparative account of copper particles with cysteine passivation and copper particles for cysteine sensing. For the deep understanding of readers, we discuss nanoparticles and nanoclusters, properties of cysteine, and importance of capping agents, along with various synthetic protocols and applications (sensing and bioimaging) of cysteine-capped copper particles (cysteine-capped copper nanoparticles and cysteine-capped copper nanoclusters). We also include copper nanoparticles and copper nanoclusters for cysteine sensing. As copper is a plasmonic material, fluorometric and colorimetric methods are mostly used for sensing. Real sample analysis for both copper particles with cysteine and copper particles for cysteine sensing are also incorporated in this review to demonstrate their practical applications. Both cysteine-capped copper particles and copper particles for cysteine sensing are the main essence of this review. The aspect of the synergism of copper and cysteine (unlike other amino acids) is quite promising for future researchers.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| | - Mainak Ganguly
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| | - Ankita Doi
- Department of Biosciences, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| |
Collapse
|
2
|
Amini M, Nikkhoo M, Bagherzadeh M, Ahadian MM, Bayrami A, Naslhajian H, Karamjavan MH. High-Performance Novel MoS 2@Zeolite X Nanocomposite-Modified Thin-Film Nanocomposite Forward Osmosis Membranes: A Study of Desalination and Antifouling Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39765-39776. [PMID: 37614003 DOI: 10.1021/acsami.3c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Novel thin-film nanocomposite (TFN) membranes modified by the MoS2@Zeolite X nanocomposite were made and studied for desalination by the forward osmosis (FO) method. Herein, MoS2@Zeolite X nanocomposite (MoS2@Z) and zeolite X particles are integrated into the polyamide (PA) selective layer of the TFN membranes, separately. The aim of this study is the synthesis of nanocomposites containing hydrophilic zeolite X particles with a modified surface and pore and improvement of their effective properties on desalination and antifouling performance. For this purpose, MoS2 nanosheets with a high hydrophilicity were selected. The existence of polymer-matrix-compatible MoS2@Z inside the PA active layer caused the formation of a defect-free smooth surface with further channels within this layer that could increase the water flux and fouling resistance of the TFN membranes. The TFN-MZ2 membrane (containing 0.01 wt % MoS2@Z) showed the top desalination performance in the FO process. In contrast to the pristine thin-film composite (TFC) and TFN-Z2 membrane (containing 0.025 wt % zeolite X, the most optimal membrane among the zeolite-modified membranes), its water flux has increased by 2.6 and 1.8 times, respectively. Furthermore, in the fouling test, this optimal TFN-MZ2 membrane with a flux decrement of 19.6% revealed an ∼2.2- and 1.8-fold enhancement in antifouling tendency compared to the TFC and TFN-Z2, respectively. Also, based on the antibiofouling test, the water flux drop of 48.6% for the TFC membrane has reached 36.9% for the optimal membrane. Hence, this high-performance TFN-MZ2 membrane shows good capability for commercial employment in FO desalination application.
Collapse
Affiliation(s)
- Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
| | - Mohammad Nikkhoo
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, P.O. Box 1458889694, Tehran, Iran
| | - Mojtaba Bagherzadeh
- Chemistry Department, Sharif University of Technology, P.O. Box 1458889694, Tehran, Iran
| | - Mohammad Mahdi Ahadian
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, P.O. Box 1458889694, Tehran, Iran
| | - Arshad Bayrami
- Chemistry Department, Sharif University of Technology, P.O. Box 1458889694, Tehran, Iran
| | - Hadi Naslhajian
- School of Chemistry, College of Science, University of Tehran, P.O. Box 1417935840, Tehran, Iran
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 8311155181, Maragheh, Iran
| | - Mohammad Hasanzadeh Karamjavan
- East Azarbaijan's Water and Waste Water Company, P.O. Box 5166617365, Tabriz, Iran
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
| |
Collapse
|
3
|
Okla MK, Balasurya S, Alaraidh IA, Mohebaldin A, Al-Ghamdi AA, Al-Okla MA, Abdel-Maksoud MA, Abdelaziz RF, Soufan W, Balakrishnaraja R, Raju LL, Thomas AM, Sudheer Khan S. Plasma-assisted in-situ preparation of L-cystine functionalized silver nanoparticle: An intelligent multicolor nano-sensing of cadmium and paracetamol from environmental sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121330. [PMID: 35605418 DOI: 10.1016/j.saa.2022.121330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
L-cystine (L-cys) functionalized plasmonic silver nanomaterial (Ag NPs) was fabricated toward the selective and sensitive detection of paracetamol and cadmium. The prepared L-cys-Ag nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD) and fourier transform infrared spectroscopy (FTIR) analyses. SEM imaging show that Ag NPs was decorated on the surface of L-cysteine 3D cubic nanosheet. L-cys-Ag NPs showed selective and sensitive detection towards paracetamol and cadmium. The interference study confirms that the presence of other metal ions didn't inhibit the detection of cadmium by L-cys-Ag NPs. The limit of detection of paracetamol and cadmium by L-cys-Ag NPs was calculated to be 1.2 and 2.82 nM respectively. In addition, the real sample detection of paracetamol on blood serum and urine, and cadmium on STP were performed and the recovery percentage was above 97%. Further, the real sample analysis was performed in tap and drinking water and the recovery percentage was more than 98%. The analytic logic gate on the multicolour detection of cadmium and paracetamol was performed for the semi-quantitative monitoring of paracetamol and cadmium by L-cys-Ag NPs. The developed L-cys-Ag NPs were found to be an effective tool for the monitoring of cadmium in environmental water bodies and paracetamol in blood and urine.
Collapse
Affiliation(s)
- Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - S Balasurya
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Ibrahim A Alaraidh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Asmaa Mohebaldin
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah A Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed A Al-Okla
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ramadan F Abdelaziz
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Walid Soufan
- College of Food and Agriculture Sciences, King Saud University. P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - R Balakrishnaraja
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Lija L Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - Ajith M Thomas
- Department of Botany and Biotechnology, St Xavier's College, Thumba, Thiruvananthapuram, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
4
|
A novel l-cysteine sensor using in-situ electropolymerization of l-cysteine: Potential to simple and selective detection. Talanta 2022; 237:122983. [PMID: 34736703 DOI: 10.1016/j.talanta.2021.122983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022]
Abstract
This work presents an all-in-one origami paper-based electrochemical platform for simple and inexpensive l-cysteine (Cys) detection using Cys as a monomer for modifying electrode surfaces. The proposed method combines the steps of electropolymerization and detection into a single device to offer a highly convenient method for the end-user. In comparison, the sensitivity toward Cys detection is a significantly increased using this modified electrode. The developed device provided a linear concentration range of 10-800 μM with a limit of detection of 5.5 μM. For application, the device was successfully applied to detect Cys in different food products such as wheat flour, bread, and cake with satisfactory results, yielding excellent intra-day and inter-day relative standard deviations (1.5-4.9%) and recoveries (84.2-110.8%). This discovery is important from the viewpoint of the development of Cys detection in other applications in the future.
Collapse
|
5
|
Moulaee K, Neri G. Electrochemical Amino Acid Sensing: A Review on Challenges and Achievements. BIOSENSORS 2021; 11:502. [PMID: 34940259 PMCID: PMC8699811 DOI: 10.3390/bios11120502] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 05/05/2023]
Abstract
The rapid growth of research in electrochemistry in the last decade has resulted in a significant advancement in exploiting electrochemical strategies for assessing biological substances. Among these, amino acids are of utmost interest due to their key role in human health. Indeed, an unbalanced amino acid level is the origin of several metabolic and genetic diseases, which has led to a great need for effective and reliable evaluation methods. This review is an effort to summarize and present both challenges and achievements in electrochemical amino acid sensing from the last decade (from 2010 onwards) to show where limitations and advantages stem from. In this review, we place special emphasis on five well-known electroactive amino acids, namely cysteine, tyrosine, tryptophan, methionine and histidine. The recent research and achievements in this area and significant performance metrics of the proposed electrochemical sensors, including the limit of detection, sensitivity, stability, linear dynamic range(s) and applicability in real sample analysis, are summarized and presented in separate sections. More than 400 recent scientific studies were included in this review to portray a rich set of ideas and exemplify the capabilities of the electrochemical strategies to detect these essential biomolecules at trace and even ultra-trace levels. Finally, we discuss, in the last section, the remaining issues and the opportunities to push the boundaries of our knowledge in amino acid electrochemistry even further.
Collapse
Affiliation(s)
- Kaveh Moulaee
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 16846-13114, Iran
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
| |
Collapse
|
6
|
Sheikhsamany R, Faghihian H, Fazaeli R. One-pot synthesis of BaTi0.85Zr0.15O3/MOF-199 (HKUST-1) as a highly efficient photocatalytic nanocomposite for tetracycline degradation under UV irradiation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Attala K, Elsonbaty A. Advanced eco-friendly UV spectrophotometric approach for resolving overlapped spectral signals of antihypertensive agents in their binary and tertiary pharmaceutical dosage form. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119855. [PMID: 33964634 DOI: 10.1016/j.saa.2021.119855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/28/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Cardiovascular disorders are among the foremost causes of death worldwide, especially hypertension, a silent killer syndrome that requires multiple drug therapy for proper management. This work presents novel and green spectrophotometric methods for the concurrent analysis of Amlodipine (AML), Telmisartan (TEL), Hydrochlorothiazide (HCTZ), and Chlorthalidone (CLO) in their pharmaceutical dosage form. The suggested methods were Fourier-self deconvolution, amplitude factor, and first derivative methods developed and validated for the simultaneous determination of a tertiary mixture of AML, TEL, and HCTZ in TELVAS 3D 80 mg tablet and a binary mixture of TEL and CLO in TELMIKIND-CT 40 tablets. The investigated methods revealed limits of detection 0.7283 µg/ml for AML and ranging from 0.0121 to 0.0433, 0.1547 to 0.1767 µg/ml and 0.0578 to 0.1262 µg/ml for TEL, HCTZ, and CLO, respectively.The greenness of the suggested techniques was examined by an eco-scale scoring method called the penalty points, which revealed that the methods were excellent green regarding several parameters as reagents, instrument, and waste safety. The introduced methods' validity was investigated by resolving prepared laboratory mixtures containing different AML, TEL, HCTZ, or TEL and CLO ratios. Furthermore, the introduced methods were ensured by the standard addition technique. Finally, the obtained results were statistically compared by the reported spectrophotometric methods, showing no significant difference concerning precision and accuracy.
Collapse
Affiliation(s)
- Khaled Attala
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Ahmed Elsonbaty
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt.
| |
Collapse
|
8
|
Hou J, Fan Y, Ma X, Dong X, Yao S. Effects of modified fly ash doped carbon paste electrodes and metal film electrodes on the determination of trace cadmium(ii) by anodic stripping voltammetry. RSC Adv 2021; 11:17240-17248. [PMID: 35479702 PMCID: PMC9032926 DOI: 10.1039/d0ra07493d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/11/2021] [Indexed: 11/21/2022] Open
Abstract
Fly ash, as waste from coal combustion, has been effectively modified to improve its adsorption to remove toxic metals, and modified fly ash could be used for electrode modification to improve the sensitivity of the electrode. In this paper, a modified fly ash doped carbon paste electrode for the detection of trace cadmium was first and successfully developed. Several parameters affecting the anodic stripping voltammetric response of Cd(ii) were optimized, such as the composition of the paste, pH of the measurement solution, the concentration of Sb(iii) (or Sb(iii) and Bi(iii)), deposition potential and deposition time. Compared with Sb/MFA-CPE, the square wave anodic stripping voltammetry (SWASV) response of Cd(ii) at Sb/MMFA-CPE had a higher linear range and lower sensitivity. Relative to MFA, MMFA-CPE, due to the introduction of CTAB, provided a larger effective area for interacting with analytes, more binding sites and further facilitating electron transfer at the electrode, and amplified the electrochemical signal. Compared with Sb/MMFA-CPE, the SWASV response of Cd(ii) at Sb-Bi/MMFA-CPE had a higher linear range and similar sensitivity, since mechanisms at bismuth and antimony film electrodes were different. Besides, the electrode reactions of Cd(ii) at bismuth film electrodes involved adsorption phenomena while they were free of adsorption at antimony film electrodes.
Collapse
Affiliation(s)
- Jinying Hou
- College of Mining Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Yuping Fan
- College of Mining Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Xiaomin Ma
- College of Mining Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Xianshu Dong
- College of Mining Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Suling Yao
- College of Mining Engineering, Taiyuan University of Technology Taiyuan 030024 China
| |
Collapse
|
9
|
Tajik S, Dourandish Z, Jahani PM, Sheikhshoaie I, Beitollahi H, Shahedi Asl M, Jang HW, Shokouhimehr M. Recent developments in voltammetric and amperometric sensors for cysteine detection. RSC Adv 2021; 11:5411-5425. [PMID: 35423079 PMCID: PMC8694840 DOI: 10.1039/d0ra07614g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/06/2020] [Indexed: 12/27/2022] Open
Abstract
This review article aims to provide an overview of the recent advances in the voltammetric and amperometric sensing of cysteine (Cys). The introduction summarizes the important role of Cys as an essential amino acid, techniques for its sensing, and the utilization of electrochemical methods and chemically modified electrodes for its determination. The main section covers voltammetric and amperometric sensing of Cys based on glassy carbon electrodes, screen printed electrodes, and carbon paste electrodes, modified with various electrocatalytic materials. The conclusion section discusses the current challenges of Cys determination and the future perspectives.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences Kerman Iran
| | - Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman Kerman 76175-133 Iran
| | | | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman Kerman 76175-133 Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Mehdi Shahedi Asl
- Marine Additive Manufacturing Centre of Excellence (MAMCE), University of New Brunswick Fredericton NB E3B 5A1 Canada
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
10
|
Madej M, Fendrych K, Porada R, Flacha M, Kochana J, Baś B. Application of Fe(III)-exchanged clinoptilolite/graphite nanocomposite for electrochemical sensing of amitriptyline. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Ahmed AAEH, Korany MA, Khalil MM. Electrochemical determination of verapamil hydrochloride using carbon nanotubes/TiO2 nanocomposite based potentiometric sensors in surface water and urine samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Kaya SI, Karabulut TC, Kurbanoglu S, Ozkan SA. Chemically Modified Electrodes in Electrochemical Drug Analysis. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190304140433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrode modification is a technique performed with different chemical and physical methods
using various materials, such as polymers, nanomaterials and biological agents in order to enhance
sensitivity, selectivity, stability and response of sensors. Modification provides the detection of small
amounts of analyte in a complex media with very low limit of detection values. Electrochemical methods
are well suited for drug analysis, and they are all-purpose techniques widely used in environmental
studies, industrial fields, and pharmaceutical and biomedical analyses. In this review, chemically modified
electrodes are discussed in terms of modification techniques and agents, and recent studies related
to chemically modified electrodes in electrochemical drug analysis are summarized.
Collapse
Affiliation(s)
- Sariye I. Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Tutku C. Karabulut
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sevinç Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
Deilamy-Rad G, Asghari K, Tavallali H. Development of a Reversible Indicator Displacement Assay Based on the 1-(2-Pyridylazo)-2-naphthol for Colorimetric Determination of Cysteine in Biological Samples and Its Application to Constructing the Paper Test Strips and a Molecular-Scale Set/Reset Memorized Device. Appl Biochem Biotechnol 2020; 192:85-102. [DOI: 10.1007/s12010-019-03165-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/23/2019] [Indexed: 02/01/2023]
|
14
|
Anu Prathap MU, Kaur B, Srivastava R. Electrochemical Sensor Platforms Based on Nanostructured Metal Oxides, and Zeolite-Based Materials. CHEM REC 2018; 19:883-907. [DOI: 10.1002/tcr.201800068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/19/2018] [Indexed: 11/11/2022]
Affiliation(s)
- M. U. Anu Prathap
- Department of Biological Systems Engineering; University of Wisconsin−Madison; 460 Henry Mall Madison, WI 53706 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Balwinder Kaur
- Department of Chemistry; University of Massachusetts Lowell; 256 Riverside Street,Olney Hall Lowell, MA 01845 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Rajendra Srivastava
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| |
Collapse
|
15
|
Rapid Degradation of Methyl Orange by Ag Doped Zeolite X in the Presence of Borohydride. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2017.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Graphite/Nanocrystalline Zeolite Platform for Selective Electrochemical Determination of Hepatitis C Inhibitor Ledipasvir. ELECTROANAL 2018. [DOI: 10.1002/elan.201800500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Zahra Heidari, Mahboubeh Masrournia. A Novel Modified Carbon Paste Electrode for the Determination of Chromium(III) in Water. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818080105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Maximiano EM, de Lima F, Cardoso CA, Arruda GJ. Modification of carbon paste electrodes with recrystallized zeolite for simultaneous quantification of thiram and carbendazim in food samples and an agricultural formulation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.162] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Salih FE, Achiou B, Ouammou M, Bennazha J, Ouarzane A, Younssi SA, El Rhazi M. Electrochemical sensor based on low silica X zeolite modified carbon paste for carbaryl determination. J Adv Res 2017; 8:669-676. [PMID: 28948047 PMCID: PMC5602751 DOI: 10.1016/j.jare.2017.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/02/2022] Open
Abstract
A new and simple approach for carbaryl determination in natural sample was proposed using Low Silica X (LSX) zeolite modified carbon paste electrode. LSX zeolite with a porous structure was incorporated into carbon paste electrode in the appropriate portion. The prepared electrode was then characterized using scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Various experimental parameters as the zeolite amounts, pH, accumulation time, and differential pulse voltammetric parameters were optimized. Under optimal conditions, a linear response was obtained in the range of 1-100 µM of carbaryl using differential pulse voltammetry with detection limit of 0.3 µM (S/N = 3). The sensors showed good selectivity, stability, and reproducibility and has been successfully applied for detection of carbaryl in tomato samples with good recoveries.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mama El Rhazi
- Laboratory of Materials, Membranes and Environment, Faculty of Sciences and Technologies, University Hassan II of Casablanca, BP 146, Mohammedia 20650, Morocco
| |
Collapse
|
20
|
Meenakshi S, Devi S, Pandian K, Devendiran R, Selvaraj M. Sunlight assisted synthesis of silver nanoparticles in zeolite matrix and study of its application on electrochemical detection of dopamine and uric acid in urine samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:85-94. [DOI: 10.1016/j.msec.2016.06.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
|
21
|
Issa YM, Mohamed SH, Baset MAE. Chemically modified carbon paste and membrane sensors for the determination of benzethonium chloride and some anionic surfactants (SLES, SDS, and LABSA): Characterization using SEM and AFM. Talanta 2016; 155:158-67. [DOI: 10.1016/j.talanta.2016.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/15/2022]
|
22
|
Khaloo SS, Mozaffari S, Alimohammadi P, Kargar H, Ordookhanian J. Sensitive and Selective Determination of Riboflavin in Food and Pharmaceutical Samples Using Manganese (III) Tetraphenylporphyrin Modified Carbon Paste Electrode. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1130054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Shokooh Sadat Khaloo
- Department of Basic Sciences, Faculty of Health, Safety, and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Hadi Kargar
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | | |
Collapse
|
23
|
Mu S, Shi Q. Photoelectrochemical properties of bare fluorine doped tin oxide and its electrocatalysis and photoelectrocatalysis toward cysteine oxidation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.02.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|