1
|
Singh N, Zhang Q, Xu W, Whitham SA, Dong L. A Biohydrogel-Enabled Microneedle Sensor for In Situ Monitoring of Reactive Oxygen Species in Plants. ACS Sens 2025; 10:1797-1810. [PMID: 40105206 PMCID: PMC11959595 DOI: 10.1021/acssensors.4c02645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
This study introduces a plant sensor utilizing an array of microneedles to monitor hydrogen peroxide (H2O2) in tobacco and soybean plants under biotic stress response. The microneedle array features a biohydrogel layer composed of the natural biopolymer chitosan (Cs) and reduced graphene oxide (rGO), functionalized with horseradish peroxidase (HRP) (HRP/Cs-rGO). This HRP/Cs-rGO biohydrogel combines biocompatibility, hydrophilicity, porosity, and electron transfer ability, making it a suitable bioelectrode material for an electrochemical sensor. The sensor detects H2O2 through the catalytic reaction of the enzyme, either by direct attachment to the plant leaf with the inserted microneedle or by exposure to the solution extracted from plant parts such as leaves. Utilizing chronoamperometry, the sensor demonstrates high sensitivity of 14.7 μA/μM across a concentration range of 0.1-4500 μM with a low detection limit of 0.06 μM. The sensor enables rapid detection of H2O2 levels by exposing the sensor to extracted leaf solutions. For in situ measurements within the leaf, results are obtained in approximately 1 min, eliminating the need for sample preparation. H2O2 levels in leaves following bacterial pathogen inoculation are evaluated alongside results from qualitative histological staining and quantitative fluorescence-based Amplex Red Assay, validating the ability of the sensor to detect changes in H2O2 concentrations during plant defense responses. This sensor technology has the potential to function as a portable device for on-site measurement of reactive oxygen species in plants, providing a rapid and cost-effective solution for H2O2 quantification.
Collapse
Affiliation(s)
- Nawab Singh
- Department
of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics
Research Center, Iowa State University, Ames, Iowa 50011, United States
| | - Qinming Zhang
- Department
of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics
Research Center, Iowa State University, Ames, Iowa 50011, United States
| | - Weihui Xu
- Department
of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa 50011, United States
| | - Steven A. Whitham
- Department
of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa 50011, United States
| | - Liang Dong
- Department
of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics
Research Center, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Gu C, Zhu S, Gu Z. Advances in bismuth utilization for biomedical applications – From a bibliometric perspective. Coord Chem Rev 2024; 517:215988. [DOI: 10.1016/j.ccr.2024.215988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
A novel biosensor based on multienzyme microcapsules constructed from covalent-organic framework. Biosens Bioelectron 2021; 193:113553. [PMID: 34385018 DOI: 10.1016/j.bios.2021.113553] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022]
Abstract
Electrochemical biosensors based on enzymes modified electrode are attracting special attention due to their broad applications. However, the immobilization of enzymes on electrode is always an important challenge because it's not conducive to conformational expansion of enzymes and affects the bioactivity of enzymes accordingly. Although the imobilization of enzymes in micropores of crystalline covalent-organic framework (COF) and metal-organic framework (MOF) to construct electrochemical biosensors based on pore embedding can achive good reuslts, their micropores can still not guarantee that the enzyme's conformation is well extended. Herein, a multienzyme microcapsules (enzymes@COF) containing glucose oxidase, horseradish peroxidase and acetylcholinesterase with a 600 nm-sized cavity and a shell of COF was used to construct electrochemical biosensors. The 600 nm-sized cavity ensures free conformation expansion of encapsulated enzymes and the shell of COF with good chemical stablity protects encapsulated enzymes against external harsh environments. And the specific catalytic substrates of the enzymes can infiltrated into the microcapsule through the pores of COF shell. So, the biosensor based on enzymes@COF microcapsules demonstrated preeminent performances as compared with those of enzymes assembled on electrode. The detection limits were 0.85 μM, 2.81 nM, 3.0×10-13 g/L, and the detection range were 2.83 μM-8.0 mM, 9.53 nM-7.0 μM, 10-12 g/L-10-8 g/L for glucose, H2O2 and malathion detection. This work shows that it is feasible to fabricate electrochemical sensors using enzymes@COF microcapsules.
Collapse
|
4
|
Xie Y, Liu T, Chu Z, Jin W. Recent advances in electrochemical enzymatic biosensors based on regular nanostructured materials. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Shin JH, Lee MJ, Choi JH, Song JA, Kim TH, Oh BK. Electrochemical H 2O 2 biosensor based on horseradish peroxidase encapsulated protein nanoparticles with reduced graphene oxide-modified gold electrode. NANO CONVERGENCE 2020; 7:39. [PMID: 33330946 PMCID: PMC7744559 DOI: 10.1186/s40580-020-00249-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/06/2020] [Indexed: 05/28/2023]
Abstract
In this study, an electrochemical biosensor composed of a horseradish peroxidase (HRP)-encapsulated protein nanoparticles (HEPNP) was fabricated for the sensitive and selective detection of H2O2. The HEPNP has a three-dimensional structure that can contain a large amount of HRP; therefore, HEPNP can amplify the electrochemical signals necessary for the detection of H2O2. Furthermore, reduced graphene oxide (rGO) was used to increase the efficiency of electron transfer from the HEPNP to an electrode, which could enhance the electrochemical signal. This biosensor showed a sensitive electrochemical performance for detection of H2O2 with signals in the range from 0.01-100 μM, and it could detect low concentrations up to 0.01 μM. Furthermore, this biosensor was operated against interferences from glucose, ascorbic acid, and uric acid. In addition, this fabricated H2O2 biosensor showed selective detection performance in human blood serum. Therefore, the proposed biosensor could promote the sensitive and selective detection of H2O2 in clinical applications.
Collapse
Affiliation(s)
- Jeong-Hyeop Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04107, South Korea
| | - Myeong-Jun Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04107, South Korea
| | - Jin-Ha Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04107, South Korea
| | - Ji-Ae Song
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04107, South Korea
| | - Tae-Hwan Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04107, South Korea
| | - Byung-Keun Oh
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04107, South Korea.
| |
Collapse
|
6
|
Xu S, Liu Y, Zhao W, Wu Q, Chen Y, Huang X, Sun Z, Zhu Y, Liu X. Hierarchical 0D-2D bio-composite film based on enzyme-loaded polymeric nanoparticles decorating graphene nanosheets as a high-performance bio-sensing platform. Biosens Bioelectron 2020; 156:112134. [PMID: 32275578 DOI: 10.1016/j.bios.2020.112134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 11/18/2022]
Abstract
Herein, we developed a hierarchical bio-composite sensing film by facile one-step electro-deposition of 0D enzyme-polymer nanoparticles (NPs) with 2D graphene oxide nanosheets as conductive supports and nanofillers, based on which an effective and robust enzymatic biosensor platform was constructed. Horseradish peroxidase (HRP) as a model enzyme was co-assembled with a photo-cross-linkable polypeptide of 2-hydroxyethyl methacrylate modified poly(γ-glutamic acid) (γ-PGA-HEMA), generating hybrid HRP@γ-PGA-HEMA nanoparticles (HRP@PGH NPs). Then HRP@PGH NPs and graphene oxide nanosheets (GO NSs) were simultaneously electrodeposited onto the electrode surface, obtaining a hierarchical 0D-2D bio-composite film. After subsequent electrochemical reduction of GO NSs into graphene nanosheets (GNSs) and following photo-cross-linking, the resultant nanostructured HRP@PGH/GNSs sensing film was successfully applied to construct an enzymatic biosensor for hydrogen peroxide (H2O2). The biosensor exerted high sensitivity, fast response, and good stability for H2O2 sensing. Satisfactory results were also demonstrated for its practical application in human serum samples, suggesting a promising application potential in biomedical diagnostics. The one-step generated 0D-2D bio-composite sensing film demonstrates synergetic effects from both the soft nanoparticles and hard conductive nanosheets, which would enlighten the innovative construction of composite nanomaterials and nanoarchitectonics for bio-sensing systems.
Collapse
Affiliation(s)
- Sheng Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Yayuan Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Wei Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Qian Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Yanru Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Xuewen Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Zhijian Sun
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Ye Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China.
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China.
| |
Collapse
|
7
|
Liu F, Xu Q, Huang W, Zhang Z, Xiang G, Zhang C, Liang C, Lian H, Peng J. Green synthesis of porous graphene and its application for sensitive detection of hydrogen peroxide and 2,4-dichlorophenoxyacetic acid. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.177] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Naseri M, Pitzalis F, Carucci C, Medda L, Fotouhi L, Magner E, Salis A. Lipase and Laccase Encapsulated on Zeolite Imidazolate Framework: Enzyme Activity and Stability from Voltammetric Measurements. ChemCatChem 2018. [DOI: 10.1002/cctc.201801293] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Maryam Naseri
- Department of Chemical and Geological SciencesUniversity of Cagliari-CSGI and CNBS Cittadella Universitaria Monserrato 09042 Italy
- Department of ChemistryUniversity of Alzahra Teheran 1993891176 Iran
| | - Federica Pitzalis
- Department of Chemical and Geological SciencesUniversity of Cagliari-CSGI and CNBS Cittadella Universitaria Monserrato 09042 Italy
| | - Cristina Carucci
- Department of Chemical Sciences Bernal InstituteUniversity of Limerick Limerick V94 T9PX Ireland
| | - Luca Medda
- Department of Chemical and Geological SciencesUniversity of Cagliari-CSGI and CNBS Cittadella Universitaria Monserrato 09042 Italy
| | - Lida Fotouhi
- Department of ChemistryUniversity of Alzahra Teheran 1993891176 Iran
| | - Edmond Magner
- Department of Chemical Sciences Bernal InstituteUniversity of Limerick Limerick V94 T9PX Ireland
| | - Andrea Salis
- Department of Chemical and Geological SciencesUniversity of Cagliari-CSGI and CNBS Cittadella Universitaria Monserrato 09042 Italy
| |
Collapse
|
9
|
Boron-doped Graphene quantum dots modified electrode for electrochemistry and electrocatalysis of hemoglobin. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Immobilization of horseradish peroxidase on amino-functionalized carbon dots for the sensitive detection of hydrogen peroxide. Mikrochim Acta 2018; 185:114. [DOI: 10.1007/s00604-017-2629-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
|
11
|
Flower-Like Au–CuO/Bi2WO6 Microsphere Catalysts: Synthesis, Characterization, and Their Catalytic Performances for CO Oxidation. Catalysts 2017. [DOI: 10.3390/catal7090266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
12
|
A conductive crosslinked graphene/cytochrome c networks for the electrochemical and biosensing study. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3598-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|