1
|
Dutta B, Barick KC, Hassan PA, Tyagi AK. Recent progress and current status of surface engineered magnetic nanostructures in cancer theranostics. Adv Colloid Interface Sci 2024; 334:103320. [PMID: 39515063 DOI: 10.1016/j.cis.2024.103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Cancer theranostic is the combination of diagnosis and therapeutic modalities for cancer treatment. It realizes a more flexible, precise and non-invasive treatment of patients. In this aspect, magnetic nanostructures (MNSs) have gained paramount importance and revolutionized the cancer management due to their unique physicochemical properties and inherent magnetic characteristics. MNSs have amazing theranostic ability starting from drug delivery to magnetic hyperthermia and magnetic resonance imaging to multimodal imaging in association with radioisotopes or fluorescent probes. Precise regulation over the synthetic process and their consequent surface functionalization makes them even more fascinating. The ultimate goal is to develop a platform that combines multiple diagnostic and therapeutic functionalities based on MNSs. This perspective has provided an overview of the state-of-art of theranostic applications of MNSs. Special emphasis has been dedicated towards the importance of synthetic approaches of MNSs as well as their subsequent surface engineering and integration with biological/therapeutic molecules that decide the final outcomes of the efficacy of MNSs in theranostic applications. Moreover, the recent advancements, opportunities and allied challenges towards clinical applications of MNSs in cancer management have been demonstrated.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - A K Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
2
|
Ansari S, Suárez-López YDC, Thersleff T, Häggström L, Ericsson T, Katsaros I, Åhlén M, Karlgren M, Svedlindh P, Rinaldi-Ramos CM, Teleki A. Pharmaceutical Quality by Design Approach to Develop High-Performance Nanoparticles for Magnetic Hyperthermia. ACS NANO 2024; 18:15284-15302. [PMID: 38814737 PMCID: PMC11171760 DOI: 10.1021/acsnano.4c04685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Magnetic hyperthermia holds significant therapeutic potential, yet its clinical adoption faces challenges. One obstacle is the large-scale synthesis of high-quality superparamagnetic iron oxide nanoparticles (SPIONs) required for inducing hyperthermia. Robust and scalable manufacturing would ensure control over the key quality attributes of SPIONs, and facilitate clinical translation and regulatory approval. Therefore, we implemented a risk-based pharmaceutical quality by design (QbD) approach for SPION production using flame spray pyrolysis (FSP), a scalable technique with excellent batch-to-batch consistency. A design of experiments method enabled precise size control during manufacturing. Subsequent modeling linked the SPION size (6-30 nm) and composition to intrinsic loss power (ILP), a measure of hyperthermia performance. FSP successfully fine-tuned the SPION composition with dopants (Zn, Mn, Mg), at various concentrations. Hyperthermia performance showed a strong nonlinear relationship with SPION size and composition. Moreover, the ILP demonstrated a stronger correlation to coercivity and remanence than to the saturation magnetization of SPIONs. The optimal operating space identified the midsized (15-18 nm) Mn0.25Fe2.75O4 as the most promising nanoparticle for hyperthermia. The production of these nanoparticles on a pilot scale showed the feasibility of large-scale manufacturing, and cytotoxicity investigations in multiple cell lines confirmed their biocompatibility. In vitro hyperthermia studies with Caco-2 cells revealed that Mn0.25Fe2.75O4 nanoparticles induced 80% greater cell death than undoped SPIONs. The systematic QbD approach developed here incorporates process robustness, scalability, and predictability, thus, supporting the clinical translation of high-performance SPIONs for magnetic hyperthermia.
Collapse
Affiliation(s)
- Shaquib
Rahman Ansari
- Department
of Pharmacy, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden
| | | | - Thomas Thersleff
- Department
of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Lennart Häggström
- Department
of Physics and Astronomy, Uppsala University, 75121 Uppsala, Sweden
| | - Tore Ericsson
- Department
of Physics and Astronomy, Uppsala University, 75121 Uppsala, Sweden
| | - Ioannis Katsaros
- Department
of Materials Science and Engineering, Uppsala
University, 75103 Uppsala, Sweden
| | - Michelle Åhlén
- Department
of Materials Science and Engineering, Uppsala
University, 75103 Uppsala, Sweden
| | - Maria Karlgren
- Department
of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Peter Svedlindh
- Department
of Materials Science and Engineering, Uppsala
University, 75103 Uppsala, Sweden
| | - Carlos M. Rinaldi-Ramos
- Department
of Chemical Engineering and J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6005, United
States
| | - Alexandra Teleki
- Department
of Pharmacy, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
3
|
Non-pyrogenic highly pure magnetosomes for efficient hyperthermia treatment of prostate cancer. Appl Microbiol Biotechnol 2023; 107:1159-1176. [PMID: 36633624 DOI: 10.1007/s00253-022-12247-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 01/13/2023]
Abstract
We report the fabrication of highly pure magnetosomes that are synthesized by magnetotactic bacteria (MTB) using pharmaceutically compatible growth media, i.e., without compounds of animal origin (yeast extracts), carcinogenic, mutagenic, or toxic for reproduction (CMR) products, and other heavy metals than iron. To enable magnetosome medical applications, these growth media are reduced and amended compared with media commonly used to grow these bacteria. Furthermore, magnetosomes are made non-pyrogenic by being extracted from these micro-organisms and heated above 400 °C to remove and denature bacterial organic material and produce inorganic magnetosome minerals. To be stabilized, these minerals are further coated with citric acid to yield M-CA, leading to fully reconstructed chains of magnetosomes. The heating properties and anti-tumor activity of highly pure M-CA are then studied by bringing M-CA into contact with PC3-Luc tumor cells and by exposing such assembly to an alternating magnetic field (AMF) of 42 mT and 195 kHz during 30 min. While in the absence of AMF, M-CA are observed to be non-cytotoxic, they result in a 35% decrease in cell viability following AMF application. The treatment efficacy can be associated with a specific absorption rate (SAR) value of M-CA, which is relatively high in cellular environment, i.e., SARcell = 253 ± 11 W/gFe, while being lower than the M-CA SAR value measured in water, i.e., SARwater = 1025 ± 194 W/gFe, highlighting that a reduction in the Brownian contribution to the SAR value in cellular environment does not prevent efficient tumor cell destruction with these nanoparticles. KEY POINTS : • Highly pure magnetosomes were produced in pharmaceutically compatible growth media • Non-pyrogenic and stable magnetosomes were prepared for human injection • Magnetosomes efficiently destroyed prostate tumor cells in magnetic hyperthermia.
Collapse
|
4
|
Baabu PRS, Kumar HK, Gumpu MB, Babu K J, Kulandaisamy AJ, Rayappan JBB. Iron Oxide Nanoparticles: A Review on the Province of Its Compounds, Properties and Biological Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010059. [PMID: 36614400 PMCID: PMC9820855 DOI: 10.3390/ma16010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 05/14/2023]
Abstract
Materials science and technology, with the advent of nanotechnology, has brought about innumerable nanomaterials and multi-functional materials, with intriguing yet profound properties, into the scientific realm. Even a minor functionalization of a nanomaterial brings about vast changes in its properties that could be potentially utilized in various applications, particularly for biological applications, as one of the primary needs at present is for point-of-care devices that can provide swifter, accurate, reliable, and reproducible results for the detection of various physiological conditions, or as elements that could increase the resolution of current bio-imaging procedures. In this regard, iron oxide nanoparticles, a major class of metal oxide nanoparticles, have been sweepingly synthesized, characterized, and studied for their essential properties; there are 14 polymorphs that have been reported so far in the literature. With such a background, this review's primary focus is the discussion of the different synthesis methods along with their structural, optical, magnetic, rheological and phase transformation properties. Subsequently, the review has been extrapolated to summarize the effective use of these nanoparticles as contrast agents in bio-imaging, therapeutic agents making use of its immune-toxicity and subsequent usage in hyperthermia for the treatment of cancer, electron transfer agents in copious electrochemical based enzymatic or non-enzymatic biosensors and bactericidal coatings over biomaterials to reduce the biofilm formation significantly.
Collapse
Affiliation(s)
- Priyannth Ramasami Sundhar Baabu
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hariprasad Krishna Kumar
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- Acrophase, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Manju Bhargavi Gumpu
- Department of Physics, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
| | - Jayanth Babu K
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | | | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
5
|
Pasek-Allen JL, Kantesaria S, Gangwar L, Shao Q, Gao Z, Idiyatullin D, Han Z, Etheridge ML, Garwood M, Jagadeesan BD, Bischof JC. Injectable and Repeatable Inductive Heating of Iron Oxide Nanoparticle-Enhanced "PHIL" Embolic toward Tumor Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41659-41670. [PMID: 36070361 DOI: 10.1021/acsami.2c05941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deep-seated tumors of the liver, brain, and other organ systems often recur after initial surgical, chemotherapeutic, radiation, or focal treatments. Repeating these treatments is often invasive and traumatic. We propose an iron oxide nanoparticle (IONP)-enhanced precipitating hydrophobic injectable liquid (PHIL, MicroVention inc.) embolic as a localized dual treatment implant for nutrient deprivation and multiple repeatable thermal ablation. Following a single injection, multiple thermal treatments can be repeated as needed, based on monitoring of tumor growth/recurrence. Herein we show the ability to create an injectable stable PHIL-IONP solution, monitor deposition of the PHIL-IONP precipitate dispersion by μCT, and gauge the IONP distribution within the embolic by magnetic resonance imaging. Once precipitated, the implant could be heated to reach therapeutic temperatures >8 °C for thermal ablation (clinical temperature of ∼45 °C), in a model disk and a 3D tumor bed model. Heat output was not affected by physiological conditions, multiple heating sessions, or heating at intervals over a 1 month duration. Further, in ex vivo mice hind-limb tumors, we could noninvasively heat the embolic to an "ablative" temperature elevation of 17 °C (clinically 54 °C) in the first 5 min and maintain the temperature rise over +8 °C (clinically a temperature of 45 °C) for longer than 15 min.
Collapse
Affiliation(s)
- Jacqueline L Pasek-Allen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Saurin Kantesaria
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lakshya Gangwar
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Qi Shao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhe Gao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Djaudat Idiyatullin
- Department of Radiology, Neurology and Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael L Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael Garwood
- Department of Radiology, Neurology and Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bharathi D Jagadeesan
- Department of Radiology, Neurology and Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Radiology, Neurology and Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Wang Y, Boero G, Zhang X, Brugger J. Nanopore Generation in Biodegradable Silk/Magnetic Nanoparticle Membranes by an External Magnetic Field for Implantable Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40418-40426. [PMID: 36036484 PMCID: PMC9460430 DOI: 10.1021/acsami.2c10603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Implantable devices for localized and controlled drug release are important, e.g., for therapies of cancer and chronic pain. However, most of the existing active implants are limited by the usage of nonbiodegradable materials; thus, surgery is needed to extract them after the treatment, which leads to secondary damage. Here, we show a fully biodegradable composite membrane made from silk fibroin and magnetic nanoparticles (MNPs). The membrane porosity can be remotely modified by an alternating magnetic field, which opens nanopores by local heating of MNPs in the composite allowing a liquid to diffuse through them. The stability of the silk membrane in water can be prolonged up to several months by increasing its β-sheet content through ethanol annealing. We present the following original findings. (a) Nanopores can be generated inside the silk/MNP composite membrane by exposing it to an external alternating magnetic field. (b) A longer exposure time results in more nanopore sites. (c) The controllable release of rhodamine B dye is achieved by tuning the period of exposure to the magnetic field. The obtained results demonstrate the suitability of the investigated silk/MNP composite membrane as a potential functional material for implantable drug delivery.
Collapse
Affiliation(s)
- Ya Wang
- Food
Science and Technology Program, Beijing
Normal University-Hong Kong Baptist University United International
College, 519087 Zhuhai, China
- Microsystems
Laboratory, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Giovanni Boero
- Microsystems
Laboratory, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Xiaosheng Zhang
- School
of Electronic Science and Engineering, University
of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Juergen Brugger
- Microsystems
Laboratory, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Vergnaud F, Kesse X, Jacobs A, Perton F, Begin-Colin S, Mertz D, Descamps S, Vichery C, Nedelec JM. Magnetic bioactive glass nano-heterostructures: a deeper insight into magnetic hyperthermia properties in the scope of bone cancer treatment. Biomater Sci 2022; 10:3993-4007. [PMID: 35723414 DOI: 10.1039/d2bm00319h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Primary bone cancers commonly involve surgery to remove the malignant tumor, complemented with a postoperative treatment to prevent cancer resurgence. Studies on magnetic hyperthermia, used as a single treatment or in synergy with chemo- or radiotherapy, have shown remarkable success in the past few decades. Multifunctional biomaterials with bone healing ability coupled with hyperthermia property could thus be of great interest to repair critical bone defects resulting from tumor resection. For this purpose, we designed superparamagnetic and bioactive nanoparticles (NPs) based on iron oxide cores (γ-Fe2O3) encapsulated in a bioactive glass (SiO2-CaO) shell. Nanometric heterostructures (122 ± 12 nm) were obtained through a two-step process: co-precipitation of 16 nm sized iron oxide NPs, followed by the growth of a bioactive glass shell via a modified Stöber method. Their bioactivity was confirmed by hydroxyapatite growth in simulated body fluid, and cytotoxicity assays showed they induced no significant death of human mesenchymal stem cells after 7 days. Calorimetric measurements were carried out under a wide range of alternating magnetic field amplitudes and frequencies, considering clinically relevant parameters, and some were made in viscous medium (agar) to mimic the implantation conditions. The experimental specific loss power was predictable with respect to the Linear Response Theory, and showed a maximal value of 767 ± 77 W gFe-1 (769 kHz, 23.9 kA m-1 in water). An interesting value of 166 ± 24 W gFe-1 was obtained under clinically relevant conditions (157 kHz, 23.9 kA m-1) for the heterostructures immobilized in agar. The good biocompatibility, bioactivity and heating ability suggest that these γ-Fe2O3@SiO2-CaO NPs are a promising biomaterial to be used as it is or included in a scaffold to heal bone defects resulting from bone tumor resection.
Collapse
Affiliation(s)
- Florestan Vergnaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France.
| | - Xavier Kesse
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France.
| | - Aurélie Jacobs
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France.
| | - Francis Perton
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, Strasbourg 67034 Cedex 2, France
| | - Sylvie Begin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, Strasbourg 67034 Cedex 2, France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, Strasbourg 67034 Cedex 2, France
| | - Stéphane Descamps
- Université Clermont Auvergne, Clermont Auvergne INP, CHU de Clermont-Ferrand, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Charlotte Vichery
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France.
| | - Jean-Marie Nedelec
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
8
|
Jeong M, Lee S, Song DY, Kang S, Shin TH, Choi JS. Hyperthermia Effect of Nanoclusters Governed by Interparticle Crystalline Structures. ACS OMEGA 2021; 6:31161-31167. [PMID: 34841158 PMCID: PMC8613861 DOI: 10.1021/acsomega.1c04632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 06/02/2023]
Abstract
Magnetic nanoparticles have an important role as heat generators in magnetic fluid hyperthermia, a type of next-generation cancer treatment. Despite various trials to improve the heat generation capability of magnetic nanoparticles, iron oxide nanoparticles are the only approved heat generators for clinical applications, which require a large injection dose due to their low hyperthermia efficiency. In this study, iron oxide nanoclusters (NCs) with a highly enhanced hyperthermia effect and adjustable size were synthesized through a facile and simple solvothermal method. Among the samples, the NCs with a size of 25 nm showed the highest hyperthermia efficiency. Differently sized NCs exhibit inconsistent interparticle crystalline alignments, which affect their magnetic properties (e.g., coercivity and saturation magnetization). As a result, the optimal NCs exhibited a significantly enhanced heat generation efficiency compared with that of isolated iron oxide nanoparticles (ca. 7 nm), and their hyperthermia effect on skin cancer cells was confirmed.
Collapse
Affiliation(s)
- Miseon Jeong
- Department
of Chemical and Biological Engineering, Hanbat National University, 34158 Daejeon, Republic of Korea
| | - Sanghoon Lee
- Department
of Chemical and Biological Engineering, Hanbat National University, 34158 Daejeon, Republic of Korea
| | - Dae Young Song
- Department
of Chemical and Biological Engineering, Hanbat National University, 34158 Daejeon, Republic of Korea
| | - Sunghwi Kang
- Center
for Nanomedicine, Institute for Basic Science
(IBS), 03722 Seoul, Republic of Korea
- Department
of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Tae-Hyun Shin
- Research
Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 03722 Seoul, Republic of Korea
| | - Jin-sil Choi
- Department
of Chemical and Biological Engineering, Hanbat National University, 34158 Daejeon, Republic of Korea
| |
Collapse
|
9
|
Li H, Liu P, Gunawan R, Simeneh ZM, Liang C, Yao X, Yang M. Magnetothermal Miniature Reactors Based on Fe 3 O 4 Nanocube-Coated Liquid Marbles. Adv Healthc Mater 2021; 10:e2001658. [PMID: 33470539 DOI: 10.1002/adhm.202001658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/17/2020] [Indexed: 12/26/2022]
Abstract
Liquid marbles have recently attracted much interest in various scientific fields because of their isolated environment and robustness. However, conventional liquid marbles lack a reliable heating mechanism, which is critical in many potential applications. Here, the development of iron oxide (Fe3 O4 ) nanocube-coated liquid marbles (iNLMs), which can be homogeneously heated with an alternating magnetic field (AMF) to as high as 86 °C, is reported. Through tuning the power of the AMF, the iNLMs canbe heated to desired temperatures in controllable patterns. Furthermore, multicenter and selective heating is realized based on the unique magnetothermal properties of iNLMs. As heatable miniature reactors, the iNLMs are further demonstrated to facilitate the kinetic study of temperature-dependent chemical reactions. DNA amplification is successfully performed in liquid marbles, achieving a 25% superior amplification rate compared with that in a common thermal cycler. These results confirm the feasibility of coating liquid marbles with Fe3 O4 nanocubes to form delicate magnetothermal miniature reactors, which provides a reliable method of applying liquid marbles in areas such as biosensor technology, point-of-care testing, and theranostics.
Collapse
Affiliation(s)
- Hualin Li
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China
- Key Laboratory of Biochip Technology, Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Peng Liu
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China
- Key Laboratory of Biochip Technology, Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Renardi Gunawan
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China
- Key Laboratory of Biochip Technology, Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Zemenu Mengistie Simeneh
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China
- Key Laboratory of Biochip Technology, Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Chen Liang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China
- Key Laboratory of Biochip Technology, Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China
- Key Laboratory of Biochip Technology, Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China
- Key Laboratory of Biochip Technology, Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
10
|
Wang Y, Liu Y, Li J, Xu X, Li X. Zinc ferrate nanoparticles for applications in medicine: synthesis, physicochemical properties, regulation of macrophage functions, and in vivo safety evaluation. Nanotoxicology 2020; 14:1381-1398. [PMID: 33075238 DOI: 10.1080/17435390.2020.1831094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Zinc ferrate nanoparticles (ZnFe2O4 NPs) have attracted enormous interest as potential nanomaterials. The purpose of this study was to examine the in vitro macrophages toxicity, in vivo safety, and immunogenicity. Three kinds of ZnFe2O4 NPs with different shapes (round, litchi, and raspberry), nano-sizes, and pores were successfully prepared. In vitro experiments showed that ZnFe2O4 NPs caused no cytotoxicity against the RAW 264.7 cells up to administered dose of 200 μg/mL, enhanced proinflammatory cytokine TNF-α, and costimulatory marker CD86 expression in the RAW 264.7 cells. Interestingly, ZnFe2O4 NPs reduced ROS expression, which was inconsistent with common metal oxide NPs such as iron oxide (Fe3O4) NPs and zinc oxide (ZnO) NPs. ZnFe2O4 NPs improved the RAW 264.7 cells phagocytosed more neutral red. There was no obvious difference in body weight, the number of immune cells, organ index, and expression of inflammatory factors in serum of rats administrated intravenously and subcutaneously on day 21 after treatment by ZnFe2O4 NPs in comparison with the blank control. These results demonstrated that ZnFe2O4 NPs slightly enhanced the function of the RAW 264.7 cells in vitro but caused no obvious toxicity to macrophages as well as rat blood cells, and low immunogenicity in rats, suggesting that ZnFe2O4 NPs as a biocompatible nanomaterials achieved potential for bioapplication in the future.
Collapse
Affiliation(s)
- Yu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Yajie Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiajia Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoqing Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinru Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
11
|
Bhardwaj A, Parekh K, Jain N. In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells. Sci Rep 2020; 10:15249. [PMID: 32943662 PMCID: PMC7499255 DOI: 10.1038/s41598-020-71552-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
Self-regulating temperature-controlled nanoparticles such as Mn–Zn ferrite nanoparticles based magnetic fluid can be a better choice for magnetic fluid hyperthermia because of its controlled regulation of hyperthermia temperature window of 43–45 °C. To test this hypothesis magnetic fluid with said properties was synthesized, and its effect on cervical and breast cancer cell death was studied. We found that the hyperthermia window of 43–45 °C was maintained for one hour at the smallest possible concentration of 0.35 mg/mL without altering the magnetic field applicator parameters. Their hyperthermic effect on HeLa and MCF7 was investigated at the magnetic field of 15.3 kA/m and frequency 330 kHz, which is close to the upper safety limit of 5 * 109 A/m s. We have tested the cytotoxicity of synthesized Mn–Zn ferrite fluid using MTT assay and the results were validated by trypan blue dye exclusion assay that provides the naked eye microscopic view of actual cell death. Since cancer cells tend to resist treatment and show re-growth, we also looked into the effect of multiple sessions hyperthermia using a 24 h window till 72 h using trypan blue assay. The multiple sessions of hyperthermia showed promising results, and it indicated that a minimum of 3 sessions, each of one-hour duration, is required for the complete killing of cancer cells. Moreover, to simulate an in vivo cellular environment, a phantom consisting of magnetic nanoparticles dispersed in 1 and 5% agarose gel was constituted and studied. These results will help to decide the magnetic fluid based hyperthermic therapeutic strategies using temperature-sensitive magnetic fluid.
Collapse
Affiliation(s)
- Anand Bhardwaj
- Dr. K C Patel R&D Centre, Charotar University of Science and Technology (CHARUSAT), Changa, 388 421, India.,P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, 388 421, India
| | - Kinnari Parekh
- Dr. K C Patel R&D Centre, Charotar University of Science and Technology (CHARUSAT), Changa, 388 421, India
| | - Neeraj Jain
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, 388 421, India.
| |
Collapse
|
12
|
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Adv Healthc Mater 2020; 9:e1901058. [PMID: 32196144 PMCID: PMC7482193 DOI: 10.1002/adhm.201901058] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/15/2020] [Indexed: 12/16/2022]
Abstract
There is urgency for the development of nanomaterials that can meet emerging biomedical needs. Magnetic nanoparticles (MNPs) offer high magnetic moments and surface-area-to-volume ratios that make them attractive for hyperthermia therapy of cancer and targeted drug delivery. Additionally, they can function as contrast agents for magnetic resonance imaging (MRI) and can improve the sensitivity of biosensors and diagnostic tools. Recent advancements in nanotechnology have resulted in the realization of the next generation of MNPs suitable for these and other biomedical applications. This review discusses methods utilized for the fabrication and engineering of MNPs. Recent progress in the use of MNPs for hyperthermia therapy, controlling drug release, MRI, and biosensing is also critically reviewed. Finally, challenges in the field and potential opportunities for the use of MNPs toward improving their properties are discussed.
Collapse
Affiliation(s)
- A. Farzin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - S. Alireza Etesami
- Department of Mechanical Engineering, The University of Memphis. Memphis, TN 38152, USA
| | - Jacob Quint
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Adnan Memic
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Division of Engineering in Medicine Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| |
Collapse
|
13
|
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019; 16:915-936. [DOI: 10.1080/17425247.2019.1645115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | |
Collapse
|
14
|
Saeedi M, Vahidi O, Goodarzi V, Saeb MR, Izadi L, Mozafari M. A new prospect in magnetic nanoparticle-based cancer therapy: Taking credit from mathematical tissue-mimicking phantom brain models. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:2405-2414. [PMID: 28764975 DOI: 10.1016/j.nano.2017.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/05/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022]
Abstract
Distribution patterns/performance of magnetic nanoparticles (MNPs) was visualized by computer simulation and experimental validation on agarose gel tissue-mimicking phantom (AGTMP) models. The geometry of a complex three-dimensional mathematical phantom model of a cancer tumor was examined by tomography imaging. The capability of mathematical model to predict distribution patterns/performance in AGTMP model was captured. The temperature profile vs. hyperthermia duration was obtained by solving bio-heat equations for four different MNPs distribution patterns and correlated with cell death rate. The outcomes indicated that bio-heat model was able to predict temperature profile throughout the tissue model with a reasonable precision, to be applied for complex tissue geometries. The simulation results on the cancer tumor model shed light on the effectiveness of the studied parameters.
Collapse
Affiliation(s)
- Mostafa Saeedi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Omid Vahidi
- School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran.
| | - Leila Izadi
- School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
15
|
Recent development in cell encapsulations and their therapeutic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1247-1260. [DOI: 10.1016/j.msec.2017.04.103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
|
16
|
Zhang Z, Guan Y, Xia T, Du J, Li T, Sun Z, Guo C. Influence of exposed magnetic nanoparticles and their application in chemiluminescence immunoassay. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Singh RK, Srivastava M, Prasad NK, Awasthi S, Dhayalan A, Kannan S. Iron doped β-Tricalcium phosphate: Synthesis, characterization, hyperthermia effect, biocompatibility and mechanical evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:715-726. [PMID: 28576042 DOI: 10.1016/j.msec.2017.04.130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 01/22/2023]
Abstract
The ability of β-Tricalcium phosphate [β-TCP, β-Ca3(PO4)2] to host iron at its structural lattice and its associated magnetic susceptibility, hyperthermia effect, biocompatibility and mechanical characteristics is investigated. The studies revealed the ability of β-Ca3(PO4)2 to host 5.02mol% of Fe3+ at its Ca2+(5) site. Excess Fe3+ additions led to the formation of trigonal Ca9Fe(PO4)7 and moreover a minor amount of CaFe3(PO4)3O crystallization was also observed. A gradual increment in the iron content at β-Ca3(PO4)2 results in the simultaneous effect of pronounced hyperthermia effect and mechanical stability. However, the presence of CaFe3(PO4)3O contributes for the reduced hyperthermia effect and mechanical stability of iron substituted β-Ca3(PO4)2. Haemolytic tests, cytotoxicity tests and ALP gene expression analysis confirmed the biocompatibility of the investigated systems.
Collapse
Affiliation(s)
- Ram Kishore Singh
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India
| | - M Srivastava
- Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, India
| | - N K Prasad
- Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, India
| | - Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India.
| |
Collapse
|