1
|
Hussien MA, Ashour GR, Albukhari SM, Saleh TS, Hussein MA. Favorable Heteroaromatic Thiazole-Based Polyurea Derivatives as Interesting Biologically Active Products. Polymers (Basel) 2023; 15:2662. [PMID: 37376308 DOI: 10.3390/polym15122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
This research sought to synthesize a new set of heteroaromatic thiazole-based polyurea derivatives with sulfur links in the polymers' main chains, which were denoted by the acronyms PU1-5. Using pyridine as a solvent, a diphenylsulfide-based aminothiazole monomer (M2) was polymerized via solution polycondensation with varied aromatic, aliphatic, and cyclic diisocyanates. Typical characterization methods were used to confirm the structures of the premonomer, monomer, and fully generated polymers. The XRD results revealed that aromatic-based polymers had higher crystallinity than aliphatic and cyclic derivatives. SEM was used to visualize the surfaces of PU1, PU4, and PU5, revealing spongy and porous shapes, shapes resembling wooden planks and sticks, and shapes resembling coral reefs with floral shapes at various magnifications. The polymers demonstrated thermal stability. The numerical results for PDTmax are listed in the following order, ranked from lowest to highest: PU1 < PU2 < PU3 < PU5 < PU4. The FDT values for the aliphatic-based derivatives (PU4 and PU5) were lower than those for the aromatic-based ones (616, 655, and 665 °C). PU3 showed the greatest inhibitory impact against the bacteria and fungi under investigation. In addition, PU4 and PU5 demonstrated antifungal activities that, in contrast with the other products, were on the lower end of the spectrum. Furthermore, the intended polymers were also tested for the presence of the proteins 1KNZ, 1JIJ, and 1IYL, which are frequently utilized as model organisms for E. coli (Gram-negative bacteria), S. aureus (Gram-positive bacteria), and C. albicans (fungal pathogens). This study's findings are consistent with the outcomes of the subjective screening.
Collapse
Affiliation(s)
- Mostafa A Hussien
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Gadeer R Ashour
- Department of Chemistry, Faculty of Applied Sciences, Umm Al Qura University, P.O. Box 24451, Makkah 21955, Saudi Arabia
| | - Soha M Albukhari
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Tamer S Saleh
- Chemistry Department, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Zhou G, Cheng X, Yang J, Zhu Y, Li H. Computational and experimental studies on the micellar morphology and emission mechanisms of AIE and H-bonding fluorescent composites. RSC Adv 2023; 13:4612-4622. [PMID: 36760310 PMCID: PMC9900601 DOI: 10.1039/d2ra07900c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
In this work, we use density functional theory (DFT) calculated competitive hydrogen bonds and dissipative particle dynamics (DPD) simulated micellar structural information to uncover the CO2-expanded liquid (CXL)-aided self-assembled structure and emission mechanisms of the self-assembled fluorescent composites (SAFCs). Herein, the SAFCs are formed through the self assembly between diblock copolymer polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) blend and the dye molecule 4-(9-(2-(4-hydroxyphenyl)ethynyl)-7,10-diphenylfluoranthen-8-yl)phenol (4) in CO2-expanded toluene at 313.2 K and varied pressures. Firstly, from DPD simulation, we have demonstrated that the addition of CO2 to toluene favors both the expansion of the solvophobic P4VP phase and contraction of solvophilic PS chains, which facilitates the continuous morphological transitions of SAFCs from spherical micelles (3.0 MPa) through wormlike plus spherical micelles (4.0-4.8 MPa) to large vesicles (6.0-6.5 MPa) with pressure rise. Secondly, the DFT calculated bonding energies and IR spectra of the competitive hydrogen bonds help us to clarify the major type of hydrogen bonds determining the fluorescence (FL) performance of the SAFCs. Furthermore, we have revealed the SAFC emission mechanism via the pressure-tunable changes in the aggregation degrees and amount of hydrogen bonds involving 4 and P4VP chains. This work provides a good understanding for the morphology-property control of the self-assembled polymer composites in both microscopic and mesoscopic scales.
Collapse
Affiliation(s)
- Guangying Zhou
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 China
| | - Xiaomeng Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 China
| | - Yanyan Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 China
| | - Hongping Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
3
|
Huang Z, Zhou C, Yu Y, Wang S, Fu R, Liu X, Mao L, Yuan J, Tao L, Wei Y. Synthesis of a polymerizable aggregation-induced emission (AIE) dye with A-D structure based on benzothiadiazole for fluorescent nanoparticles and its application in bioimaging. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Yan N, Wang Q, Chen K, Qu Y, Wen S. Design and synthesis of aggregation-caused quenching and aggregation-induced emission fluorescent nanoparticles for highly sensitive determination of metal ions. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Pei Y, Wang Z, Wang C. Recent Progress in Polymeric AIE-Active Drug Delivery Systems: Design and Application. Mol Pharm 2021; 18:3951-3965. [PMID: 34585933 DOI: 10.1021/acs.molpharmaceut.1c00601] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aggregation-induced emission (AIE) provides a new opportunity to overcome the drawbacks of traditional aggregation-induced quenching of chromophores. The applications of AIE-active fluorophores have spread across various fields. In particular, the employment of AIEgens in drug delivery systems (DDSs) can achieve imaging-guided therapy and pharmacodynamic monitoring. As a result, polymeric AIE-active DDSs are attracting increasing attention due to their obvious advantages, including easy fabrication and tunable optical properties by molecular design. Additionally, the design of polymeric AIE-active DDSs is a promising method for cancer therapy, antibacterial treatment, and pharmacodynamic monitoring, which indeed helps improve the effectiveness of related disease treatments and confirms its potential social importance. Here, we summarize the current available polymeric AIE-active DDSs from design to applications. In the design section, we introduce synthetic strategies and structures of AIE-active polymers, as well as responsive strategies for specific drug delivery. In the application section, typical polymeric AIE-active DDSs used for cancer therapy, bacterial treatment, and drug delivery monitoring are summarized with selected examples to elaborate on their wide applications.
Collapse
Affiliation(s)
- Yang Pei
- School of History, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Cheng Wang
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, People's Republic of China.,School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
6
|
Wang P, Jia K, Zhang D, Li K, Zeng D, He X, Shen X, Feng W, Wang Y, Yang X, Liu X. Structure-property and bioimaging application of the difunctional polyarylene ether nitrile with AIEE feature and carboxyl group. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Kaur M, Mayank, Bains D, Singh G, Kaur N, Singh N. The solvent-free one-pot multicomponent tandem polymerization of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) catalyzed by ionic-liquid@Fe3O4 NPs: the development of polyamide gels. Polym Chem 2021. [DOI: 10.1039/d0py01769h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Solvent-free MCTP via Biginelli DHPMs catalyzed by a non-toxic magnetic catalyst (IL1–2@ Fe3O4) in a one-pot reaction was illustrated for the development of fluorescent non-conjugated polyamide gels.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | - Mayank
- Department of Chemistry
- Indian Institute of Technology Ropar (IIT Ropar)
- Rupnagar
- India
| | - Deepak Bains
- Department of Chemistry
- Indian Institute of Technology Ropar (IIT Ropar)
- Rupnagar
- India
| | - Gagandeep Singh
- Department of Chemistry
- Indian Institute of Technology Ropar (IIT Ropar)
- Rupnagar
- India
| | - Navneet Kaur
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | - Narinder Singh
- Department of Chemistry
- Indian Institute of Technology Ropar (IIT Ropar)
- Rupnagar
- India
| |
Collapse
|
8
|
Cibotaru S, Sandu AI, Belei D, Marin L. Water soluble PEGylated phenothiazines as valuable building blocks for bio-materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111216. [PMID: 32806288 DOI: 10.1016/j.msec.2020.111216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/21/2020] [Accepted: 06/18/2020] [Indexed: 10/24/2022]
Abstract
The paper reports a series of three new PEGylated phenothiazine derivatives which keep the potential of valuable building blocks for preparing eco-materials addressed to a large realm of fields, from bio-medicine to opto-electronics. They were synthetized by connecting the hydrophilic poly(ethylene glycol) to the hydrophobic phenothiazine via an ether, ester, or amide linking group. The successful synthesis of the targeted polymers and their purity were demonstrated by NMR and FTIR spectroscopy methods. Their capacity to self-assembly in water was studied by DLS and UV-vis techniques and the particularities of the formed aggregates were investigated by fluorescence spectroscopy, SEM, AFM, POM and UV light microscopy. The biocompatibility was assessed on normal human dermal fibroblasts and human cervical cancer cells. The synthetized compounds showed the formation of luminescent aggregates and proved excellent biocompatibility on normal cells. In addition, a concentration dependent cytotoxicity against HeLa cancer cells was noticed for the PEGylated phenothiazine containing an ester unit.
Collapse
Affiliation(s)
- Sandu Cibotaru
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Andreea-Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Dalila Belei
- "Alexandru Ioan Cuza" University, Department of Organic Chemistry, Iasi, Romania
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| |
Collapse
|
9
|
Cherif O, Agrebi A, Alves S, Baleizão C, Farinha JP, Allouche F. Synthesis and fluorescence properties of aminocyanopyrrole and aminocyanothiophene esthers for biomedical and bioimaging applications. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Pashazadeh‐Panahi P, Hasanzadeh M, Eivazzadeh‐Keihan R. A novel optical probe based on
d
‐penicillamine‐functionalized graphene quantum dots: Preparation and application as signal amplification element to minoring of ions in human biofluid. J Mol Recognit 2020; 33:e2828. [DOI: 10.1002/jmr.2828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 11/08/2022]
Affiliation(s)
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Reza Eivazzadeh‐Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of ChemistryIran University of Science and Technology Tehran Iran
| |
Collapse
|
11
|
Huang BH, Shen SS, Wei N, Guo XF, Wang H. Fluorescence biosensor based on silicon quantum dots and 5,5'-dithiobis-(2-nitrobenzoic acid) for thiols in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117972. [PMID: 31891868 DOI: 10.1016/j.saa.2019.117972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 05/28/2023]
Abstract
An efficient and stable fluorescent sensor is described for the detection and imaging of thiols. It is making use of silicon quantum dots (SiQDs) which can be rapidly prepared. They were characterized by transmission electron microscopy, X-ray power diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry. The SiQDs have an absorption maximum at 300 nm and displayed blue-green fluorescence with excitation/emission maxima at 410/480 nm. A mixture of SiQDs and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) exhibits strong fluorescence emission which however is quenched within 30 s of incubation with thiols. This is assumed to be due to an inner filter effect caused by the reaction of DTNB and thiols. The following thiols were tested: cysteine, homocysteine, and glutathione. The sensor has a linear response in the 3-100 μM thiol concentration range, and the LODs are between 0.80 and 0.96 μM. The sensor displays low cytotoxicity and was applied to fluorescence imaging of MCF-7 cells and Hela cells where it demonstrated excellent biocompatibility.
Collapse
Affiliation(s)
- Bo-Hui Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - San-San Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Na Wei
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao-Feng Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hong Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
12
|
Zhou X, Hou C, Chang TL, Zhang Q, Liang JF. Controlled released of drug from doubled-walled PVA hydrogel/PCL microspheres prepared by single needle electrospraying method. Colloids Surf B Biointerfaces 2020; 187:110645. [DOI: 10.1016/j.colsurfb.2019.110645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/17/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
|
13
|
Jiang S, Qiu J, Chen S, Guo H, Yang F. Double-detecting fluorescent sensor for ATP based on Cu 2+ and Zn 2+ response of hydrazono-bis-tetraphenylethylene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117568. [PMID: 31654844 DOI: 10.1016/j.saa.2019.117568] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Although all kinds of sensors with unique detecting ability for one guest were reported, the fluorescence sensor with multiple detecting abilities was seldom presented. This work designed and synthesized a novel AIE fluorescence probe bearing double detecting for ATP based on Cu2+ and Zn2+ response of hydrazono-bis-tetraphenylethylene (Bis-TPE). Bis-TPE was prepared in 82% yield with simple procedure. It exhibited strong red AIE fluorescence based on the large conjugated electron effect in aqueous media. It showed outstanding selective sensing abilities for Cu2+ by strong fluorescence quenching and for Zn2+ by red-orange fluorescence change. The sensing mechanism of 1:1 stoichiometric ratios was confirmed by 1H NMR and MS study. The strong red fluorescence of Bis-TPE + Cu2+ system could be recovered by adding ATP. The orange fluorescence of Bis-TPE + Zn2+ system could be quenched by adding Cu2+ and then was recovered by adding ATP. These double detecting abilities for ATP with the "off-on" red fluorescence in Bis-TPE + Cu2+ system and "allochroic-off-on" orange fluorescence in Bis-TPE + Zn2++Cu2+ system were successfully applied to test Cu2+, Zn2+ and ATP in test paper and living cell imaging, displaying the good application prospects for sensing Cu2+, Zn2+ and double detecting ATP in the complicated environment.
Collapse
Affiliation(s)
- Shengjie Jiang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China
| | - Jiabin Qiu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China
| | - Shibing Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou, PR China.
| |
Collapse
|
14
|
He Y, Qin L, Huang Y, Ma C. Advances of Nano-Structured Extended-Release Local Anesthetics. NANOSCALE RESEARCH LETTERS 2020; 15:13. [PMID: 31950284 PMCID: PMC6965527 DOI: 10.1186/s11671-019-3241-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/26/2019] [Indexed: 05/08/2023]
Abstract
Extended-release local anesthetics (LAs) have drawn increasing attention with their promising role in improving analgesia and reducing adverse events of LAs. Nano-structured carriers such as liposomes and polymersomes optimally meet the demands of/for extended-release, and have been utilized in drug delivery over decades and showed satisfactory results with extended-release. Based on mature technology of liposomes, EXPAREL, the first approved liposomal LA loaded with bupivacaine, has seen its success in an extended-release form. At the same time, polymersomes has advances over liposomes with complementary profiles, which inspires the emergence of hybrid carriers. This article summarized the recent research successes on nano-structured extended-release LAs, of which liposomal and polymeric are mainstream systems. Furthermore, with continual optimization, drug delivery systems carry properties beyond simple transportation, such as specificity and responsiveness. In the near future, we may achieve targeted delivery and controlled-release properties to satisfy various analgesic requirements.
Collapse
Affiliation(s)
- Yumiao He
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Linan Qin
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China.
| | - Chao Ma
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China.
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
15
|
Zhong Z, Gao R, Chen Q, Jia L. Dual-aptamers labeled polydopamine-polyethyleneimine copolymer dots assisted engineering a fluorescence biosensor for sensitive detection of Pseudomonas aeruginosa in food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117417. [PMID: 31362188 DOI: 10.1016/j.saa.2019.117417] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
To ensure the food security and protect public health, development of rapid and reliable approaches to detecting foodborne pathogens is of great significance. In this study, polydopamine-polyethyleneimine (PDA-PEI) copolymer dots are prepared via the self-polymerization of dopamine and cross-linking with branched PEI at room temperature. The PDA-PEI copolymer dots are very stable against photobleaching, extreme pH, as well as high ionic strength. They are used as a fluorescent probe to fabricate a biosensor for rapid and sensitive detection and quantification of Pseudomonas aeruginosa (P. aeruginosa). In the biosensor, dual-aptamers of P. aeruginosa are used to label PDA-PEI copolymer dots. Compared to single aptamer labeled PDA-PEI dots, the dual-aptamers labeled PDA-PEI dots endow the biosensor with enhanced sensitivity for target pathogen. The fluorescence biosensor demonstrates a wide linear response to P. aeruginosa in the concentration range of 101-107 cfu mL-1 with acceptable selectivity. The limit of detection is calculated to be 1 cfu mL-1. The whole detection process can be finished in 1.5 h. The feasibility of the fabricated biosensor is verified by successful determination of P. aeruginosa in skim milk, orange juice, and popsicle samples. The biosensor provides an alternative and attractive platform for rapid and sensitive detection of bacteria in food products.
Collapse
Affiliation(s)
- Zitao Zhong
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ran Gao
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qingmei Chen
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
16
|
Satheeshkumar M, Kumar ER, Indhumathi P, Srinivas C, Deepty M, Sathiyaraj S, Suriyanarayanan N, Sastry D. Structural, morphological and magnetic properties of algae/CoFe2O4 and algae/Ag-Fe-O nanocomposites and their biomedical applications. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Sengupta C, Maity AK, Chakraborty S, Mitra RK. Complexation and fluorescence behavior of proflavin with chemically engineered amine capped carbon nanodots and its subsequent release into DNA environments. NEW J CHEM 2020. [DOI: 10.1039/c9nj03874d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amine capped carbon dots are prepared by pyrolysis of citric acid. Probable excited-state interactions between PF and CNDs have been studied. A controlled release of PF into ctDNA by CNDs shows their utility as an efficient drug delivery agent.
Collapse
Affiliation(s)
- Chaitrali Sengupta
- Department of Chemical, Biological and Macromolecular Sciences
- S.N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Arnab Kumar Maity
- Chemical Sciences Division
- Saha institute of Nuclear Physics
- Kolkata 700064
- India
| | | | - Rajib Kumar Mitra
- Department of Chemical, Biological and Macromolecular Sciences
- S.N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| |
Collapse
|
18
|
Synthesis and characterization of biocompatible hydrogel based on hydroxyethyl cellulose-g-poly(hydroxyethyl methacrylate). Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02962-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Kritchenkov AS, Egorov AR, Artemjev AA, Kritchenkov IS, Volkova OV, Kurliuk AV, Shakola TV, Rubanik VV, Rubanik VV, Tskhovrebov AG, Yagafarov NZ, Khrustalev VN. Ultrasound-assisted catalyst-free thiol-yne click reaction in chitosan chemistry: Antibacterial and transfection activity of novel cationic chitosan derivatives and their based nanoparticles. Int J Biol Macromol 2019; 143:143-152. [PMID: 31805332 DOI: 10.1016/j.ijbiomac.2019.11.241] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 11/17/2022]
Abstract
In this work, we demonstrate that the thiol-yne click reaction could be efficiently mediated by ultrasonic irradiation and implement the ultrasound-assisted thiol-yne click reaction to chitosan chemistry as a polymer-analogous transformation. We optimize power and frequency of ultrasound to preserve selectivity of the click reaction and avoid ultrasonic degradation of the chitosan polymer chain. Thus, we obtain a new water-soluble betaine. Using ionic gelation of the obtained betaine derivatives of chitosan, we prepare nanoparticles with a unimodal size distribution. Furthermore, we present results of antibacterial and transfection activity tests for the chitosan derivatives and their based nanoparticles. The derivative with a medium molecular weight and a high degree of substitution demonstrated the best antibacterial effect. It derived nanoparticles with a size of ca. 100 nm and ζ-potential of ca. +69 mV revealed even higher antibacterial activity, slightly superior to commercial antibiotics ampicillin and gentamicin. On the contrary, the obtained polymers possess a much more pronounced transfection activity as compared with their based nanoparticles and species with a low degree of substitution acts as the most efficient transfecting agent. Moreover, the obtained betaine chitosan derivatives as well as their derived nanoparticles are non-toxic.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus.
| | - Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Alexey A Artemjev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Ilya S Kritchenkov
- Saint Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russian Federation
| | - Olga V Volkova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Tatsiana V Shakola
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Alexander G Tskhovrebov
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Building 1, Moscow 119991, Russian Federation
| | - Niyaz Z Yagafarov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Pirogov Russian National Research Medical University, 1 Ostrovityanov Street, Moscow 117997, Russian Federation
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| |
Collapse
|
20
|
Domingues C, Alvarez-Lorenzo C, Concheiro A, Veiga F, Figueiras A. Nanotheranostic Pluronic-Like Polymeric Micelles: Shedding Light into the Dark Shadows of Tumors. Mol Pharm 2019; 16:4757-4774. [DOI: 10.1021/acs.molpharmaceut.9b00945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cátia Domingues
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra 3004-531, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
| | - Ana Figueiras
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
| |
Collapse
|
21
|
Srinivasan V, Jhonsi MA, Dhenadhayalan N, Lin KC, Ananth DA, Sivasudha T, Narayanaswamy R, Kathiravan A. Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117150. [PMID: 31176291 DOI: 10.1016/j.saa.2019.117150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 05/16/2023]
Abstract
Herein, we have meticulously derived the nanosized fluorescent aggregates from pyrene Schiff base (PS) in DMSO:water (10:90) ratio. The aggregation property of PS molecule was characterized by SEM and TEM measurements, revealed the aggregated particles are in spherical shape with ~3 nm in size. Moreover, aggregates exhibit a high fluorescence quantum yield (48%) which was effectively used for the in vitro bioimaging of two different cancer cells such as A549 and MCF-7 cells in which it exhibiting excellent biocompatibility. Further, it was estimated the capability of twofold acridine orange/ethidium bromide (AO/EB) staining to identify the apoptotic associated changes in cancer cells. Additionally, the aggregates were successfully demonstrated as a luminescent probe for the perceptive biomolecule detection of bilirubin. On the other hand, the PS molecule was successfully utilized for protein binding and metal ion sensing studies. The interaction of bovine serum albumin (BSA) with PS molecule in DMSO was using fluorescence spectroscopic method and nature of interaction was also confirmed through molecular docking analysis. The PS molecule also acts as an excellent sensor for biologically important Fe3+ ion with detection limit of 336 nM. Overall, PS molecule can be a prospective material in biological field both in solution as well as aggregated forms.
Collapse
Affiliation(s)
- Venkatesan Srinivasan
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 048, Tamil Nadu, India
| | - Mariadoss Asha Jhonsi
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 048, Tamil Nadu, India.
| | - Namasivayam Dhenadhayalan
- Department of Chemistry, National Taiwan University and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Devanesan Arul Ananth
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Thilagar Sivasudha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Radhakrishnan Narayanaswamy
- Department of Biotechnology, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Avadi, Chennai 600 062, Tamil Nadu, India
| | - Arunkumar Kathiravan
- Department of Chemistry, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Avadi, Chennai 600 062, Tamil Nadu, India.
| |
Collapse
|
22
|
Liu X, Xu P, Zhao X, Ge J, Huang C, Zhu W, Li C, Du L, Fang M. A novel dual-function chemosensor for visual detection of Cu2+ in aqueous solution based on carbazole and its application. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Shahzad MK, Zhang Y, Raza A, Ikram M, Qi K, Khan MU, Aslam MJ, Alhazaa A. Polymer Microfibers Incorporated with Silver Nanoparticles: a New Platform for Optical Sensing. NANOSCALE RESEARCH LETTERS 2019; 14:270. [PMID: 31396725 PMCID: PMC6687803 DOI: 10.1186/s11671-019-3108-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
The enhanced sensitivity of up-conversion luminescence is imperative for the application of up-conversion nanoparticles (UCNPs). In this study, microfibers were fabricated after co-doping UCNPs with polymethylmethacrylate (PMMA) and silver (Ag) solutions. Transmission losses and sensitivities of UCNPs (tetrogonal-LiYF4:Yb3+/Er3+) in the presence and absence of Ag were investigated. Sensitivity of up-conversion luminescence with Ag (LiYF4:Yb3+/Er3+/Ag) is 0.0095 K-1 and reduced to (LiYF4:Yb3+/Er3+) 0.0065 K-1 without Ag at 303 K under laser source (980 nm). The UCNP microfibers with Ag showed lower transmission losses and higher sensitivity than without Ag and could serve as promising candidate for optical applications. This is the first observation of Ag-doped microfiber via facile method.
Collapse
Affiliation(s)
- Muhammad Khuram Shahzad
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China
| | - Yundong Zhang
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China.
| | - Adil Raza
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University, Lahore, Punjab, 54000, Pakistan
| | - Kaiyue Qi
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China
| | - Muhammad Usman Khan
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China
| | - Muhammad Jehanzaib Aslam
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China
| | - Abdulaziz Alhazaa
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia.
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
24
|
Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B Biointerfaces 2019; 180:411-428. [DOI: 10.1016/j.colsurfb.2019.05.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023]
|
25
|
Highly efficient aggregation-induced emission and stimuli-responsive fluorochromism triggered by carborane-induced charge transfer state. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Bahavarnia F, Saadati A, Hassanpour S, Hasanzadeh M, Shadjou N, Hassanzadeh A. Paper based immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: A new platform for efficient diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (μPAD). Int J Biol Macromol 2019; 138:744-754. [PMID: 31326512 DOI: 10.1016/j.ijbiomac.2019.07.109] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/28/2023]
Abstract
Ovarian cancer is the first and most important cause of malignancy death in women. Mucin 16 or MUC16 protein also known as carcinoma antigen 125 (CA 125) is the most commonly used glycoprotein for early stage diagnosis of ovarian cancer. In this work, a novel paper-based bio-device through hand writing of Ag/RGO (silver nanoparticles/reduced graphene oxide) nano-ink on the flexible paper substrate using pen-on-paper technology was developed. The prepared interface was used to the recognition of CA 125 protein in human biofluid. For this purpose, Ag/rGO nano-ink was synthesized by deposition of Ag nanoparticles onto graphene oxide sheets and the reduction of graphene oxide to rGO simultaneously. Conductivity and resistance of conductive lines were studied after drawing on photographic paper. Subsequently, to prepare a new and unique immuno-device, paper electrode modified by cysteamine caped gold nanoparticles (CysA/Au NPs) using electrochemical techniques. CysA is bonded by sulfur atoms with Au (CysA/Au NPs), and from the amine group with hydroxyl and carboxyl groups of Ag/RGO nano-ink deposited on the surface of paper-based electrodes (CysA/Au NPs/Ag-rGO). Then, anti-CA 125 antibody was immobilized on the electrode surface through Au NPs and CA 125 positively charged amine groups interaction. Atomic force microscopy, Transmission electron microscopy, Field emission scanning electron microscopy, and dynamic light scattering, were performed to identify the engineered immunosensor. Using chronoamperometry technique and under the optimized conditions, the low limit of quantitation (LLOQ) for the proposed immunoassay was recorded as 0.78 U/ml, which this evaluation was performed at highly linear range of 0.78-400 U/ml. The high sensitivity of the electrochemical immunosensor device is indicative of the ability of this immuno-device to detect early stages ovarian cancer.
Collapse
Affiliation(s)
- Farnas Bahavarnia
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Hassanpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | - Nasrin Shadjou
- Nanotechnology Research Center, Urmia University, Urmia, Iran
| | - Ahmad Hassanzadeh
- Department of Processing, Helmholtz-Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Chemnitzer Str. 40, 09599 Freiberg, Germany
| |
Collapse
|
27
|
Khademi S, Sarkar S, Shakeri-Zadeh A, Attaran N, Kharrazi S, Ay MR, Azimian H, Ghadiri H. Targeted gold nanoparticles enable molecular CT imaging of head and neck cancer: An in vivo study. Int J Biochem Cell Biol 2019; 114:105554. [PMID: 31276787 DOI: 10.1016/j.biocel.2019.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 11/15/2022]
Abstract
The development of various cost-effective multifunctional contrast agent for specific targeting molecular imaging of tumors presents a great challenge. We report here the in vivo targeting imaging of folic acid (FA) gold nanoparticles (AuNPs) through cysteamine (Cys) linking for targeted of human nasopharyngeal head and neck cancer by computed tomography (CT). The toxicity of nanoparticles in kidney, heart, spleen, brain and liver was evaluated by H&E (hematoxylin and eosin) assay. We showed that the formed FA-Cys-AuNPs with an Au core size of ˜13 nm are non-cytotoxic in the particle concentration of 3 × 103 μg/ ml. The nude mice were scanned using a 64-slice CT scan with parameters (80 kVp, slice thickness: 0.625 mm, mAs: 200, pitch: 1). CT scan was performed before and after (Three and six hours) I.V (Intra Venous) injection of AuNPs and FA-Cys-AuNPs. The distribution of nanoparticles in the nude mice was evaluated by imaging and coupled plasma optical emission spectrometry (ICP-OES) analysis. The findings clearly illustrated that a small tumor, which is undetectable via computed tomography, is enhanced by X-ray attenuation and becomes visible (4.30-times) by the molecularly targeted AuNPs. It was further demonstrated that active tumor cells targeting (FA-Cys-AuNPs) is more specific and efficient (2.03-times) than passive targeting AuNPs. According to the results, FA-Cys-AuNPs can be employed as a promising contrast agent in CT scan imaging and maybe in radiotherapy that require enhanced radiation dose.
Collapse
Affiliation(s)
- Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Sarkar
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Ghadiri
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
A review on application of Nano-structures and Nano-objects with high potential for managing different aspects of bone malignancies. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100348] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Wang T, Liu M, Xu D, Chen J, Wan Q, Wen Y, Huang H, Deng F, Zhang X, Wei Y. Facile fabrication of cross-linked fluorescent organic nanoparticles with aggregation-induced emission characteristic via the thiol-ene click reaction and their potential for biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:293-299. [DOI: 10.1016/j.msec.2018.12.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/12/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
|
30
|
Lee KC, Lo PY, Lee GY, Zheng JH, Cho EC. Carboxylated carbon nanomaterials in cell cycle and apoptotic cell death regulation. J Biotechnol 2019; 296:14-21. [DOI: 10.1016/j.jbiotec.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/27/2022]
|
31
|
Liu H, Zhang Z, Zhao Y, Zhou Y, Xue B, Han Y, Wang Y, Mu X, Zang S, Zhou X, Li Z. A water-soluble two-dimensional supramolecular organic framework with aggregation-induced emission for DNA affinity and live-cell imaging. J Mater Chem B 2019; 7:1435-1441. [PMID: 32255014 DOI: 10.1039/c8tb03206h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A water-soluble two-dimensional supramolecular organic framework (2D SOF) was prepared via self-assembly of cucurbit[8]uril (CB[8]) and a three-arm flat linker molecule, which contains a benzene ring as the core and three Brooker's merocyanine (BM) analogs as arms. The strong host-guest interactions between BM and CB[8] and the directional head-to-tail stacking modes between the BM arms synergistically led to the formation of a 2D SOF. The structure of the 2D SOF was verified by 1H NMR, 2D 1H NMR NOESY, and DLS characterizations, while the monolayer structure was characterized by Cryo-TEM and AFM measurements. The 2D SOF exhibited an obvious AIE enhancement effect in H2O. In addition, DNA induced photoluminescence enhancement was observed for the monomer. As a result, this AIEgen-based 2D SOF could feature not only as a cell visualizer but also as a tracker for the nucleus in biological imaging due to the dynamic assembly process.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mobed A, Hasanzadeh M, Aghazadeh M, Saadati A, Hassanpour S, Mokhtarzadeh A. The bioconjugation of DNA with gold nanoparticles towards the spectrophotometric genosensing of pathogenic bacteria. ANALYTICAL METHODS 2019; 11:4289-4298. [DOI: 10.1039/c9ay01339c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The investigation of important bio-molecular events such as expression of special genes has shown promise with the advent of nanotechnology.
Collapse
Affiliation(s)
- Ahmad Mobed
- Student Research Committee
- Department of Microbiology
- Faculty of Medicine
- Tabriz University of Medical Sciences
- Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Mohammad Aghazadeh
- Student Research Committee
- Department of Microbiology
- Faculty of Medicine
- Tabriz University of Medical Sciences
- Iran
| | - Arezoo Saadati
- Drug Applied Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| |
Collapse
|
33
|
Yang H, Zhou X, Hui T, Han Y, Jiang X, Yan J. Methyl-restricted rotor rotation on the stator produces high-efficiency fluorescence emission: a new strategy to achieve aggregation-induced emission. RSC Adv 2019; 9:12078-12084. [PMID: 35516985 PMCID: PMC9063473 DOI: 10.1039/c9ra01636h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/03/2019] [Indexed: 12/30/2022] Open
Abstract
At present, we have realized that the aggregation-induced emission (AIE) achieves the purpose of fluorescence enhancement by restricting rotations to reduce intermolecular or intramolecular energy loss. Based on this idea, we synthesized a novel fluorene-based fluorescent compound with a restricted rotor rotation on the stator through the Suzuki coupling reaction. The luminescence effect was evaluated by comparing its fluorescence intensity with that of the control compound. Finally, theoretical calculations showed that the presence of methyl groups hindered the thermal rotation of the fluorenyl groups. Thus, the results indicated that the fluorescence of this compound was better than that of the control compound. A new synthetic pathway for high-efficiency AIE-based fluorescent luminogens has been developed. At present, we have realized that the aggregation-induced emission (AIE) achieves the purpose of fluorescence enhancement by restricting rotations to reduce intermolecular or intramolecular energy loss.![]()
Collapse
Affiliation(s)
- Haicheng Yang
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian City
- PR China
| | - Xinyue Zhou
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian City
- PR China
| | - Tianqi Hui
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian City
- PR China
| | - Yingying Han
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian City
- PR China
| | - Xiaonan Jiang
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian City
- PR China
| | - Jie Yan
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian City
- PR China
| |
Collapse
|
34
|
Liu B, Wang K, Lu H, Huang M, Yang J. A nitro-capped tetraaniline derivative with AIE features for BSA detection and the selective imaging of Gram-positive bacteria. NEW J CHEM 2019. [DOI: 10.1039/c9nj02159k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A nitro-capped tetraaniline derivative (NO2-B3-Ani4-NO2) with AIE feature was synthesized and characterized, which presented an ultrasensitive turn-on response towards bovine serum albumin and selective imaging of Gram-positive bacteria based on AIE mechanism.
Collapse
Affiliation(s)
- Beibei Liu
- Key Laboratory of Aerospace Advanced Materials and Performance
- Ministry of Education
- School of Materials Science and Engineering
- Beihang University
- Beijing 100083
| | - Kun Wang
- Key Laboratory of Aerospace Advanced Materials and Performance
- Ministry of Education
- School of Materials Science and Engineering
- Beihang University
- Beijing 100083
| | - Hao Lu
- Key Laboratory of Aerospace Advanced Materials and Performance
- Ministry of Education
- School of Materials Science and Engineering
- Beihang University
- Beijing 100083
| | - Mingming Huang
- Key Laboratory of Aerospace Advanced Materials and Performance
- Ministry of Education
- School of Materials Science and Engineering
- Beihang University
- Beijing 100083
| | - Jiping Yang
- Key Laboratory of Aerospace Advanced Materials and Performance
- Ministry of Education
- School of Materials Science and Engineering
- Beihang University
- Beijing 100083
| |
Collapse
|
35
|
Liu Y, Mao L, Yang S, Liu M, Huang H, Wen Y, Deng F, Li Y, Zhang X, Wei Y. Fabrication and biological imaging of hydrazine hydrate cross-linked AIE-active fluorescent polymeric nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:310-317. [DOI: 10.1016/j.msec.2018.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 07/23/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
|
36
|
Halder S, Manna U, Das G. Tuning the aggregation performance by varying the substituent position: comparative study of neutral bis-urea derivatives in aqueous medium. NEW J CHEM 2019. [DOI: 10.1039/c9nj03297e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A set of three neutral bis-urea derivatives has been purposefully chosen to investigate the consequences of positional isomers on the aggregation performance.
Collapse
Affiliation(s)
- Senjuti Halder
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | - Utsab Manna
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | - Gopal Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| |
Collapse
|
37
|
Huang L, Mu Y, Chen J, Tian J, Huang Q, Huang H, Deng F, Wen Y, Zhang X, Wei Y. One-pot ultrafast preparation of silica quantum dots and their utilization for fabrication of luminescent mesoporous silica nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:679-685. [PMID: 30274101 DOI: 10.1016/j.msec.2018.08.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/23/2018] [Accepted: 08/16/2018] [Indexed: 12/25/2022]
Abstract
Silica quantum dots (SiQDs) and their luminescent composites have displayed great potential for biomedical applications owing to their chemical inert and low cost. In this work, we report a facile, cost-effective and ultrafast strategy to prepare a stable luminescent SiQDs using N-[3-(trimethoxysilyl)propyl]ethylenediamine (EDAS) and salicylaldehyde as precursors for the first time. These luminescent SiQDs were further utilized for fabrication of luminescent mesoporous silica nanoparticles (MSNs) through direct encapsulation of SiQDs by MSNs. The novel synthetic and modified SiQDs uses commercial raw materials and the entire reaction can be completed within 30 s. The successful preparation of SiQDs and SiQDs@MSNs were characterized by various characterization equipments. The cell viability as well as cell uptake behavior of SiQDs@MSNs were also examined to evaluate their potential for biomedical applications. We demonstrated that these SiQDs@MSNs are low toxicity and of great potential for biological imaging. Based on the above results, we believe that these SiQDs@MSNs should be novel and promising candidates for biomedical applications owing to their intense fluorescence, biocompatibility and high specific surface areas.
Collapse
Affiliation(s)
- Long Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yurong Mu
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jianwen Tian
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qiang Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
38
|
Heng C, Zhou X, Zheng X, Liu M, Wen Y, Huang H, Fan D, Hui J, Zhang X, Wei Y. Surface grafting of rare-earth ions doped hydroxyapatite nanorods (HAp:Ln(Eu/Tb)) with hydrophilic copolymers based on ligand exchange reaction: Biological imaging and cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:556-563. [PMID: 30033287 DOI: 10.1016/j.msec.2018.05.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/09/2017] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
Rare-earth ions doped hydroxyapatite nanoparticles (HAp:Ln NPs) have demonstrated to be very promising candidates for biological imaging applications owing to their small size and chemical compositions similar to bone. However, these HAp:Ln NPs with controllable size and morphology should be prepared under hydrothermal treatment with hydrophobic molecules as the protective layers. The hydrophobic nature of these luminescent HAp:Ln NPs largely impeded their applications in biomedical fields. In this study, a novel and effective strategy has been developed for the surface modification of HAp:Ln nanorods through the combination of surface ligand exchange reaction and reversible-addition fragmentation chain transfer (RAFT) polymerization using 2-methacryloyloxyethyl phosphorylcholine (MPC) and itaconic acid (IA) as the monomers. Herein, a small molecule adenosine 5'-monophosphate disodium salt (AMP) that contains a phosphate group and two hydroxyl groups was used to displace the hydrophobic oleic acid on pristine HAp NPs through surface ligand exchange reaction owing to its stronger interaction with HAp NPs. On the other hand, the MPC and IA were introduced on HAp NPs through RAFT polymerization after the chain transfer agent was immobilized on the HAp NPs through the esterification reaction. The poly(IA-MPC) could not only endow the high water dispersibility but also be used for loading anticancer agent cisplatin (CDDP) through coordination interaction. To evaluate their potential biomedical applications, the cell uptake behavior, drug loading capacity and release behavior as well as cell viability of HAp:Ln-AMP-poly(IA-MPC) polymeric composites were examined. We demonstrated that the method developed in this work is very effective for introduction of functional polymers onto HAp:Ln nanorods. The HAp:Ln-AMP-poly(IA-MPC) composites are promising for cell imaging and controlled delivery of CDDP.
Collapse
Affiliation(s)
- Chunning Heng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China
| | - Xin Zhou
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Xiaoyan Zheng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China..
| |
Collapse
|
39
|
Huang H, Liu M, Chen J, Mao L, Zeng G, Wen Y, Tian J, Zhou N, Zhang X, Wei Y. Facile fabrication of carboxyl groups modified fluorescent C 60 through a one-step thiol-ene click reaction and their potential applications for biological imaging and intracellular drug delivery. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Xu D, Liu M, Huang Q, Chen J, Huang H, Deng F, Tian J, Wen Y, Zhang X, Wei Y. A Novel method for the preparation of fluorescent C60 poly(amino acid) composites and their biological imaging. J Colloid Interface Sci 2018; 516:392-397. [DOI: 10.1016/j.jcis.2018.01.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/28/2022]
|
41
|
Guo L, Xu D, Huang L, Liu M, Huang H, Tian J, Jiang R, Wen Y, Zhang X, Wei Y. Facile construction of luminescent supramolecular assemblies with aggregation-induced emission feature through supramolecular polymerization and their biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 85:233-238. [DOI: 10.1016/j.msec.2017.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/11/2017] [Accepted: 12/28/2017] [Indexed: 12/29/2022]
|
42
|
Guo L, Li L, Liu M, Wan Q, Tian J, Huang Q, Wen Y, Liang S, Zhang X, Wei Y. Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Jiang R, Huang L, Liu M, Deng F, Huang H, Tian J, Wen Y, Cao QY, Zhang X, Wei Y. Ultrafast microwave-assisted multicomponent tandem polymerization for rapid fabrication of AIE-active fluorescent polymeric nanoparticles and their potential utilization for biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:115-120. [DOI: 10.1016/j.msec.2017.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/17/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
|
44
|
Martínez-Abadía M, Giménez R, Ros MB. Self-Assembled α-Cyanostilbenes for Advanced Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704161. [PMID: 29193366 DOI: 10.1002/adma.201704161] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/04/2017] [Indexed: 06/07/2023]
Abstract
In the specific context of condensed media, the significant and increasing recent interest in the α-cyanostilbene (CS) motif [ArCHC(CN)Ar] is relevant. These compounds have shown remarkable optical features in addition to interesting electrical properties, and hence they are recognized as very suitable and versatile options for the development of functional materials. This progress report is focused on current and future use of CS structures and molecular assemblies with the aim of exploring and developing for the next generations of functional materials. A critical selection of illustrative materials that contain the CS motif, including relevant subfamilies such as the dicyanodistyrylbenzene and 2,3,3-triphenylacrylonitrile shows how, driven by the self-assembly of CS blocks, a variety of properties, effects, and possibilities for practical applications can be offered to the scientific community, through different rational routes for the elaboration of advanced materials. A survey is provided on the research efforts directed toward promoting the self-assembly of the solid state (polycrystalline solids, thin films, and single crystals), liquid crystals, nanostructures, and gels with multistimuli responsiveness, and applications for sensors, organic light-emitting diodes, organic field effect transistors, organic lasers, solar cells, or bioimaging purposes.
Collapse
Affiliation(s)
- Marta Martínez-Abadía
- Departamento de Química Orgánica - Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza - CSIC, 50009, Zaragoza, Spain
| | - Raquel Giménez
- Departamento de Química Orgánica - Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza - CSIC, 50009, Zaragoza, Spain
| | - María Blanca Ros
- Departamento de Química Orgánica - Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza - CSIC, 50009, Zaragoza, Spain
| |
Collapse
|
45
|
Zeng G, Liu M, Jiang R, Huang Q, Huang L, Wan Q, Dai Y, Wen Y, Zhang X, Wei Y. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:154-159. [DOI: 10.1016/j.msec.2017.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 01/19/2023]
|
46
|
Synthesis of fluorescent dendrimers with aggregation-induced emission features through a one-pot multi-component reaction and their utilization for biological imaging. J Colloid Interface Sci 2018; 509:327-333. [PMID: 28918375 DOI: 10.1016/j.jcis.2017.09.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 01/15/2023]
Abstract
Hyperbranched polymers have attracted wide research attention owing to their unique topological structure, physicochemical properties and great potential for applications such asadditives, drug delivery, catalysts and nanotechnology. Among these, the polyamidoamine(PAMAM) dendrimers are some of the most important dendrimers. However, the synthesis and biomedical applications of fluorescent PAMAM dendrimers have received only limited attention. In this work, we present a rather effective and convenient approach for synthesis of fluorescent PAMAM dendrimers with aggregation-induced emission (AIE) properties through a one-pot catalyst-free Mannich reaction under rather mild experimental conditions (e.g., low reaction temperature, air atmosphere in the presence of water). The obtained AIE-active amphiphiles (PhE-PAD) could self-assemble into fluorescent organic nanoparticles (FONs). The obtained AIE-active FONs (PhE-PAD FONs) were fully characterized, and their successful construction was confirmed by 1H NMR spectroscopy, FT-IR spectroscopy and transmission electron microscopy. Fluorescence and UV-Visible absorption spectroscopy results demonstrated that the final PhE-PAD FONs showed strong yellow fluorescence, desirable photostability and good water dispersity. The cell viability evaluation and confocal laser scanning microscope imaging results suggested that PhE-PAD FONs possessed low cytotoxicity and excellent biocompatibility. Taken together, these results demonstrate that we have developed a facile and efficient strategy for the fabrication of AIE-active FONs, which possess many desirable features for biomedical applications.
Collapse
|
47
|
Room temperature preparation of fluorescent starch nanoparticles from starch-dopamine conjugates and their biological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:204-209. [DOI: 10.1016/j.msec.2017.08.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 11/19/2022]
|
48
|
Wei D, Xue Y, Huang H, Liu M, Zeng G, Wan Q, Liu L, Yu J, Zhang X, Wei Y. Fabrication, self-assembly and biomedical applications of luminescent sodium hyaluronate with aggregation-induced emission feature. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:120-126. [DOI: 10.1016/j.msec.2017.07.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/16/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023]
|
49
|
Synthesis and bioimaging of biodegradable red fluorescent organic nanoparticles with aggregation-induced emission characteristics. J Colloid Interface Sci 2017; 508:248-253. [DOI: 10.1016/j.jcis.2017.08.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/17/2023]
|
50
|
The one-step acetalization reaction for construction of hyperbranched and biodegradable luminescent polymeric nanoparticles with aggregation-induced emission feature. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:543-548. [DOI: 10.1016/j.msec.2017.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/23/2022]
|