1
|
Yue R, Zhu R, Wang S, Li L, Zuo Y, Chen J, Sheng S. The role of pH on structure, corrosion behavior and biocompatibility of MgFe layered double hydroxide coating on Mg-Nd-Zn-Zr alloy. Sci Rep 2025; 15:14842. [PMID: 40295569 PMCID: PMC12037841 DOI: 10.1038/s41598-025-98555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
In the present study, MgFe layered double hydroxide (LDHs) coatings were prepared on the surface of Mg-Nd-Zn-Zr (JDBM) alloy by a chemical conversion method, and the effects of the pH value (pH = 8, 10 and 12) of the prepared solution on the morphology, corrosion resistance and biocompatibility of the coatings were studied. The thickness of the Mg-Fe LDHs coatings was 43.79 ± 3.65 μm (pH = 8), 46.18 ± 1.05 μm (pH = 10) and 28.71 ± 4.05 μm (pH = 12), respectively. The corrosion rate of the JDBM matrix in simulated body fluid was 3.1 ± 0.1 mm/year, the LDHs coating significantly slowed down the corrosion process. When the pH of the mixed solution was 10, the Mg-Fe LDHs coatings exhibited the lowest corrosion rate (0.07 ± 0.008 mm/year). The cell experiment results indicate the Mg-Fe LDHs coating significantly enhances the cell viability of both EA.hy926 cells and A7r5 cells. At a 50% extract concentration, the cell viability for the JDBM alloy was 70% (EA.hy926) and 61% (A7r5), respectively, while the cell viability for the Mg-Fe LDHs coatings exceeded 95% for both EA.hy926 cells and A7r5 cells. In addition, the hemolysis ratio of the coated sample is about 1.7%, much lower than that of the JDBM alloy (46.7%), meeting the clinical requirements for medical materials with a hemolysis ratio below 5%. Based on the above results, the corrosion resistance and in vitro biocompatibilities of the JDBM alloy are significantly improved by the Mg-Fe LDHs coatings.
Collapse
Affiliation(s)
- Rui Yue
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huai Nan, 232001, China.
- Postdoctoral Workstation, Wuhu Yingri Technology Co. Ltd., Wuhu, 241000, China.
| | - Ruotong Zhu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huai Nan, 232001, China
| | - Suqin Wang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huai Nan, 232001, China
| | - Lingyu Li
- Shandong Key Laboratory for Magnetic Field-Free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine &·Functional Imaging, Jinan, 250012, China.
- Department·of Emergency·Medicine, Qilu Hospital·of Shandong·University, Shandong Provincial Clinical Research·Center for·Emergency and Critical Care Medicine, Jinan, 250012, China.
| | - Yusheng Zuo
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huai Nan, 232001, China
| | - Jianzhao Chen
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huai Nan, 232001, China
| | - Shaoding Sheng
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huai Nan, 232001, China
| |
Collapse
|
2
|
Griebel AJ, Maier P, Summers H, Clausius B, Kanasty I, He W, Peterson N, Czerniak C, Oliver AA, Kallmes DF, Kadirvel R, Schaffer JE, Guillory RJ. Radiopaque FeMnN-Mo composite drawn filled tubing wires for braided absorbable neurovascular devices. Bioact Mater 2024; 40:74-87. [PMID: 38962657 PMCID: PMC11220465 DOI: 10.1016/j.bioactmat.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 07/05/2024] Open
Abstract
Flow diverter devices are small stents used to divert blood flow away from aneurysms in the brain, stagnating flow and inducing intra-aneurysmal thrombosis which in time will prevent aneurysm rupture. Current devices are formed from thin (∼25 μm) wires which will remain in place long after the aneurysm has been mitigated. As their continued presence could lead to secondary complications, an absorbable flow diverter which dissolves into the body after aneurysm occlusion is desirable. The absorbable metals investigated to date struggle to achieve the necessary combination of strength, elasticity, corrosion rate, fragmentation resistance, radiopacity, and biocompatibility. This work proposes and investigates a new composite wire concept combining absorbable iron alloy (FeMnN) shells with one or more pure molybdenum (Mo) cores. Various wire configurations are produced and drawn to 25-250 μm wires. Tensile testing revealed high and tunable mechanical properties on par with existing flow diverter materials. In vitro degradation testing of 100 μm wire in DMEM to 7 days indicated progressive corrosion and cracking of the FeMnN shell but not of the Mo, confirming the cathodic protection of the Mo by the FeMnN and thus mitigation of premature fragmentation risk. In vivo implantation and subsequent μCT of the same wires in mouse aortas to 6 months showed meaningful corrosion had begun in the FeMnN shell but not yet in the Mo filament cores. In total, these results indicate that these composites may offer an ideal combination of properties for absorbable flow diverters.
Collapse
Affiliation(s)
| | - Petra Maier
- School of Mechanical Engineering, Stralsund University of Applied Sciences, Stralsund, DE, USA
| | - Henry Summers
- Department of Materials Science and Engineering, Michigan Technological University, USA
| | - Benjamin Clausius
- School of Mechanical Engineering, Stralsund University of Applied Sciences, Stralsund, DE, USA
| | - Isabella Kanasty
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Nicholas Peterson
- Department of Biological Sciences, Michigan Technological University, USA
| | - Carolyn Czerniak
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, USA
| | | | | | | | | | - Roger J. Guillory
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, USA
| |
Collapse
|
3
|
Rangel RDCR, Rangel ALR, da Silva KB, Escada ALDA, Chaves JAM, Maia FR, Pina S, Reis RL, Oliveira JM, Rosifini Alves AP. Characterization of Iron Oxide Nanotubes Obtained by Anodic Oxidation for Biomedical Applications-In Vitro Studies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3627. [PMID: 39124291 PMCID: PMC11313345 DOI: 10.3390/ma17153627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/12/2024]
Abstract
To improve the biocompatibility and bioactivity of biodegradable iron-based materials, nanostructured surfaces formed by metal oxides offer a promising strategy for surface functionalization. To explore this potential, iron oxide nanotubes were synthesized on pure iron (Fe) using an anodic oxidation process (50 V-30 min, using an ethylene glycol solution containing 0.3% NH4F and 3% H2O, at a speed of 100 rpm). A nanotube layer composed mainly of α-Fe2O3 with diameters between 60 and 70 nm was obtained. The effect of the Fe-oxide nanotube layer on cell viability and morphology was evaluated by in vitro studies using a human osteosarcoma cell line (SaOs-2 cells). The results showed that the presence of this layer did not harm the viability or morphology of the cells. Furthermore, cells cultured on anodized surfaces showed higher metabolic activity than those on non-anodized surfaces. This research suggests that growing a layer of Fe oxide nanotubes on pure Fe is a promising method for functionalizing and improving the cytocompatibility of iron substrates. This opens up new opportunities for biomedical applications, including the development of cardiovascular stents or osteosynthesis implants.
Collapse
Affiliation(s)
- Rita de Cássia Reis Rangel
- São Paulo State University (UNESP), School of Engineering, Ilha Solteira 15385-007, Brazil; (R.d.C.R.R.); (A.L.R.R.)
| | - André Luiz Reis Rangel
- São Paulo State University (UNESP), School of Engineering, Ilha Solteira 15385-007, Brazil; (R.d.C.R.R.); (A.L.R.R.)
| | - Kerolene Barboza da Silva
- São Paulo State University (UNESP), School of Engineering and Sciences, Guaratinguetá, São Paulo 01049-010, Brazil; (K.B.d.S.); (A.L.d.A.E.)
| | - Ana Lúcia do Amaral Escada
- São Paulo State University (UNESP), School of Engineering and Sciences, Guaratinguetá, São Paulo 01049-010, Brazil; (K.B.d.S.); (A.L.d.A.E.)
| | - Javier Andres Munoz Chaves
- Intelligent System Research Group, Faculty of Engineering, Corporación Universitaria Comfacauca-Unicomfacauca, Popayán 190003, Colombia;
| | - Fátima Raquel Maia
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (F.R.M.); (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Sandra Pina
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (F.R.M.); (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (F.R.M.); (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (F.R.M.); (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Ana Paula Rosifini Alves
- São Paulo State University (UNESP), School of Engineering and Sciences, Guaratinguetá, São Paulo 01049-010, Brazil; (K.B.d.S.); (A.L.d.A.E.)
| |
Collapse
|
4
|
Gao Y, Zhang X, Zhou H. Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair. Pharmaceutics 2023; 15:2405. [PMID: 37896165 PMCID: PMC10609742 DOI: 10.3390/pharmaceutics15102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Tissue engineering and regenerative medicine is a highly sought-after field for researchers aiming to compensate and repair defective tissues. However, the design and development of suitable scaffold materials with bioactivity for application in tissue repair and regeneration has been a great challenge. In recent years, biomimetic hydrogels have shown great possibilities for use in tissue engineering, where they can tune mechanical properties and biological properties through functional chemical modifications. Also, biomimetic hydrogels provide three-dimensional (3D) network spatial structures that can imitate normal tissue microenvironments and integrate cells, scaffolds, and bioactive substances for tissue repair and regeneration. Despite the growing interest in various hydrogels for biomedical use in previous decades, there are still many aspects of biomimetic hydrogels that need to be understood for biomedical and clinical trial applications. This review systematically describes the preparation of biomimetic hydrogels and their characteristics, and it details the use of biomimetic hydrogels in bone, cartilage, and nerve tissue repair. In addition, this review outlines the application of biomimetic hydrogels in bone, cartilage, and neural tissues regarding drug delivery. In particular, the advantages and shortcomings of biomimetic hydrogels in biomaterial tissue engineering are highlighted, and future research directions are proposed.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710000, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
5
|
Xu Y, Wang W, Yu F, Yang S, Yuan Y, Wang Y. The enhancement of mechanical properties and uniform degradation of electrodeposited Fe-Zn alloys by multilayered design for biodegradable stent applications. Acta Biomater 2023; 161:309-323. [PMID: 36858165 DOI: 10.1016/j.actbio.2023.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Pure Fe is a potential biodegradable stent material due to its better biocompatibility and mechanical properties, but its degradation rate needs to be improved. Alloying with Zn to form Fe-Zn alloy is anticipated to meet the degradation rate requirements while retaining the iron's inherent properties. Therefore, Fe-Zn alloys with monolayered and multilayered structures were prepared by electrodeposition. The alloys' composition, microstructure, mechanical properties, in vitro degradation and biocompatibility were assessed. Results showed that the Zn content ranged from 2.1 wt% to 11.6 wt%. After annealing at 450°C, all the alloys consisted of α(Fe) solid solution and Zn-rich B2 ordered coherent phase, except for the alloy with 11.6 wt% Zn content, in which a Fe3Zn10 phase appeared. The layered structure consisted of alternating columnar-grain and nano-grain layers, which compensated for the intrinsic brittleness of electrodeposited metals and improved the galvanic effect of the alloy, thus increasing the strength and plasticity and changing the corrosion from localized to uniform while augmenting the corrosion rate. The yield strength of the multilayered alloy exceeded 350 MPa, its elongation was more than 20%, and its corrosion rate obtained by immersion test in Hank's solution reached 0.367 mm·y-1. Fe-Zn alloys with lower Zn content had good cytocompatibility with the human umbilical vein endothelial cells and good blood compatibility. The above results verified that the multilayered Fe-Zn alloy prepared by electrodeposition presented enhanced mechanical properties, higher degradation rate, uniform degradation mechanism and good biocompatibility. It should be qualified for the application of biodegradable stents. STATEMENT OF SIGNIFICANCE: A potential biodegradable Fe-Zn alloy, which is difficult to be obtained by the metallurgical method, was prepared by electrodeposition to solve the low degradation rate of iron-based biomaterials. A multilayered microstructure design composed of alternating columnar-grain and nano-grain layers was achieved by changing the electrical parameters. The layered design compensated for the intrinsic poor plasticity of electrodeposited metals. It increased the galvanic effect of the alloy, thus augmenting the corrosion rate and changing the corrosion mode of the alloy from localized to uniform corrosion. The yield strength of multilayered alloy exceeded 350 MPa; its elongation was more than 20%. Moreover, the layered alloy had good cytocompatibility and blood compatibility. It indicates that the alloy is qualified for biodegradable stent application.
Collapse
Affiliation(s)
- Yanan Xu
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Weiqiang Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, PR China.
| | - Fengyun Yu
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Shuaikang Yang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yonghui Yuan
- Clinical Research Center for Malignant Tumor of Liaoning Province, Cancer Hospital of Dalian University of Technology, Shenyang 110042, PR China
| | - Yinong Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
6
|
Rabeeh VPM, Hanas T. Progress in manufacturing and processing of degradable Fe-based implants: a review. Prog Biomater 2022; 11:163-191. [PMID: 35583848 PMCID: PMC9156655 DOI: 10.1007/s40204-022-00189-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/01/2022] [Indexed: 12/19/2022] Open
Abstract
Biodegradable metals have gained vast attention as befitting candidates for developing degradable metallic implants. Such implants are primarily employed for temporary applications and are expected to degrade or resorbed after the tissue is healed. Fe-based materials have generated considerable interest as one of the possible biodegradable metals. Like other biometals such as Mg and Zn, Fe exhibits good biocompatibility and biodegradability. The versatility in the mechanical behaviour of Fe-based materials makes them a better choice for load-bearing applications. However, the very low degradation rate of Fe in the physiological environment needs to be improved to make it compatible with tissue growth. Several studies on tailoring the degradation behaviour of Fe in the human body are already reported. Majority of these works include studies on the effect of manufacturing and processing techniques on biocompatibility and biodegradability. This article focuses on a comprehensive review and analysis of the various manufacturing and processing techniques so far reported for developing biodegradable iron-based orthopaedic implants. The current status of research in the field is neatly presented, and a summary of the works is included in the article for the benefit of researchers in the field to contextualise their research and effectively find the lacunae in the existing scholarship.
Collapse
Affiliation(s)
- V P Muhammad Rabeeh
- Nanomaterials Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, 673601, India
| | - T Hanas
- Nanomaterials Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, 673601, India.
- Department of Mechanical Engineering, National Institute of Technology Calicut, Kozhikode, 673601, India.
| |
Collapse
|
7
|
Gorejová R, Podrojková N, Sisáková K, Shepa J, Shepa I, Kovalčíková A, Šišoláková I, Kaľavský F, Oriňaková R. Interaction of thin polyethyleneimine layer with the iron surface and its effect on the electrochemical behavior. Sci Rep 2022; 12:3460. [PMID: 35236912 PMCID: PMC8891304 DOI: 10.1038/s41598-022-07474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Polymer-coated metals may act as biodegradable orthopedic implants with adjustable corrosion rates. Metallic surfaces represent a dynamic system with specific interactions occurring after the material is implanted into the human body. An additional layer, in the form of polymeric thin film, changes the nature of this metal-body fluids interface. Moreover, the interaction between polymer and metal itself can differ for various systems. Iron-based material modified with a thin layer of polyethyleneimine (PEI) coating was prepared and studied as potential absorbable implant. Computational methods were employed to study the interaction between the metallic surface and polymer functional monomer units at atomic levels. Various spectroscopical and optical methods (SEM, AFM, Confocal, and Raman spectroscopy) were also used to characterize prepared material. Electrochemical measurements have been chosen to study the polymer adsorption process onto the iron surface and corrosion behavior which is greatly influenced by the PEI presence. The adsorption mechanism of PEI onto iron was proposed alongside the evaluation of Fe and Fe-PEI degradation behavior studied using the impedance method. Bonding via amino -NH2 group of PEI onto Fe and enhanced corrosion rate of coated samples were observed and confirmed.
Collapse
Affiliation(s)
- Radka Gorejová
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54, Košice, Slovakia
| | - Natália Podrojková
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54, Košice, Slovakia
| | - Katarína Sisáková
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54, Košice, Slovakia
| | - Jana Shepa
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54, Košice, Slovakia
| | - Ivan Shepa
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovakia
| | - Alexandra Kovalčíková
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovakia
| | - Ivana Šišoláková
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54, Košice, Slovakia
| | - František Kaľavský
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54, Košice, Slovakia
| | - Renáta Oriňaková
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54, Košice, Slovakia.
| |
Collapse
|
8
|
Gao C, Zeng Z, Peng S, Shuai C. Magnetostrictive alloys: Promising materials for biomedical applications. Bioact Mater 2022; 8:177-195. [PMID: 34541395 PMCID: PMC8424514 DOI: 10.1016/j.bioactmat.2021.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Magnetostrictive alloys have attracted increasing attention in biomedical applications because of the ability to generate reversible deformation in the presence of external magnetic fields. This review focuses on the advances in magnetostrictive alloys and their biomedical applications. The theories of magnetostriction are systematically summarized. The different types of magnetostrictive alloys and their preparation methods are also reviewed in detail. The magnetostrictive strains and phase compositions of typical magnetostrictive alloys, including iron based, rare-earth based and ferrite materials, are presented. Besides, a variety of approaches to preparing rods, blocks and films of magnetostriction materials, as well as the corresponding methods and setups for magnetostriction measurement, are summarized and discussed. Moreover, the interactions between magnetostrictive alloys and cells are analyzed and emphasis is placed on the transduction and transformation process of mechanochemical signals induced by magnetostriction. The latest applications of magnetostrictive alloys in remote microactuators, magnetic field sensors, wireless implantable devices and biodegradable implants are also reviewed. Furthermore, future research directions of magnetostrictive alloys are prospected with focus on their potential applications in remote cell actuation and bone repair.
Collapse
Affiliation(s)
- Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Zihao Zeng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang, 330013, China
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| |
Collapse
|
9
|
Md Yusop AH, Al Sakkaf A, Nur H. Modifications on porous absorbable Fe-based scaffolds for bone applications: A review from corrosion and biocompatibility viewpoints. J Biomed Mater Res B Appl Biomater 2022; 110:18-44. [PMID: 34132457 DOI: 10.1002/jbm.b.34893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022]
Abstract
Iron (Fe) and Fe-based scaffolds have become a research frontier in absorbable materials which is inherent to their promising mechanical properties including fatigue strength and ductility. Nevertheless, their slow corrosion rate and low biocompatibility have been their major obstacles to be applied in clinical applications. Over the last decade, various modifications on porous Fe-based scaffolds have been performed to ameliorate both properties encompassing surface coating, microstructural alteration via alloying, and advanced topologically order structural design produced by additive manufacturing (AM) techniques. The recent advent of AM produces topologically ordered porous Fe-based structures with an optimized architecture having controllable pore size and strut thickness, intricate internal design, and larger exposed surface area. This undoubtedly opens up new options for controlling Fe corrosion and its structural strengths. However, the in vitro biocompatibility of the AM porous Fe still needs to be addressed considering its higher corrosion rate due to the larger exposed surface area. This review summarizes the latest progress of the modifications on porous Fe-based scaffolds with a specific focus on their responses on the corrosion behavior and biocompatibility.
Collapse
Affiliation(s)
- Abdul Hakim Md Yusop
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Ahmed Al Sakkaf
- School of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Hadi Nur
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Malaysia
- Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Sciences, State University of Malang, Malang, Indonesia
| |
Collapse
|
10
|
Biodegradable Iron-Based Materials-What Was Done and What More Can Be Done? MATERIALS 2021; 14:ma14123381. [PMID: 34207249 PMCID: PMC8233976 DOI: 10.3390/ma14123381] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
Iron, while attracting less attention than magnesium and zinc, is still one of the best candidates for biodegradable metal stents thanks its biocompatibility, great elastic moduli and high strength. Due to the low corrosion rate, and thus slow biodegradation, iron stents have still not been put into use. While these problems have still not been fully resolved, many studies have been published that propose different approaches to the issues. This brief overview report summarises the latest developments in the field of biodegradable iron-based stents and presents some techniques that can accelerate their biocorrosion rate. Basic data related to iron metabolism and its biocompatibility, the mechanism of the corrosion process, as well as a critical look at the rate of degradation of iron-based systems obtained by several different methods are included. All this illustrates as the title says, what was done within the topic of biodegradable iron-based materials and what more can be done.
Collapse
|
11
|
Dargusch MS, Venezuela J, Dehghan‐Manshadi A, Johnston S, Yang N, Mardon K, Lau C, Allavena R. In Vivo Evaluation of Bioabsorbable Fe-35Mn-1Ag: First Reports on In Vivo Hydrogen Gas Evolution in Fe-Based Implants. Adv Healthc Mater 2021; 10:e2000667. [PMID: 33135365 DOI: 10.1002/adhm.202000667] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/09/2020] [Indexed: 12/12/2022]
Abstract
This work investigates the influence of Ag (1 wt%) on the mechanical properties, in vitro and in vivo corrosion, and biocompatibility of Fe-35Mn. The microstructure of Fe-35Mn-1Ag possesses a uniform dispersion of discrete silver particles. Slight improvements in compressive properties are attributed to enhanced density and low porosity volume. Fe-35Mn-1Ag exhibits good in vitro and in vivo corrosion rate of Fe-35Mn due to an increase in microgalvanic corrosion. Gas pockets, which originate from an inflammatory response to the implants, are observed in the rats after 4 weeks implantation but are undetectable after 12 weeks. No chronic toxicity is observed with the Fe-35Mn-1Ag, suggesting acceptable in vivo biocompatibility. The high corrosion rate of the alloy triggers an increased level of nonadverse tissue inflammatory responses 4 weeks after implantation, which subsequently subsides at 12 weeks. The Fe-35Mn-1Ag displays properties that are suitable for orthopedic applications.
Collapse
Affiliation(s)
- Matthew Simon Dargusch
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering Advanced Engineering Building Bldg 49 The University of Queensland Staff House Rd St Lucia QLD 4072 Australia
| | - Jeffrey Venezuela
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering Advanced Engineering Building Bldg 49 The University of Queensland Staff House Rd St Lucia QLD 4072 Australia
| | - Ali Dehghan‐Manshadi
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering Advanced Engineering Building Bldg 49 The University of Queensland Staff House Rd St Lucia QLD 4072 Australia
| | - Sean Johnston
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering Advanced Engineering Building Bldg 49 The University of Queensland Staff House Rd St Lucia QLD 4072 Australia
| | - Nan Yang
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering Advanced Engineering Building Bldg 49 The University of Queensland Staff House Rd St Lucia QLD 4072 Australia
| | - Karine Mardon
- National Imaging Facility, Centre for Advanced Imaging The University of Queensland Brisbane QLD 4072 Australia
| | - Cora Lau
- The University of Queensland Biological Resources Brisbane QLD 4072 Australia
| | - Rachel Allavena
- School of Veterinary Science Building 8114 The University of Queensland Gatton QLD 4343 Australia
| |
Collapse
|
12
|
Abstract
Compared with non-degradable materials, biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects, and have attracted extensive attention from researchers. In the treatment of bone defects, scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role, which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue. Traditional biodegradable materials include polymers, ceramics and metals, which have been used in bone defect repairing for many years. Although these materials have more or fewer shortcomings, they are still the cornerstone of our development of a new generation of degradable materials. With the rapid development of modern science and technology, in the twenty-first century, more and more kinds of new biodegradable materials emerge in endlessly, such as new intelligent micro-nano materials and cell-based products. At the same time, there are many new fabrication technologies of improving biodegradable materials, such as modular fabrication, 3D and 4D printing, interface reinforcement and nanotechnology. This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing, especially the newly emerging materials and their fabrication technology in recent years, and look forward to the future research direction, hoping to provide researchers in the field with some inspiration and reference.
Collapse
Affiliation(s)
- Shuai Wei
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| | - Jian-Xiong Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| | - Lai Xu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong, 226001 China
| | - Xiao-Song Gu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong, 226001 China
| | - Xin-Long Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| |
Collapse
|
13
|
Strong corrosion induced by carbon nanotubes to accelerate Fe biodegradation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109935. [DOI: 10.1016/j.msec.2019.109935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/07/2019] [Accepted: 07/01/2019] [Indexed: 11/19/2022]
|
14
|
Abstract
Absorbable metals have been introduced as materials to fabricate temporary medical implants. Iron, magnesium and zinc have been considered as major base elements of such metals. The metallurgical characterization and in-vitro corrosion assessment of these metals have been covered by the new ASTM standards F3160 and F3268. However, the in-vivo corrosion characterization and assessment of absorbable metal implants are not yet well established. The corrosion of metals in the in-vivo environment leads to metal ion release and corrosion product formation that may cause excessive toxicity. The aim of this work is to introduce the techniques to assess absorbable metal implants and their in-vivo corrosion behavior. This contains the existing approaches, e.g., implant retrieval and histological analysis, ultrasonography and radiography, and the new techniques for real-time in-vivo corrosion monitoring.
Collapse
|
15
|
Qi Y, Li X, He Y, Zhang D, Ding J. Mechanism of Acceleration of Iron Corrosion by a Polylactide Coating. ACS APPLIED MATERIALS & INTERFACES 2019; 11:202-218. [PMID: 30511850 DOI: 10.1021/acsami.8b17125] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Strong and biodegradable materials are key to the development of next-generation medical devices for interventional treatment. Biodegradable polymers such as polylactide (PLA) have controllable degradation profiles, but their mechanical strength is much weaker than some metallic materials such as iron; on the other hand, tuning the corrosion rate of iron to a proper time range for biomedical applications has always been a challenge. Very recently, we have achieved a complete corrosion of iron stent in vivo within the clinically required time frame by combining a PLA coating, which provides a new biomaterial type for the next-generation biodegradable coronary stents termed as a metal-polymer composite stent. The underlying mechanism of accelerating iron corrosion by a PLA coating remains an open fundamental topic. Herein, we investigated the corrosion mechanism of an iron sheet under a PLA coating in the biomimetic in vitro condition. The Pourbaix diagram (potential vs pH) was calculated to present the thermodynamic driving force of iron corrosion in the biomimetic aqueous medium. Electrochemical methods were applied to track the dynamic corrosion process and inspect various potential cues influencing iron corrosion. The present work reveals that acceleration of iron corrosion by the PLA coating arises mainly from decreasing the local pH owing to PLA hydrolysis and from alleviating the deposition of the passivation layer by the polymer coating.
Collapse
Affiliation(s)
- Yongli Qi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
16
|
Abstract
Nowadays, alongside metallic biomaterials, there is increasing interest in using degradable metals in an appreciable number of medical applications. There are new kinds of metallic biomaterials for medical applications and many new findings have been reported over the past few years. Iron-based materials are a solution for biodegradable applications based on their mechanical and chemical properties. In order to control the corrosion rate of the Fe10Mn6Si alloy, we proposed the use of two additional elements, Ca and Mg, as corrosion promoters. The new material was obtained in an air-controlled atmosphere furnace after five melting operations. The material was in vitro analyzed from a corrosion resistance point of view. The experiments were realized by immersion (7, 14, and 30 days) in simulated body fluid (SBF) solution at 37 °C and a constant pH, and by electrochemical tests (electrochemical impedance spectroscopy (EIS), linear polarization (LP), cyclic polarization (CP)). Material surfaces before and after corrosion tests were analyzed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) techniques. A discussion on the degradation rate of the material was realized from a comparison of the results. The results presented good composition homogeneity after the re-melting stages, with low percentages of Ca and Mg in the material, but with an adequate spread in the alloy.
Collapse
|
17
|
Hermawan H. Updates on the research and development of absorbable metals for biomedical applications. Prog Biomater 2018; 7:93-110. [PMID: 29790132 PMCID: PMC6068061 DOI: 10.1007/s40204-018-0091-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Absorbable metals, metals that corrode in physiological environment, constitute a new class of biomaterials intended for temporary medical implant applications. The introduction of these metals has shifted the established paradigm of metal implants from preventing corrosion to its direct application. Interest toward absorbable metals has been growing in the past decade. This is proved by the rapid increase in scientific publication, progressive development of standards, and launching the first commercial products. Iron, magnesium, zinc, and their alloys are the current three absorbable metals families. Magnesium-based metals are the most progressing family with a large data set obtained from both basic and translational research. Iron-based metals are still facing a major challenge of low in vivo corrosion rate despite the significant efforts that have been put to overcome its weakness. Zinc-based metals are the new alternative absorbable metals with moderate corrosion rates that fall between those of iron and magnesium. This manuscript provides a brief review on the latest progress in the research and development of absorbable metals, the most important findings, the remaining challenges, and the perspective on the future direction.
Collapse
Affiliation(s)
- Hendra Hermawan
- Department of Mining, Metallurgical and Materials Engineering and CHU de Québec Research Center, Laval University, Quebec City, G1V 0A6, Canada.
| |
Collapse
|
18
|
Biodegradable Metallic Wires in Dental and Orthopedic Applications: A Review. METALS 2018. [DOI: 10.3390/met8040212] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Qi Y, Qi H, He Y, Lin W, Li P, Qin L, Hu Y, Chen L, Liu Q, Sun H, Liu Q, Zhang G, Cui S, Hu J, Yu L, Zhang D, Ding J. Strategy of Metal-Polymer Composite Stent To Accelerate Biodegradation of Iron-Based Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:182-192. [PMID: 29243907 DOI: 10.1021/acsami.7b15206] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The new principle and technique to tune biodegradation rates of biomaterials is one of the keys to the development of regenerative medicine and next-generation biomaterials. Biodegradable stents are new-generation medical devices applied in percutaneous coronary intervention, etc. Recently, both corrodible metals and degradable polymers have drawn much attention in biodegradable stents or scaffolds. It is, however, a dilemma to achieve good mechanical properties and appropriate degradation profiles. Herein, we put forward a metal-polymer composite strategy to achieve both. Iron stents exhibit excellent mechanical properties but low corrosion rate in vivo. We hypothesized that coating of biodegradable aliphatic polyester could accelerate iron corrosion due to the acidic degradation products, etc. To demonstrate the feasibility of this composite material technique, we first conducted in vitro experiments to affirm that iron sheet corroded faster when covered by polylactide (PLA) coating. Then, we fabricated three-dimensional metal-polymer stents (MPS) and implanted the novel stents in the abdominal aorta of New Zealand white rabbits, setting metal-based stents (MBS) as a control. A series of in vivo experiments were performed, including measurements of residual mass and radial strength of the stents, histological analysis, micro-computed tomography, and optical coherence tomography imaging at the implantation site. The results showed that MPS could totally corrode in some cases, whereas iron struts of MBS in all cases remained several months after implantation. Corrosion rates of MPS could be easily regulated by adjusting the composition of PLA coatings.
Collapse
Affiliation(s)
- Yongli Qi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Haiping Qi
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Wenjiao Lin
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Peize Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Li Qin
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Yiwen Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Liping Chen
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Hongtao Sun
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Gui Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Jun Hu
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| |
Collapse
|