• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5091094)   Today's Articles (59)
For: Fischer M, Joguet D, Robin G, Peltier L, Laheurte P. In situ elaboration of a binary Ti–26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Materials Science and Engineering: C 2016;62:852-9. [DOI: 10.1016/j.msec.2016.02.033] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/26/2016] [Accepted: 02/10/2016] [Indexed: 11/26/2022]
Number Cited by Other Article(s)
1
Rabbitt D, Villapún VM, Carter LN, Man K, Lowther M, O'Kelly P, Knowles AJ, Mottura A, Tang YT, Luerti L, Reed RC, Cox SC. Rethinking Biomedical Titanium Alloy Design: A Review of Challenges from Biological and Manufacturing Perspectives. Adv Healthc Mater 2025;14:e2403129. [PMID: 39711273 PMCID: PMC11804846 DOI: 10.1002/adhm.202403129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/14/2024] [Indexed: 12/24/2024]
2
Calazans Neto J, Celles CAS, de Andrade CSAF, Afonso CRM, Nagay BE, Barão VAR. Recent Advances and Prospects in β-type Titanium Alloys for Dental Implants Applications. ACS Biomater Sci Eng 2024;10:6029-6060. [PMID: 39215386 PMCID: PMC11480944 DOI: 10.1021/acsbiomaterials.4c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
3
Singh N, Srikanth KP, Gopal V, Rajput M, Manivasagam G, Prashanth KG, Chatterjee K, Suwas S. In situ production of low-modulus Ti-Nb alloys by selective laser melting and their functional assessment toward orthopedic applications. J Mater Chem B 2024;12:5982-5993. [PMID: 38809161 DOI: 10.1039/d4tb00379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
4
Vilella T, Rodríguez D, Fargas G. Additive manufacturing of Ni-free Ti-based shape memory alloys: A review. BIOMATERIALS ADVANCES 2024;158:213774. [PMID: 38237321 DOI: 10.1016/j.bioadv.2024.213774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
5
A L, Elsen R, Nayak S. Artificial Intelligence-Based 3D Printing Strategies for Bone Scaffold Fabrication and Its Application in Preclinical and Clinical Investigations. ACS Biomater Sci Eng 2024;10:677-696. [PMID: 38252807 DOI: 10.1021/acsbiomaterials.3c01368] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
6
Kozadaeva M, Surmeneva M, Khrapov D, Rybakov V, Surmenev R, Koptyug A, Vladescu Dragomir A, Cotrut CM, Tyurin A, Grubova I. Assessment of Microstructural, Mechanical and Electrochemical Properties of Ti-42Nb Alloy Manufactured by Electron Beam Melting. MATERIALS (BASEL, SWITZERLAND) 2023;16:4821. [PMID: 37445133 DOI: 10.3390/ma16134821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
7
Liu J, Ruan J, Yin J, Ou P, Yang H. Fabrication of multilevel porous structure networks on Nb-Ta-Ti alloy scaffolds and the effects of surface characteristics on behaviors of MC3T3-E1 cells. Biomed Mater 2022;17. [PMID: 36327451 DOI: 10.1088/1748-605x/ac9ffd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
8
Mirzaali MJ, Moosabeiki V, Rajaai SM, Zhou J, Zadpoor AA. Additive Manufacturing of Biomaterials-Design Principles and Their Implementation. MATERIALS (BASEL, SWITZERLAND) 2022;15:5457. [PMID: 35955393 PMCID: PMC9369548 DOI: 10.3390/ma15155457] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 05/04/2023]
9
Development of an Alternative Alloying Concept for Additive Manufacturing Using PVD Coating. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
10
Kong W, Cox SC, Lu Y, Villapun V, Xiao X, Ma W, Liu M, Attallah MM. Microstructural Evolution, Mechanical Properties, and Preosteoblast Cell Response of a Post-Processing-Treated TNT5Zr β Ti Alloy Manufactured via Selective Laser Melting. ACS Biomater Sci Eng 2022;8:2336-2348. [PMID: 35537190 PMCID: PMC9198984 DOI: 10.1021/acsbiomaterials.1c01277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
11
Huang G, Fan Z, Li L, Lu Y, Lin J. Corrosion Resistance of Selective Laser Melted Ti6Al4V3Cu Alloy Produced Using Pre-Alloyed and Mixed Powder. MATERIALS 2022;15:ma15072487. [PMID: 35407820 PMCID: PMC8999544 DOI: 10.3390/ma15072487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
12
Hashmi A, Nayak V, Singh KR, Jain B, Baid M, Alexis F, Singh AK. Potentialities of graphene and its allied derivatives to combat against SARS-CoV-2 infection. MATERIALS TODAY. ADVANCES 2022;13:100208. [PMID: 35039802 PMCID: PMC8755454 DOI: 10.1016/j.mtadv.2022.100208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/05/2021] [Accepted: 01/11/2022] [Indexed: 05/06/2023]
13
Srinivasan D, Ananth K. Recent Advances in Alloy Development for Metal Additive Manufacturing in Gas Turbine/Aerospace Applications: A Review. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-022-00290-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
14
Osipovich K, Vorontsov A, Chumaevskii A, Moskvichev E, Zakharevich I, Dobrovolsky A, Sudarikov A, Zykova A, Rubtsov V, Kolubaev E. Features of Microstructure and Texture Formation of Large-Sized Blocks of C11000 Copper Produced by Electron Beam Wire-Feed Additive Technology. MATERIALS 2022;15:ma15030814. [PMID: 35160761 PMCID: PMC8836819 DOI: 10.3390/ma15030814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
15
Practical Approach to Eliminate Solidification Cracks by Supplementing AlMg4.5Mn0.7 with AlSi10Mg Powder in Laser Powder Bed Fusion. MATERIALS 2022;15:ma15020572. [PMID: 35057290 PMCID: PMC8780556 DOI: 10.3390/ma15020572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
16
Ben Boubaker H, Laheurte P, Le Coz G, Biriaie SS, Didier P, Lohmuller P, Moufki A. Impact of the Loading Conditions and the Building Directions on the Mechanical Behavior of Biomedical β-Titanium Alloy Produced In Situ by Laser-Based Powder Bed Fusion. MATERIALS 2022;15:ma15020509. [PMID: 35057227 PMCID: PMC8779565 DOI: 10.3390/ma15020509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023]
17
Kong W, Cox SC, Lu Y, Villapun V, Xiao X, Ma W, Liu M, Attallah MM. The influence of zirconium content on the microstructure, mechanical properties, and biocompatibility of in-situ alloying Ti-Nb-Ta based β alloys processed by selective laser melting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021;131:112486. [PMID: 34857272 DOI: 10.1016/j.msec.2021.112486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 01/16/2023]
18
Luo X, Yang C, Li R, Wang H, Lu H, Song T, Ma H, Li D, Gebert A, Li Y. Effect of silicon content on the microstructure evolution, mechanical properties, and biocompatibility of β-type TiNbZrTa alloys fabricated by laser powder bed fusion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021;133:112625. [DOI: 10.1016/j.msec.2021.112625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
19
Influence of Beam Power on Young’s Modulus and Friction Coefficient of Ti–Ta Alloys Formed by Electron-Beam Surface Alloying. METALS 2021. [DOI: 10.3390/met11081246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
20
New Ti–35Nb–7Zr–5Ta Alloy Manufacturing by Electron Beam Melting for Medical Application Followed by High Current Pulsed Electron Beam Treatment. METALS 2021. [DOI: 10.3390/met11071066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
21
Huber F, Bartels D, Schmidt M. In-Situ Alloy Formation of a WMoTaNbV Refractory Metal High Entropy Alloy by Laser Powder Bed Fusion (PBF-LB/M). MATERIALS (BASEL, SWITZERLAND) 2021;14:3095. [PMID: 34200096 PMCID: PMC8201384 DOI: 10.3390/ma14113095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022]
22
Polozov I, Popovich A. Microstructure and Mechanical Properties of NiTi-Based Eutectic Shape Memory Alloy Produced via Selective Laser Melting In-Situ Alloying by Nb. MATERIALS 2021;14:ma14102696. [PMID: 34065582 PMCID: PMC8161003 DOI: 10.3390/ma14102696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
23
Zhang Y, Attarilar S, Wang L, Lu W, Yang J, Fu Y. A Review on Design and Mechanical Properties of Additively Manufactured NiTi Implants for Orthopedic Applications. Int J Bioprint 2021;7:340. [PMID: 33997434 PMCID: PMC8114098 DOI: 10.18063/ijb.v7i2.340] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022]  Open
24
Qi P, Li B, Wang T, Zhou L, Nie Z. Development of Ti 6Zr 5Fe alloy powder for laser powder bed fusion. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.12.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
25
Enhanced Mathematical Model for Producing Highly Dense Metallic Components through Selective Laser Melting. MATERIALS 2021;14:ma14061571. [PMID: 33807013 PMCID: PMC8004960 DOI: 10.3390/ma14061571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/21/2022]
26
Laser Powder Bed Fusion (PBF-LB/M) Process Strategies for In-Situ Alloy Formation with High-Melting Elements. METALS 2021. [DOI: 10.3390/met11020336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
27
Popov VV, Grilli ML, Koptyug A, Jaworska L, Katz-Demyanetz A, Klobčar D, Balos S, Postolnyi BO, Goel S. Powder Bed Fusion Additive Manufacturing Using Critical Raw Materials: A Review. MATERIALS (BASEL, SWITZERLAND) 2021;14:909. [PMID: 33672909 PMCID: PMC7918580 DOI: 10.3390/ma14040909] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
28
Çağlar Çınar İ, Alper Gültekin B, Sağlanmak A, Töre C. Dental Implants. Biomaterials 2020. [DOI: 10.5772/intechopen.91377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
29
TiAl-Based Materials by In Situ Selective Laser Melting of Ti/Al Reactive Composites. METALS 2020. [DOI: 10.3390/met10111505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
30
Vilardell AM, Takezawa A, du Plessis A, Takata N, Krakhmalev P, Kobashi M, Albu M, Kothleitner G, Yadroitsava I, Yadroitsev I. Mechanical behavior of in-situ alloyed Ti6Al4V(ELI)-3 at.% Cu lattice structures manufactured by laser powder bed fusion and designed for implant applications. J Mech Behav Biomed Mater 2020;113:104130. [PMID: 33049622 DOI: 10.1016/j.jmbbm.2020.104130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
31
Recent Development in Beta Titanium Alloys for Biomedical Applications. METALS 2020. [DOI: 10.3390/met10091139] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
32
Traxel KD, Bandyopadhyay A. Naturally architected microstructures in structural materials via additive manufacturing. ADDITIVE MANUFACTURING 2020;34:101243. [PMID: 32467822 PMCID: PMC7255428 DOI: 10.1016/j.addma.2020.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
33
Kalita D, Rogal Ł, Bobrowski P, Durejko T, Czujko T, Antolak-Dudka A, Cesari E, Dutkiewicz J. Superelastic Behavior of Ti-Nb Alloys Obtained by the Laser Engineered Net Shaping (LENS) Technique. MATERIALS 2020;13:ma13122827. [PMID: 32586058 PMCID: PMC7344434 DOI: 10.3390/ma13122827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022]
34
A 3D-Printed Ultra-Low Young's Modulus β-Ti Alloy for Biomedical Applications. MATERIALS 2020;13:ma13122792. [PMID: 32575750 PMCID: PMC7345763 DOI: 10.3390/ma13122792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
35
Zhao D, Han C, Li J, Liu J, Wei Q. In situ fabrication of a titanium-niobium alloy with tailored microstructures, enhanced mechanical properties and biocompatibility by using selective laser melting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020;111:110784. [DOI: 10.1016/j.msec.2020.110784] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 01/18/2023]
36
Putra NE, Mirzaali MJ, Apachitei I, Zhou J, Zadpoor AA. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution. Acta Biomater 2020;109:1-20. [PMID: 32268239 DOI: 10.1016/j.actbio.2020.03.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/08/2020] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
37
Analysis of Microstructure and Properties of a Ti-AlN Composite Produced by Selective Laser Melting. MATERIALS 2020;13:ma13102218. [PMID: 32408594 PMCID: PMC7288096 DOI: 10.3390/ma13102218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
38
Chernozem RV, Surmeneva MA, Ignatov VP, Peltek OO, Goncharenko AA, Muslimov AR, Timin AS, Tyurin AI, Ivanov YF, Grandini CR, Surmenev RA. Comprehensive Characterization of Titania Nanotubes Fabricated on Ti–Nb Alloys: Surface Topography, Structure, Physicomechanical Behavior, and a Cell Culture Assay. ACS Biomater Sci Eng 2020;6:1487-1499. [DOI: 10.1021/acsbiomaterials.9b01857] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
39
Densification, microstructure evolution and fatigue behavior of Ti-13Nb-13Zr alloy processed by selective laser melting. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.09.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
40
Wei J, Sun H, Zhang D, Gong L, Lin J, Wen C. Influence of Heat Treatments on Microstructure and Mechanical Properties of Ti⁻26Nb Alloy Elaborated In Situ by Laser Additive Manufacturing with Ti and Nb Mixed Powder. MATERIALS 2018;12:ma12010061. [PMID: 30585185 PMCID: PMC6337263 DOI: 10.3390/ma12010061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022]
41
Karg MCH, Rasch M, Schmidt K, Spitzer SAE, Karsten TF, Schlaug D, Biaciu CR, Gorunov AI, Schmidt M. Laser Alloying Advantages by Dry Coating Metallic Powder Mixtures with SiOx Nanoparticles. NANOMATERIALS 2018;8:nano8100862. [PMID: 30347881 PMCID: PMC6215105 DOI: 10.3390/nano8100862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022]
42
Laser Powder Bed Fusion of a High Strength Al-Si-Zn-Mg-Cu Alloy. METALS 2018. [DOI: 10.3390/met8050300] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
43
Schulze C, Weinmann M, Schweigel C, Keßler O, Bader R. Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb. MATERIALS 2018;11:ma11010124. [PMID: 29342864 PMCID: PMC5793622 DOI: 10.3390/ma11010124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
44
Krakhmalev P, Yadroitsev I, Yadroitsava I, de Smidt O. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing. MATERIALS (BASEL, SWITZERLAND) 2017;10:E1154. [PMID: 28972546 PMCID: PMC5666960 DOI: 10.3390/ma10101154] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/30/2017] [Accepted: 10/01/2017] [Indexed: 11/16/2022]
45
Fischer M, Laheurte P, Acquier P, Joguet D, Peltier L, Petithory T, Anselme K, Mille P. Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017;75:341-348. [DOI: 10.1016/j.msec.2017.02.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/02/2016] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
46
Didier P, Piotrowski B, Fischer M, Laheurte P. Mechanical stability of custom-made implants: Numerical study of anatomical device and low elastic Young's modulus alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017;74:399-409. [DOI: 10.1016/j.msec.2016.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/21/2016] [Accepted: 12/07/2016] [Indexed: 11/24/2022]
47
Liu J, Ruan J, Chang L, Yang H, Ruan W. Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017;78:503-512. [PMID: 28576015 DOI: 10.1016/j.msec.2017.04.088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 01/08/2023]
48
Wang D, Li Q, Xu M, Jiang G, Zhang Y, He G. A novel approach to fabrication of three-dimensional porous titanium with controllable structure. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017;71:1046-1051. [DOI: 10.1016/j.msec.2016.11.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/29/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
49
Kang N, Yuan H, Coddet P, Ren Z, Bernage C, Liao H, Coddet C. On the texture, phase and tensile properties of commercially pure Ti produced via selective laser melting assisted by static magnetic field. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017;70:405-407. [DOI: 10.1016/j.msec.2016.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/20/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
50
Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016;69:631-9. [DOI: 10.1016/j.msec.2016.07.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA