1
|
Jiang Q, Dong C, He Z, Wang Y, Jiang R, Liao W, Yang S. Research landscape and pharmacological mechanisms of traditional Chinese medicines in treating and preventing urolithiasis: Unearthing an anti-urolithic treasure trove. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118502. [PMID: 38950794 DOI: 10.1016/j.jep.2024.118502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Urolithiasis represents a predominant concern within urology due to its high recurrence rate and consequential surgical complications. Traditional Chinese Medicine (TCM), with a history spanning over 2000 years in treating kidney diseases, not only offers a less invasive and cost-effective option for treating and preventing urolithiasis, but also serves as a pharmacological treasure trove for the development of anti-urolithic drugs. AIM OF THE STUDY With the continuous deepening of research on the anti-urolithic effects of Chinese medicines, the pharmacological mechanisms of TCMs against urolithiasis are continuously evolving. Therefore, it is essential to summarize the current research status, clinical effectiveness, and mechanisms of TCM in treating and preventing urolithiasis, to ascertain its potential in anti-urolithic treatments, and to provide a reference for future anti-urolithiasis drug research. METHODS The electronic databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) have been utilized to retrieve relevant literature spanning from 2000 to September 2023, using keywords "Traditional Chinese Medicine" and "Urolithiasis". Then we conducted a visual analysis of the current status of related research, as well as a systematic organization of the therapeutic effects and underlying mechanisms of anti-urolithic TCMs. RESULTS Through the organization of research models, therapeutic effects, and active ingredients of 31 potential anti-urolithic TCMs, we have systematically summarized the underlying mechanisms of TCMs in management of urolithiasis. Mechanistically, Chinese herbs facilitate stone expulsion by enhancing diuresis, instigating anti-spasmodic effects, and promoting ureteral peristalsis when addressing calculi. They also harbor the potential to dissolve pre-existing stones. In terms of stone recurrence prevention, TCM compounds obstruct stone formation through targeting the sequence of crystal adhesion, nucleation, growth, and aggregation to inhibit stone formation. Additionally, TCM's significant roles include stifling oxidative stress, augmenting urinary stone inhibitors, and harmonizing oxalate metabolism, all of which are critical actions in stone prevention. CONCLUSION The anti-urolithic mechanism of TCM is multifaceted. Investigating the anti-urolithiasis mechanisms of TCM not only illuminates the potential of Chinese medicine in treating and preventing urolithiasis, but also uncovers active molecules and targets for drug treatment against calculus formation.
Collapse
Affiliation(s)
- Qinhong Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Yunhan Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Rong Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
2
|
Dong C, Zhou J, Su X, He Z, Song Q, Song C, Ke H, Wang C, Liao W, Yang S. Understanding formation processes of calcareous nephrolithiasis in renal interstitium and tubule lumen. J Cell Mol Med 2024; 28:e18235. [PMID: 38509735 PMCID: PMC10955165 DOI: 10.1111/jcmm.18235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Kidney stone, one of the oldest known diseases, has plagued humans for centuries, consistently imposing a heavy burden on patients and healthcare systems worldwide due to their high incidence and recurrence rates. Advancements in endoscopy, imaging, genetics, molecular biology and bioinformatics have led to a deeper and more comprehensive understanding of the mechanism behind nephrolithiasis. Kidney stone formation is a complex, multi-step and long-term process involving the transformation of stone-forming salts from free ions into asymptomatic or symptomatic stones influenced by physical, chemical and biological factors. Among the various types of kidney stones observed in clinical practice, calcareous nephrolithiasis is currently the most common and exhibits the most intricate formation mechanism. Extensive research suggests that calcareous nephrolithiasis primarily originates from interstitial subepithelial calcified plaques and/or calcified blockages in the openings of collecting ducts. These calcified plaques and blockages eventually come into contact with urine in the renal pelvis, serving as a nidus for crystal formation and subsequent stone growth. Both pathways of stone formation share similar mechanisms, such as the drive of abnormal urine composition, involvement of oxidative stress and inflammation, and an imbalance of stone inhibitors and promoters. However, they also possess unique characteristics. Hence, this review aims to provide detailed description and present recent discoveries regarding the formation processes of calcareous nephrolithiasis from two distinct birthplaces: renal interstitium and tubule lumen.
Collapse
Affiliation(s)
- Caitao Dong
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Jiawei Zhou
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Xiaozhe Su
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Ziqi He
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Qianlin Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Chao Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Hu Ke
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Chuan Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Wenbiao Liao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Sixing Yang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| |
Collapse
|
3
|
Xu QS, Wu ZJ, Sun JM, Liu JH, Huang WB, Ouyang JM. Different Degrees of Sulfated Laminaria Polysaccharides Recovered Damaged HK-2 Cells and Inhibited Adhesion of Nano-COM and Nano-COD Crystals. Bioinorg Chem Appl 2024; 2024:8843214. [PMID: 38204734 PMCID: PMC10776190 DOI: 10.1155/2024/8843214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Purpose The crystal adhesion caused by the damage of renal tubular epithelial cells (HK-2) is the key to the formation of kidney stones. However, no effective preventive drug has been found. This study aims to explore the recovery effects of four Laminaria polysaccharides (SLPs) with different sulfate (-OSO3-) contents on damaged HK-2 cells and the difference in the adhesion of damaged cells to nanometer calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) before and after recovery. Methods Sodium oxalate (2.6 mmol/L) was used to damage HK-2 cells to establish a damaged model. SLPs (LP0, SLP1, SLP2, and SLP3) with -OSO3- contents of 0.73%, 15.1%, 22.8%, and 31.3%, respectively, were used to restore the damaged cells, and the effects of SLPs on the adhesion of COM and COD, with a size of about 100 nm before and after recovery, were measured. Results The following results were observed after SLPs recovered the damaged HK-2 cells: increased cell viability, restored cell morphology, decreased reactive oxygen levels, increased mitochondrial membrane potential, decreased phosphatidylserine eversion ratio, increased cell migration ability, reduced expression of annexin A1, transmembrane protein, and heat shock protein 90 on the cell surface, and reduced adhesion amount of cells to COM and COD. Under the same conditions, the adhesion ability of cells to COD crystals was weaker than that to COM crystals. Conclusions As the sulfate content in SLPs increases, the ability of SLPs to recover damaged HK-2 cells and inhibit crystal adhesion increases. SLP3 with high -OSO3- content may be a potential drug to prevent kidney stones.
Collapse
Affiliation(s)
- Qiu-Shi Xu
- Department of Urology, The First People's Hospital of Chenzhou, Hunan, Chenzhou 423000, China
| | - Zhi-Jian Wu
- Department of Urology, The First People's Hospital of Chenzhou, Hunan, Chenzhou 423000, China
| | - Jian-Ming Sun
- Department of Urology, The First People's Hospital of Chenzhou, Hunan, Chenzhou 423000, China
| | - Jing-Hong Liu
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Wei-Bo Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Xiong P, Cheng XY, Sun XY, Chen XW, Ouyang JM. Interaction between nanometer calcium oxalate and renal epithelial cells repaired with carboxymethylated polysaccharides. BIOMATERIALS ADVANCES 2022; 137:212854. [PMID: 35929244 DOI: 10.1016/j.bioadv.2022.212854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Injury of renal tubular epithelial cells (HK-2) is an important cause of kidney stone formation. In this article, the repairing effect of polysaccharide (PCP0) extracted from the traditional Chinese medicine Poria cocos and its carboxymethylated derivatives on damaged HK-2 cells was studied, and the differences in adhesion and endocytosis of the cells to nanometer calcium oxalate monohydrate (COM) before and after repair were explored. METHODS Sodium oxalate (2.8 mmol/L) was used to damage HK-2 cells to establish a damage model, and then Poria cocos polysaccharides (PCPs) with different carboxyl (COOH) contents were used to repair the damaged cells. The changes in the biochemical indicators of the cells before and after the repair and the changes in the ability to adhere to and internalize nano-COM were detected. RESULTS The natural PCPs (PCP0, COOH content = 2.56%) were carboxymethylated, and three carboxylated modified Poria cocos with 7.48% (PCP1), 12.07% (PCP2), and 17.18% (PCP3) COOH contents were obtained. PCPs could repair the damaged HK-2 cells, and the cell viability was enhanced after repair. The cell morphology was gradually repaired, the proliferation and healing rate were increased. The ROS production was reduced, and the polarity of the mitochondrial membrane potential was restored. The level of intracellular Ca2+ ions decreased, and the autophagy response was weakened. CONCLUSION The cells repaired by PCPs inhibited the adhesion to nano-COM and simultaneously promoted the endocytosis of nano-COM. The endocytic crystals mainly accumulated in the lysosome. Inhibiting adhesion and increasing endocytosis could reduce the nucleation, growth, and aggregation of cell surface crystals, thereby inhibiting the formation of kidney stones. With the increase of COOH content in PCPs, its ability to repair damaged cells, inhibit crystal adhesion, and promote crystal endocytosis all increased, that is, PCP3 with the highest COOH content showed the best ability to inhibit stone formation.
Collapse
Affiliation(s)
- Peng Xiong
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xiao-Yan Cheng
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Xue-Wu Chen
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Ye QL, Wang DM, Wang X, Zhang ZQ, Tian QX, Feng SY, Zhang ZH, Yu DX, Ding DM, Xie DD. Sirt1 inhibits kidney stones formation by attenuating calcium oxalate-induced cell injury. Chem Biol Interact 2021; 347:109605. [PMID: 34333021 DOI: 10.1016/j.cbi.2021.109605] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/03/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
Cell injury is a necessary and critical event during CaOx kidney stone formation. Sirt1 exerts a number of pleiotropic effects, protecting against renal cell injury. This study aims to explore the relationship between Sirt1 and CaOx kidney stone formation and the underlying mechanism. Sirt1 expression in renal tissues or HK-2 cells was detected by Western blot, immunohistochemistry and immunofluorescence. Apoptosis in renal tissues was examined by TUNEL staining. Renal pathological changes and the crystals deposition were detected by hematoxylin-eosin and Von Kossa staining. Crystal-cell adhesion and cell injury in HK-2 cells were assessed by atomic absorption spectrometry and flow cytometry, respectively. Sirt1 expression in nephrolithiasis patients was downregulated and the level of apoptosis was increased. Further study found that Sirt1 expression was decreased in both in vivo and in vitro models. Interestingly, the levels of cell injury were elevated in vivo and in vitro models. Suppressing Sirt1 expression promoted COM-induced crystal-cell adhesion and exacerbated cell injury. In contrast, increasing the expression of Sirt1 by lentivirus transfection in vitro and resveratrol administration in vivo, alleviated crystal deposition and cell damage. Our findings suggest that Sirt1 could inhibit kidney stone formation, at least in part, through attenuating CaOx -induced cell injury.
Collapse
Affiliation(s)
- Qing-Lin Ye
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Da-Ming Wang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Xin Wang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Qiang Zhang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Qi-Xing Tian
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Shi-Yao Feng
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Hui Zhang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - De-Xin Yu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - De-Mao Ding
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
| | - Dong-Dong Xie
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
6
|
Huang F, Sun XY, Chen XW, Ouyang JM. Effects of Selenized Astragalus Polysaccharide on the Adhesion and Endocytosis of Nanocalcium Oxalate Dihydrate after the Repair of Damaged HK-2 Cells. ACS Biomater Sci Eng 2021; 7:739-751. [PMID: 33464816 DOI: 10.1021/acsbiomaterials.0c01318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An oxidative damage model of human proximal renal epithelial cells (HK-2) was established using oxalate damage. The repair effects of Astragalus polysaccharide (APS) and selenized APS (Se-APS) on damaged HK-2 cells were investigated. Differences in the adhesion and endocytosis of HK-2 cells to calcium oxalate dihydrate crystals with a size of approximately 100 nm before and after APS and Se-APS repair were also explored. The results showed that after being repaired by APS and Se-APS, HK-2 cells exhibited increased cell viability, restored cell morphology, reduced reactive oxygen species level, increased mitochondrial membrane potential, reduced phosphatidylserine eversion, and osteopontin expression. Moreover, the amount of adherent crystals on the cell surface decreased, but the amount of endocytic crystals increased. At the same concentration, Se-APS exhibited better repair effects on the damaged HK-2 cells than APS. All these findings revealed that Se-APS may be a potential drug candidate for inhibiting the formation of kidney stones.
Collapse
Affiliation(s)
- Fang Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Xue-Wu Chen
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
iTRAQ-Based Comparative Proteomics Analysis of Urolithiasis Rats Induced by Ethylene Glycol. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6137947. [PMID: 32509863 PMCID: PMC7246402 DOI: 10.1155/2020/6137947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/12/2020] [Accepted: 04/23/2020] [Indexed: 11/18/2022]
Abstract
Nephrolithiasis is a frequent chronic urological condition with a high prevalence and recurrence rate. Proteomics studies on urolithiasis rat models are highly important in characterizing the pathophysiology of kidney stones and identifying potential approaches for preventing and treating kidney stones. The isobaric tags for relative and absolute quantification (iTRAQ) were performed to identify differentially expressed proteins (DEPs) in the kidney between urolithiasis rats and control rats. The results showed that 127 DEPs (85 upregulated and 42 downregulated) were identified in urolithiasis and control rats. The functions of DEPs were predicted by Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis. The expression of four upregulated proteins (Tagln, Akr1c9, Spp1, and Fbn1) and four downregulated proteins (Hbb, Epb42, Hmgcs2, and Ca1) were validated by parallel reaction monitoring (PRM). Proteomics studies of ethylene glycol-induced urolithiasis rat models using iTRAQ and PRM helped to elucidate the molecular mechanism governing nephrolithiasis and to identify candidate proteins for the treatment of kidney stones.
Collapse
|
8
|
Kumar P, Patel M, Thomas V, Knight J, Holmes RP, Mitchell T. Dietary Oxalate Induces Urinary Nanocrystals in Humans. Kidney Int Rep 2020; 5:1040-1051. [PMID: 32647761 PMCID: PMC7335953 DOI: 10.1016/j.ekir.2020.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction Crystalluria is thought to be associated with kidney stone formation and can occur when urine becomes supersaturated with calcium, oxalate, and phosphate. The principal method used to identify urinary crystals is microscopy, with or without a polarized light source. This method can detect crystals above 1 μm in diameter (microcrystals). However, analyses of calcium oxalate kidney stones have indicated that crystallite components in these calculi are 50–100 nm in diameter. Recent studies have suggested that nanocrystals (<200 nm) elicit more injury to renal cells compared to microcrystals. The purpose of this study was to determine whether (i) urinary nanocrystals can be detected and quantified by nanoparticle tracking analysis (NTA, a high-resolution imaging technology), (ii) early-void urine samples from healthy subjects contain calcium nanocrystals, and (iii) a dietary oxalate load increases urinary nanocrystal formation. Methods Healthy subjects consumed a controlled low-oxalate diet for 3 days before a dietary oxalate load. Urinary crystals were isolated by centrifugation and assessed using NTA before and 5 hours after the oxalate load. The morphology and chemical composition of crystals was assessed using electron microscopy, Fourier-transform infrared spectroscopy (FTIR), and ion chromatography-mass spectrometry (IC–MS). Results Urinary calcium oxalate nanocrystals were detected in pre-load samples and increased substantially following the oxalate load. Conclusion These findings indicate that NTA can quantify urinary nanocrystals and that meals rich in oxalate can promote nanocrystalluria. NTA should provide valuable insight about the role of nanocrystals in kidney stone formation.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mikita Patel
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ross P Holmes
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Li CY, Liu L, Zhao YW, Peng QL, Sun XY, Guo D, Ouyang JM. Repair of Tea Polysaccharide Promotes the Endocytosis of Nanocalcium Oxalate Monohydrate by Damaged HK-2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2198976. [PMID: 32411321 PMCID: PMC7201800 DOI: 10.1155/2020/2198976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
Endocytosis is a protective mechanism of renal epithelial cells to eliminate retained crystals. This research investigated the endocytosis of 100 nm calcium oxalate monohydrate crystals in human kidney proximal tubular epithelial (HK-2) cells before and after repair by four kinds of tea polysaccharides with molecular weights (MWs) of 10.88 (TPS0), 8.16 (TPS1), 4.82 (TPS2), and 2.31 kDa (TPS3), respectively. When HK-2 cells were repaired by TPSs after oxalic acid injury, the cell viability, wound healing ability, mitochondrial membrane potential, percentage of cells with endocytosed crystals, and dissolution rate of the endocytosed crystals increased; the cell morphology recovered; and the reactive oxygen level and lactate dehydrogenase release decreased. Most of the endocytosed crystals were found in the lysosomes. The repair effects of the four TPSs were ranked in the following order: TPS2>TPS1>TPS3>TPS0. TPS2 with moderate MW presented the optimal repair ability and strongest ability to promote endocytosis.
Collapse
Affiliation(s)
- Chuang-Ye Li
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Li Liu
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Yao-Wang Zhao
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Qian-Long Peng
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Da Guo
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Zhao YW, Liu L, Li CY, Zhang H, Sun XY, Ouyang JM. Preprotection of Tea Polysaccharides with Different Molecular Weights Can Reduce the Adhesion between Renal Epithelial Cells and Nano-Calcium Oxalate Crystals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1817635. [PMID: 32411319 PMCID: PMC7199607 DOI: 10.1155/2020/1817635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022]
Abstract
Crystal adhesion is an important link in the formation of kidney stones. This study investigated and compared the adhesion differences between nano-calcium oxalate monohydrate (COM) and human renal proximal tubule epithelial (HK-2) cells before and after treatment with tea polysaccharides (TPSs) TPS0, TPS1, TPS2, and TPS3 with molecular weights of 10.88, 8.16, 4.82, and 2.31 kDa, respectively. TPS treatment effectively reduced the damage of COM to HK-2 cells, thereby resulting in increased cell activity, decreased release of lactate dehydrogenase, cell morphology recovery, decreased level of reactive oxygen species, increased mitochondrial membrane potential, increased lysosomal integrity, decreased expression of adhesion molecule osteopontin and eversion of phosphatidylserine, and decreased crystal adhesion. Among the TPSs, TPS2 with moderate molecular weight had the best protective effect on cells and the strongest effect on the inhibition of crystal adhesion. Thus, TPS2 may be a potential anticalculus drug.
Collapse
Affiliation(s)
- Yao-Wang Zhao
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Li Liu
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Chuang-Ye Li
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Hui Zhang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Huang LH, Sun XY, Ouyang JM. Shape-dependent toxicity and mineralization of hydroxyapatite nanoparticles in A7R5 aortic smooth muscle cells. Sci Rep 2019; 9:18979. [PMID: 31831831 PMCID: PMC6908626 DOI: 10.1038/s41598-019-55428-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023] Open
Abstract
Vascular smooth muscle cell damage is a key step in inducing vascular calcification that yields hydroxyapatite (HAP) as a major product. The effect of the shape of HAP on the damage to vascular smooth muscle cells has yet to be investigated. In this study, we compared the differences in toxicity of four various morphological nano-HAP crystals, namely, H-Rod, H-Needle, H-Sphere, and H-Plate, in rat aortic smooth muscle cells (A7R5). The sizes of these crystals were 39 nm × 115 nm, 41 nm ×189 nm, 56 nm × 56 nm, and 91 nm × 192 nm, respectively. Results showed that all HAPs decreased cell viability, disorganized cell morphology, disrupted cell membranes, increased intracellular reactive oxygen species concentration, decreased mitochondrial membrane potential, decreased lysosome integrity, increased alkaline phosphatase activity, and increased intracellular calcium concentration, resulting in cell necrosis. The cytotoxicity of the four kinds of HAP was ranked as follows: H-Plate > H-Sphere > H-Needle > H-Rod. The cytotoxicity of each crystal was positively correlated with the following factors: large specific surface area, high electrical conductivity and low surface charge. HAP accelerated calcium deposits on the A7R5 cell surface and induced the expression of osteogenic proteins, such as BMP-2, Runx2, OCN, and ALP. The crystals with high cytotoxicity caused more calcium deposits on the cell surface, higher expression levels of osteogenic protein, and stronger osteogenic transformation abilities. These findings elucidated the relationship between crystal shape and cytotoxicity and provided theoretical references for decreasing the risks of vascular calcification.
Collapse
Affiliation(s)
- Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
12
|
Zhao YW, Guo D, Li CY, Ouyang JM. Comparison of the adhesion of calcium oxalate monohydrate to HK-2 cells before and after repair using tea polysaccharides. Int J Nanomedicine 2019; 14:4277-4292. [PMID: 31239679 PMCID: PMC6559723 DOI: 10.2147/ijn.s198644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Kidney stone formation is closely related to renal epithelial cell damage and the adhesion of calcium oxalate crystals to cells. Methods: In this research, the adhesion of human kidney proximal tubular epithelial cells (HK-2) to calcium oxalate monohydrate crystals with a size of approximately 100 nm was studied. In addition, the inhibition of crystal adhesion by four tea polysaccharides (TPS0, TPS1, TPS2, and TPS3) with the molecular weights of 10.88, 8.16, 4.82, and 2.31 kDa, respectively were compared. Results: When oxalic acid-damaged HK-2 cells were repaired, cell viability increased. By contrast, reactive oxygen species level, phosphatidylserine eversion, and osteopontin expression decreased, thus indicating that tea polysaccharides have a repairing effect on damaged HK-2 cells. Moreover, after repairing the damaged cells, the amount of adherent crystals was reduced. The repair effect of tea polysaccharides is closely related to molecular weight, and TPS2 with the moderate molecular weight displayed the best repair effect. Conclusion: These results suggest that tea polysaccharides, especially TPS2, may inhibit the formation and recurrence of calcium oxalate kidney stones.
Collapse
Affiliation(s)
- Yao-Wang Zhao
- Department of Urology, Hunan Children's Hospital, Changsha 410007, People's Republic of China
| | - Da Guo
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Chuang-Ye Li
- Department of Urology, Hunan Children's Hospital, Changsha 410007, People's Republic of China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
13
|
Hou J, Ding J, Li L, Peng Y, Gao X, Guo Z. Association of sirtuin 1 gene polymorphisms with nephrolithiasis in Eastern chinese population. Ren Fail 2019; 41:34-41. [PMID: 30714469 PMCID: PMC6366414 DOI: 10.1080/0886022x.2019.1568258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sirtuin 1 (SIRT1), an NAD+-dependent deacylase, has been identified to be associated with renal tubular inflammatory conditions and metabolic disorders, which are risk factors of nephrolithiasis. To further confirm the role of the SIRT1 in kidney stone formation, the expression of SIRT1 was analyzed based on a mouse model and the genetic polymorphisms of SIRT1 gene was compared between patients with kidney stones and controls. The calcium oxalate (CaOx) crystal-induced renal injury model was established to analyzed the expression of SIRT1 in the kidney tissue of both wild-type and ApoE(−/−) mice. And a total of 430 Eastern Chinese subjects (215 patients with nephrolithiasis and 215 age- and gender-matched controls) were recruited for the present study to investigate the associations between 6 common single nucleotide polymorphisms (SNPs) (i.e., rs10509291, rs3740051, rs932658, rs33957861, rs3818292 and rs1467568) in the SIRT1 gene and the incidence of kidney stones. Pairwise linkage disequilibrium and the haplotypes of the 6 SNPs were also analyzed. The genotypes of SIRT1 gene polymorphisms were analyzed by a Snapshot assay. Reduced expression of SIRT1 was observed in the kidney of the mice in the crystal group, revealing the potential role of SIRT1 in the nephrolithiasis. However, we did not find a significant association between the 6 SNPs of the SIRT1 gene and kidney stone formation in the Eastern Chinese population.
Collapse
Affiliation(s)
- Jiebin Hou
- a Department of Nephrology , Shanghai Changhai Hospital , Shanghai , China
| | - Jiarong Ding
- a Department of Nephrology , Shanghai Changhai Hospital , Shanghai , China
| | - Lu Li
- a Department of Nephrology , Shanghai Changhai Hospital , Shanghai , China
| | - Yonghan Peng
- b Department of Urology , Shanghai Changhai Hospital , Shanghai , China
| | - Xiaofeng Gao
- b Department of Urology , Shanghai Changhai Hospital , Shanghai , China
| | - Zhiyong Guo
- a Department of Nephrology , Shanghai Changhai Hospital , Shanghai , China
| |
Collapse
|
14
|
Sun XY, Wang JM, Ouyang JM, Kuang L. Antioxidant Activities and Repair Effects on Oxidatively Damaged HK-2 Cells of Tea Polysaccharides with Different Molecular Weights. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5297539. [PMID: 30584463 PMCID: PMC6280578 DOI: 10.1155/2018/5297539] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 01/04/2023]
Abstract
This study aims at investigating the antioxidant activity and repair effect of green tea polysaccharide (TPS) with different molecular weights (Mw) on damaged human kidney proximal tubular epithelial cells (HK-2). Scavenging activities on hydroxyl radical (·OH) and ABTS radical and reducing power of four kinds of TPS with Mw of 10.88 (TPS0), 8.16 (TPS1), 4.82 (TPS2), and 2.31 kDa (TPS3) were detected. A damaged cell model was established using 2.6 mmol/L oxalate to injure HK-2 cells. Then, different concentrations of TPSs were used to repair the damaged cells. Index changes of subcellular organelles of HK-2 cells were detected before and after repair. The four kinds of TPSs possessed radical scavenging activity and reducing power, wherein TPS2 with moderate Mw presented the strongest antioxidant activity. After repair by TPSs, cell morphology of damaged HK-2 cells was gradually restored to normal conditions. Reactive oxygen species production decreased, and mitochondrial membrane potential (Δψm) of repaired cells increased. Cells of G1 phase arrest were inhibited, and cell proportion in the S phase increased. Lysosome integrity improved, and cell apoptotic rates significantly reduced in the repaired group. The four kinds of TPSs with varying Mw displayed antioxidant activity and repair effect on the mitochondria, lysosomes, and intracellular DNA. TPS2, with moderate Mw, showed the strongest antioxidant activity and repair effect; it may become a potential drug for prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Min Wang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Li Kuang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Manissorn J, Fong-Ngern K, Peerapen P, Thongboonkerd V. Systematic evaluation for effects of urine pH on calcium oxalate crystallization, crystal-cell adhesion and internalization into renal tubular cells. Sci Rep 2017; 7:1798. [PMID: 28496123 PMCID: PMC5431959 DOI: 10.1038/s41598-017-01953-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022] Open
Abstract
Urine pH has been thought to be an important factor that can modulate kidney stone formation. Nevertheless, there was no systematic evaluation of such pH effect. Our present study thus addressed effects of differential urine pH (4.0–8.0) on calcium oxalate (CaOx) crystallization, crystal-cell adhesion, crystal internalization into renal tubular cells, and binding of apical membrane proteins to the crystals. Microscopic examination revealed that CaOx monohydrate (COM), the pathogenic form, was crystallized with greatest size, number and total mass at pH 4.0 and least crystallized at pH 8.0, whereas COD was crystallized with the vice versa order. Fourier-transform infrared (FT-IR) spectroscopy confirmed such morphological study. Crystal-cell adhesion assay showed the greatest degree of crystal-cell adhesion at the most acidic pH and least at the most basic pH. Crystal internalization assay using fluorescein isothiocyanate (FITC)-labelled crystals and flow cytometry demonstrated that crystal internalization into renal tubular cells was maximal at the neutral pH (7.0). Finally, there were no significant differences in binding capacity of the crystals to apical membrane proteins at different pH. We concluded that the acidic urine pH may promote CaOx kidney stone formation, whereas the basic urine pH (i.e. by alkalinization) may help to prevent CaOx kidney stone disease.
Collapse
Affiliation(s)
- Juthatip Manissorn
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Kedsarin Fong-Ngern
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
16
|
Huang LS, Sun XY, Gui Q, Ouyang JM. Effects of plant polysaccharides with different carboxyl group contents on calcium oxalate crystal growth. CrystEngComm 2017. [DOI: 10.1039/c7ce00983f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of five plant polysaccharides (PPSs) with molecular weights of ∼4000 Da and different carboxylic group (–COOH) contents on the crystal growth of calcium oxalate (CaOx) were comparatively studied.
Collapse
Affiliation(s)
- Li-Shan Huang
- Institute of Biomineralization and Lithiasis Research
- Jinan University
- Guangzhou 510632
- China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research
- Jinan University
- Guangzhou 510632
- China
| | - Qin Gui
- Institute of Biomineralization and Lithiasis Research
- Jinan University
- Guangzhou 510632
- China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
17
|
Shedding light on the morphology of calcium oxalate monohydrate crystallites present in kidney biopsies in the case of hyperoxaluria. CR CHIM 2016. [DOI: 10.1016/j.crci.2016.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Sun XY, Ouyang JM, Bhadja P, Gui Q, Peng H, Liu J. Protective Effects of Degraded Soybean Polysaccharides on Renal Epithelial Cells Exposed to Oxidative Damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7911-7920. [PMID: 27701856 DOI: 10.1021/acs.jafc.6b03323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study aimed to investigate the protective effects of degraded soybean polysaccharides (DSP) on oxidatively damaged African green monkey kidney epithelial (Vero) cells. Low DSP concentration (10 μg/mL) elicited an evident protective effect on H2O2-induced cell injury (0.3 mmol/L). The cell viabilities of the H2O2-treated group and the DSP-protected group were 57.3 and 93.1%, respectively. The cell viability decreased to 88.3% when the dosage was increased to 100 μg/mL. DSP protected Vero cells from H2O2-mediated oxidative damage by enhancing cellular superoxide dismutase activity and total antioxidant capacity and by decreasing malonaldehyde content and lactate dehydrogenase release. The H2O2-treated cells stimulated the aggregation of calcium oxalate monohydrate crystals. DSP could also reduce the crystal size, decrease the attached crystal content, and prevent the cell aggregation by alleviating oxidative injury and lipid peroxidation, enhancing antioxidant capacity, and decreasing hyaluronan expression on cellular surfaces. The internalization ability of the injured cells was improved after these cells were exposed to DSP solution. The regulation ability of DSP-repaired cells on calcium oxalate dihydrate formation, crystal attachment, aggregation, and internalization was lower than that of normal cells but was higher than that of the injured cells. DSP may be a potential green drug to prevent calcium oxalate (CaOx) stone formation because DSP could protect cells from oxidative damage and inhibit CaOx crystal formation.
Collapse
Affiliation(s)
- Xin-Yuan Sun
- Department of Chemistry and ‡Institute of Biomineralization and Lithiasis Research, Jinan University , Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Department of Chemistry and ‡Institute of Biomineralization and Lithiasis Research, Jinan University , Guangzhou 510632, China
| | - Poonam Bhadja
- Department of Chemistry and ‡Institute of Biomineralization and Lithiasis Research, Jinan University , Guangzhou 510632, China
| | - Qin Gui
- Department of Chemistry and ‡Institute of Biomineralization and Lithiasis Research, Jinan University , Guangzhou 510632, China
| | - Hua Peng
- Department of Chemistry and ‡Institute of Biomineralization and Lithiasis Research, Jinan University , Guangzhou 510632, China
| | - Jie Liu
- Department of Chemistry and ‡Institute of Biomineralization and Lithiasis Research, Jinan University , Guangzhou 510632, China
| |
Collapse
|