1
|
Wang Y, Zhang Z, Sun Y, Wu H, Luo L, Song Y. Recent Advances in Surface-Enhanced Raman Scattering for Pathogenic Bacteria Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:1370. [PMID: 40096117 PMCID: PMC11902806 DOI: 10.3390/s25051370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Bacterial infection is one of the common infectious diseases in clinical practice, and the research on efficient detection of bacteria has attracted much attention in recent years. Currently, the traditional detection methods of bacteria are mainly based on cell culturing, microscopic examination, and molecular biology techniques, all of which have the disadvantages of complex operation and time-consuming. Surface-enhanced Raman spectroscopy (SERS) technology has shown prominent advantages in bacterial detection and identification because of the merit of high-sensitivity, fast detection and unique molecular fingerprint spectrum. This paper mainly investigates and discusses the application of SERS in bacterial detection, and systematically reviews the progress of SERS applications, including nano-enhanced dielectric materials of SERS, signal amplification of SERS labeled molecules, and the integration of SERS with microfluidic technology. Finally, the paper analyzes the challenges associated with the application of SERS in bacterial detection and offers insights into future development trends.
Collapse
Affiliation(s)
- Yimai Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; (Y.W.); (H.W.)
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
| | - Zhiqiang Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou 215163, China
| | - Yixiang Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
| | - Huimin Wu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; (Y.W.); (H.W.)
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; (Y.W.); (H.W.)
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou 215163, China
| |
Collapse
|
2
|
Beeram R, Vepa KR, Soma VR. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. BIOSENSORS 2023; 13:328. [PMID: 36979540 PMCID: PMC10046859 DOI: 10.3390/bios13030328] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.
Collapse
Affiliation(s)
| | | | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia—Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
3
|
Ma X, Xu S, Li L, Wang Z. A novel SERS method for the detection of Staphylococcus aureus without immobilization based on Au@Ag NPs/slide substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121757. [PMID: 36029743 DOI: 10.1016/j.saa.2022.121757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Here, an aptamer-based SERS method for the detection of Staphylococcus aureus (S. aureus) without immobilization using Au@Ag NPs/slide as enhanced substrate was constructed. ROX-aptamer of S. aureus was modified on the surface of Au@Ag NPs/slide through electrostatic interaction. Based on the specific binding effect of the aptamer to S. aureus, the ROX-aptamer fell off from the surface of the substrate, resulting in a decrease of the SERS signal intensity of the substrate. Under the optimal experimental conditions, a good linear relationship was found between SERS intensity at 1500 cm-1 and the logarithm of concentration of S. aureus in the range of 102 cfu/mL-107 cfu/mL (y = 6623-796lgx, R2 = 0.994) with a detection limit of 6 cfu/mL. The selectivity analysis revealed that the method had higher selectivity toward the corresponding target. The results for milk sample using the developed SERS method for the detection of S. aureus were similar to those of the plate counting method. The recovery ratio was from 90.60% to 107.26%, indicating the accuracy and reliability of the developed method. This method eliminates the need for bacterial immobilization and improves the convenience and efficiency of detection.
Collapse
Affiliation(s)
- Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, PR China.
| | - Shan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, PR China
| | - Liangyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
4
|
Ramzannezhad A, Hayati A, Bahari A, Najafi-Ashtiani H. Magnetic detection of albuminuria using hematite nanorods synthesized via chemical hydrothermal method. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:962-968. [PMID: 34712427 PMCID: PMC8528259 DOI: 10.22038/ijbms.2021.53918.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/03/2021] [Indexed: 11/06/2022]
Abstract
Objectives Albuminuria is a biomarker in the diagnosis of kidney disease which is due to the presence of high albumin in the urine and is one of the complications of diabetes. In recent years, the methods used to identify albuminuria have been expensive and time-consuming. Furthermore, another problem is the lack of accurate measurement of albuminuria. This problem leads to kidney isolation as well as a decrease in erythropoietin levels. Therefore, the main aim of our work is to design a magnetic nanobiosensor with better sensitivity to detect minimal levels of albuminuria. Materials and Methods In the present work, we synthesized Hematite Nano Rods (HNRs) using FeCl3, NaOH and Cetyltrimethylammonium bromide (CTAB) precursors via the hydrothermal method. Then, HNRs were characterized using UV-vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM) techniques. Results The obtained results from clinical performance of the HNR nanobiosensor show that the magnetization changes of HNR in interaction with the albumin biomarker can determine the presence or absence of protein in biological samples. The accuracy and repeatability of the HNR nanobiosensor from the value of the R2 coefficient in the standard equation is 0.9743. Conclusion We obtained the standard curve through interaction of the HNRs with albumin protein. The standard equation is obtained by plotting the magnetization curve of a non-interacting sample to interacting samples in terms of protein concentration. The Bland-Altman statistical graph prove that the HNR nanobiosensor is as reliable as experimental methods.
Collapse
Affiliation(s)
- Ali Ramzannezhad
- Department of Science, Faculty of Imam Mohammad Bagher, Mazandaran Branch, Technical and Vocational University, Sari, Iran.,Department of Physics, Faculty of Basic Sciences, University of Mazandaran,Sari, Iran
| | - Amir Hayati
- Department of Science, Faculty of Imam Mohammad Bagher, Mazandaran Branch, Technical and Vocational University, Sari, Iran
| | - Ali Bahari
- Department of Physics, Faculty of Basic Sciences, University of Mazandaran,Sari, Iran
| | | |
Collapse
|
5
|
Szaniawska A, Kudelski A. Applications of Surface-Enhanced Raman Scattering in Biochemical and Medical Analysis. Front Chem 2021; 9:664134. [PMID: 34026727 PMCID: PMC8138180 DOI: 10.3389/fchem.2021.664134] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
In this mini-review, we briefly describe certain recently developed applications of the surface-enhanced Raman spectroscopy (SERS) for determining various biochemically (especially medically) important species from ones as simple as hydrogen cations to those as complex as specific DNA fragments. We present a SERS analysis of species whose characterization is important to our understanding of various mechanisms in the human body and to show its potential as an alternative for methods routinely used in diagnostics and clinics. Furthermore, we explain how such SERS-based sensors operate and point out future prospects in this field.
Collapse
|
6
|
Witkowska E, Łasica AM, Niciński K, Potempa J, Kamińska A. In Search of Spectroscopic Signatures of Periodontitis: A SERS-Based Magnetomicrofluidic Sensor for Detection of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. ACS Sens 2021; 6:1621-1635. [PMID: 33792284 PMCID: PMC8155661 DOI: 10.1021/acssensors.1c00166] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Recently, Porphyromonas gingivalis, the keystone pathogen implicated
in the development of gum disease
(periodontitis), was detected in the brains of Alzheimer’s
disease patients, opening up a fascinating possibility that it is
also involved in the pathobiology of this neurodegenerative illness.
To verify this hypothesis, an unbiased, specific, and sensitive method
to detect this pathogen in biological specimens is needed. To this end, our interdisciplinary
studies demonstrate that P. gingivalis can be easily identified by surface-enhanced Raman scattering (SERS).
Moreover, based on SERS measurements, P. gingivalis can be distinguished from another common periodontal pathogen, Aggregatibacter actinomycetemcomitans, and also from
ubiquitous oral Streptococcus spp.
The results were confirmed by principal component analysis (PCA).
Furthermore, we have shown that different P. gingivalis and A. actinomycetemcomitans strains
can easily adsorb to silver-coated magnetic nanoparticles (Fe2O3@AgNPs). Thus, it is possible to magnetically
separate investigated bacteria from other components of a specimen
using the microfluidic chip. To obtain additional enhancement of the
Raman signal, the NPs adsorbed to bacterial cells were magnetically
attracted to the Si/Ag SERS platform. Afterward, the SERS spectra
could be recorded. Such a time-saving procedure can be very helpful
in rapid medical diagnostics and thus in starting the appropriate
pharmacological therapy to prevent the development of periodontitis
and associated comorbidities, e.g., Alzheimerʼs disease.
Collapse
Affiliation(s)
- Evelin Witkowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna M. Łasica
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Krzysztof Niciński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston Street, Louisville, Kentucky 40202, United States
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
7
|
Combined negative dielectrophoresis with a flexible SERS platform as a novel strategy for rapid detection and identification of bacteria. Anal Bioanal Chem 2021; 413:2007-2020. [PMID: 33507352 DOI: 10.1007/s00216-021-03169-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational method successfully applied in analytical chemistry, molecular biology and medical diagnostics. In this article, we demonstrate the combination of the negative dielectrophoretic (nDEP) phenomenon and a flexible surface-enhanced Raman platform for quick isolation (3 min), concentration and label-free identification of bacteria. The platform ensures a strong enhancement factor, high stability and reproducibility for the SERS response of analyzed samples. By introducing radial dielectrophoretic forces directed at the SERS platform, we can efficiently execute bacterial cell separation, concentration and deposition onto the SERS-active surface, which simultaneously works as a counter electrode and thus enables such hybrid DEP-SERS device vibration-based detection. Additionally, we show the ability of our DEP-SERS system to perform rapid, cultivation-free, direct detection of bacteria in urine and apple juice samples. The device provides new opportunities for the detection of pathogens.
Collapse
|
8
|
Wan M, Zhao H, Peng L, Zou X, Zhao Y, Sun L. Loading of Au/Ag Bimetallic Nanoparticles within and Outside of the Flexible SiO 2 Electrospun Nanofibers as Highly Sensitive, Stable, Repeatable Substrates for Versatile and Trace SERS Detection. Polymers (Basel) 2020; 12:E3008. [PMID: 33339343 PMCID: PMC7766957 DOI: 10.3390/polym12123008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
In this paper, we propose a facile and cost-effective electrospinning technique to fabricate surface-enhanced Raman scattering (SERS) substrates, which is appropriate for multiple analytes detection. First of all, HAuCl4∙3H2O was added into the TEOS/PVP precursor solution, and flexible SiO2 nanofibers incorporated with gold nanoparticles (SiO2@Au) were prepared by electrospinning and calcination. Subsequently, the nanofibrous membranes were immersed in the tannic acid and 3-aminopropyltriethoxysilane solution for surface modification through Michael addition reaction. Finally, the composite nanofibers (Ag@T-A@SiO2@Au) were obtained by the in-situ growth of Ag nanoparticles on the surfaces of nanofibers with tannic acid as a reducing agent. Due to the synergistic enhancement of Au and Ag nanoparticles, the flexible and self-supporting composite nanofibrous membranes have excellent SERS properties. Serving as SERS substrates, they are extremely sensitive to the detection of 4-mercaptophenol and 4-mercaptobenzoic acid, with an enhancement factor of 108. Moreover, they could be utilized to detect analytes such as pesticide thiram at a low concentration of 10-8 mol/L, and the substrates retain excellent Raman signals stability during the durability test of 60 days. Furthermore, the as-fabricated substrates, as a versatile SERS platform, could be used to detect bacteria of Staphylococcus aureus without a specific and complicated bacteria-aptamer conjugation procedure, and the detection limit is up to 103 colony forming units/mL. Meanwhile, the substrates also show an excellent repeatability of SERS response for S. aureus organelles. Briefly, the prime novelty of this work is the fabrication of Au/Ag bimetallic synergetic enhancement substrates as SERS platform for versatile detection with high sensitivity and stability.
Collapse
Affiliation(s)
| | | | - Lichao Peng
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; (M.W.); (H.Z.); (X.Z.); (Y.Z.)
| | | | | | - Lei Sun
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; (M.W.); (H.Z.); (X.Z.); (Y.Z.)
| |
Collapse
|
9
|
Zhou X, Hu Z, Yang D, Xie S, Jiang Z, Niessner R, Haisch C, Zhou H, Sun P. Bacteria Detection: From Powerful SERS to Its Advanced Compatible Techniques. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001739. [PMID: 33304748 PMCID: PMC7710000 DOI: 10.1002/advs.202001739] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/24/2020] [Indexed: 05/13/2023]
Abstract
The rapid, highly sensitive, and accurate detection of bacteria is the focus of various fields, especially food safety and public health. Surface-enhanced Raman spectroscopy (SERS), with the advantages of being fast, sensitive, and nondestructive, can be used to directly obtain molecular fingerprint information, as well as for the on-line qualitative analysis of multicomponent samples. It has therefore become an effective technique for bacterial detection. Within this progress report, advances in the detection of bacteria using SERS and other compatible techniques are discussed in order to summarize its development in recent years. First, the enhancement principle and mechanism of SERS technology are briefly overviewed. The second part is devoted to a label-free strategy for the detection of bacterial cells and bacterial metabolites. In this section, important considerations that must be made to improve bacterial SERS signals are discussed. Then, the label-based SERS strategy involves the design strategy of SERS tags, the immunomagnetic separation of SERS tags, and the capture of bacteria from solution and dye-labeled SERS primers. In the third part, several novel SERS compatible technologies and applications in clinical and food safety are introduced. In the final part, the results achieved are summarized and future perspectives are proposed.
Collapse
Affiliation(s)
- Xia Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
| | - Ziwei Hu
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological TechnologyMedical School of Ningbo UniversityNingboZhejiang315211China
| | - Shouxia Xie
- The Second Clinical Medical College (Shenzhen People's Hospital)Jinan UniversityShenzhenGuangdong518020China
| | - Zhengjin Jiang
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical ChemistryTechnical University of MunichMarchioninistr. 17MunichD‐81377Germany
| | - Christoph Haisch
- Institute of Hydrochemistry and Chair for Analytical ChemistryTechnical University of MunichMarchioninistr. 17MunichD‐81377Germany
| | - Haibo Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
- The Second Clinical Medical College (Shenzhen People's Hospital)Jinan UniversityShenzhenGuangdong518020China
| | - Pinghua Sun
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
| |
Collapse
|
10
|
Romero M, Macchione MA, Mattea F, Strumia M. The role of polymers in analytical medical applications. A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Berus S, Witkowska E, Niciński K, Sadowy E, Puzia W, Ronkiewicz P, Kamińska A. Surface-enhanced Raman scattering as a discrimination method of Streptococcus spp. and alternative approach for identifying capsular types of S. pneumoniae isolates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118088. [PMID: 32146423 DOI: 10.1016/j.saa.2020.118088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
The surface-enhanced Raman spectroscopy (SERS) is a method known for its effectiveness in detecting and identifying microorganisms, that was employed to differentiate various bacterial strains both at genus and species level. In this work, we have examined five species belonging to Streptococcus genus, namely S. pneumoniae, S. suis, S. pseudopneumoniae, S. oralis, and S. mitis. Additionally, we conducted SERS experiments on ten S. pneumoniae strains, representing different capsular types. In all of cases we obtained unique SERS signals being spectroscopic fingerprints of bacterial strains tested. Moreover, the principal component analysis (PCA) was performed in order to prove that the spectra of all studied strains can be well separated into five (in case of streptococcal strains) or ten (in case of pneumococcal serotypes) groups. In both investigated situations, the separation at the level of 95% was achieved, proving that SERS-PCA-based method can be used for reliable and fast identification of different strains belonging to the Streptococcus genus, including encapsulated pneumococcal isolates.
Collapse
Affiliation(s)
- S Berus
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - E Witkowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - K Niciński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - E Sadowy
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - W Puzia
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; Institute of Biochemistry and Biophysics, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - P Ronkiewicz
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - A Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
12
|
Nowicka AB, Czaplicka M, Kowalska AA, Szymborski T, Kamińska A. Flexible PET/ITO/Ag SERS Platform for Label-Free Detection of Pesticides. BIOSENSORS 2019; 9:E111. [PMID: 31546934 PMCID: PMC6784364 DOI: 10.3390/bios9030111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022]
Abstract
We show a new type of elastic surface-enhanced Raman spectroscopy (SERS) platform made of poly(ethylene terephthalate) (PET) covered with a layer of indium tin oxide (ITO). This composite is subjected to dielectric barrier discharge (DBD) that develops the active surface of the PET/ITO foil. To enhance the Raman signal, a modified composite was covered with a thin layer of silver using the physical vapor deposition (PVD) technique. The SERS platform was used for measurements of para-mercaptobenzoic acid (p-MBA) and popular pesticides, i.e., Thiram and Carbaryl. The detection and identification of pesticides on the surface of fruits and vegetables is a crucial issue due to extensive use of those chemical substances for plant fungicide and insecticide protection. Therefore, the developed PET/ITO/Ag SERS platform was dedicated to quantitative analysis of selected pesticides, i.e., Thiram and Carbaryl from fruits. The presented SERS platform exhibits excellent enhancement and reproducibility of the Raman signal, which enables the trace analysis of these pesticides in the range up to their maximum residues limit. Based on the constructed calibration curves, the pesticide concentrations from the skin of apples was estimated as 2.5 µg/mL and 0.012 µg/mL for Thiram and Carbaryl, respectively. Additionally, the PET/ITO/Ag SERS platform satisfies other spectroscopic properties required for trace pesticide analysis e.g., ease, cost-effective method of preparation, and specially designed physical properties, especially flexibility and transparency, that broaden the sampling versatility to irregular surfaces.
Collapse
Affiliation(s)
- Ariadna B Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Marta Czaplicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Aneta A Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
13
|
Niciński K, Krajczewski J, Kudelski A, Witkowska E, Trzcińska-Danielewicz J, Girstun A, Kamińska A. Detection of circulating tumor cells in blood by shell-isolated nanoparticle - enhanced Raman spectroscopy (SHINERS) in microfluidic device. Sci Rep 2019; 9:9267. [PMID: 31239487 PMCID: PMC6592934 DOI: 10.1038/s41598-019-45629-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Isolation and detection of circulating tumor cells (CTCs) from human blood plays an important role in non- invasive screening of cancer evolution and in predictive therapeutic treatment. Here, we present the novel tool utilizing: (i) the microfluidic device with (ii) incorporated photovoltaic (PV) based SERS-active platform, and (iii) shell-isolated nanoparticles (SHINs) for simultaneous separation and label-free analysis of circulating tumour cells CTCs in the blood specimens with high specificity and sensitivity. The proposed microfluidic chip enables the efficient size - based inertial separation of circulating cancer cells from the whole blood samples. The SERS-active platform incorporated into the microfluidic device permits the label-free detection and identification of isolated cells through the insight into their molecular and biochemical structure. Additionally, the silver nanoparticles coated with an ultrathin shell of silica (Ag@SiO2) was used to improve the detection accuracy and sensitivity of analysed tumor cells via taking advantages of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). The empirical analysis of SHINERS spectra revealed that there are some differences among studied (HeLa), renal cell carcinoma (Caki-1), and blood cells. Unique SHINERS features and differences in bands intensities between healthy and cancer cells might be associated with the variations in the quantity and quality of molecules such as lipid, protein, and DNA or their structure during the metastasis cancer formation. To demonstrate the statistical efficiency of the developed method and improve the differentiation for circulating tumors cells detection the principal component analysis (PCA) has been performed for all SHINERS data. PCA method has been applied to recognize the most significant differences in SHINERS data among the three analyzed cells: Caki-1, HeLa, and blood cells. The proposed approach challenges the current multi-steps CTCs detection methods in the terms of simplicity, sensitivity, invasiveness, destructivity, time and cost of analysis, and also prevents the defragmentation/damage of tumor cells and thus leads to improving the accuracy of analysis. The results of this research work show the potential of developed SERS based tool for the separation of tumor cells from whole blood samples in a simple and minimally invasive manner, their detection and molecular characterization using one single technology.
Collapse
Affiliation(s)
- K Niciński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - J Krajczewski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - A Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - E Witkowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - J Trzcińska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - A Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - A Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
14
|
Detection of Circulating Tumor Cells Using Membrane-Based SERS Platform: A New Diagnostic Approach for 'Liquid Biopsy'. NANOMATERIALS 2019; 9:nano9030366. [PMID: 30841516 PMCID: PMC6473992 DOI: 10.3390/nano9030366] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 01/05/2023]
Abstract
The detection and monitoring of circulating tumor cells (CTCs) in blood is an important strategy for early cancer evidence, analysis, monitoring of therapeutic response, and optimization of cancer therapy treatments. In this work, tailor-made membranes (MBSP) for surface-enhanced Raman spectroscopy (SERS)-based analysis, which permitted the separation and enrichment of CTCs from blood samples, were developed. A thin layer of SERS-active metals deposited on polymer mat enhanced the Raman signals of CTCs and provided further insight into CTCs molecular and biochemical composition. The SERS spectra of all studied cells—prostate cancer (PC3), cervical carcinoma (HeLa), and leucocytes as an example of healthy (normal) cell—revealed significant differences in both the band positions and/or their relative intensities. The multivariate statistical technique based on principal component analysis (PCA) was applied to identify the most significant differences (marker bands) in SERS data among the analyzed cells and to perform quantitative analysis of SERS data. Based on a developed PCA algorithm, the studied cell types were classified with an accuracy of 95% in 2D PCA to 98% in 3D PCA. These results clearly indicate the diagnostic efficiency for the discrimination between cancer and normal cells. In our approach, we exploited the one-step technology that exceeds most of the multi-stage CTCs analysis methods used and enables simultaneous filtration, enrichment, and identification of the tumor cells from blood specimens.
Collapse
|
15
|
Witkowska E, Niciński K, Korsak D, Szymborski T, Kamińska A. Sources of variability in SERS spectra of bacteria: comprehensive analysis of interactions between selected bacteria and plasmonic nanostructures. Anal Bioanal Chem 2019; 411:2001-2017. [PMID: 30828759 PMCID: PMC6458985 DOI: 10.1007/s00216-019-01609-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/17/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
Abstract
The surface-enhanced Raman spectroscopy (SERS)-based analysis of bacteria suffers from the lack of a standard SERS detection protocol (type of substrates, excitation frequencies, and sampling methodologies) that could be employed throughout laboratories to produce repeatable and valuable spectral information. In this work, we have examined several factors influencing the spectrum and signal enhancement during SERS studies conducted on both Gram-negative and Gram-positive bacterial species: Escherichia coli and Bacillus subtilis, respectively. These factors can be grouped into those which are related to the structure and types of plasmonic systems used during SERS measurements and those that are associated with the culturing conditions, types of culture media, and method of biological sample preparation. ![]()
Collapse
Affiliation(s)
- Evelin Witkowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Krzysztof Niciński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Dorota Korsak
- Faculty of Biology, Department of Applied Microbiology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
16
|
Niciński K, Witkowska E, Korsak D, Noworyta K, Trzcińska-Danielewicz J, Girstun A, Kamińska A. Photovoltaic cells as a highly efficient system for biomedical and electrochemical surface-enhanced Raman spectroscopy analysis. RSC Adv 2019; 9:576-591. [PMID: 35517626 PMCID: PMC9059484 DOI: 10.1039/c8ra08319c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) has been intensively used recently as a highly sensitive, non-destructive, chemical specific, and label-free technique for a variety of studies. Here, we present a novel SERS substrate for: (i) the standard ultra-trace analysis, (ii) detection of whole microorganisms, and (iii) spectroelectrochemical measurements. The integration of electrochemistry and SERS spectroscopy is a powerful approach for in situ investigation of the structural changes of adsorbed molecules, their redox properties, and for studying the intermediates of the reactions. We have developed a conductive SERS platform based on photovoltaic materials (PV) covered with a thin layer of silver, especially useful in electrochemical SERS analysis. These substrates named Ag/PV presented in this study combine crucial spectroscopic features such as high sensitivity, reproducibility, specificity, and chemical/physical stability. The designed substrates permit the label-free identification and differentiation of cancer cells (renal carcinoma) and pathogens (Escherichia coli and Bacillus subtilis). In addition, the developed SERS platform was adopted as the working electrode in an electrochemical SERS approach for p-aminothiophenol (p-ATP) studies. The capability to monitor in real-time the electrochemical changes spectro-electro-chemically has great potential for broadening the application of SERS.
Collapse
Affiliation(s)
- K Niciński
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - E Witkowska
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - D Korsak
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw Miecznikowa 1 02-096 Warsaw Poland
| | - K Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - J Trzcińska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw Miecznikowa 1 02-096 Warsaw Poland
| | - A Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw Miecznikowa 1 02-096 Warsaw Poland
| | - A Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
17
|
Szlag VM, Rodriguez RS, He J, Hudson-Smith N, Kang H, Le N, Reineke TM, Haynes CL. Molecular Affinity Agents for Intrinsic Surface-Enhanced Raman Scattering (SERS) Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31825-31844. [PMID: 30134102 DOI: 10.1021/acsami.8b10303] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research at the interface of synthetic materials, biochemistry, and analytical techniques has enabled sensing platforms for applications across many research communities. Herein we review the materials used as affinity agents to create surface-enhanced Raman spectroscopy (SERS) sensors. Our scope includes those affinity agents (antibody, aptamer, small molecule, and polymer) that facilitate the intrinsic detection of targets relevant to biology, medicine, national security, environmental protection, and food safety. We begin with an overview of the analytical technique (SERS) and considerations for its application as a sensor. We subsequently describe four classes of affinity agents, giving a brief overview on affinity, production, attachment chemistry, and first uses with SERS. Additionally, we review the SERS features of the affinity agents, and the analytes detected by intrinsic SERS with that affinity agent class. We conclude with remarks on affinity agent selection for intrinsic SERS sensing platforms.
Collapse
Affiliation(s)
- Victoria M Szlag
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Rebeca S Rodriguez
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Jiayi He
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Natalie Hudson-Smith
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Hyunho Kang
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ngoc Le
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Theresa M Reineke
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christy L Haynes
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
18
|
Wang K, Li S, Petersen M, Wang S, Lu X. Detection and Characterization of Antibiotic-Resistant Bacteria Using Surface-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E762. [PMID: 30261660 PMCID: PMC6215266 DOI: 10.3390/nano8100762] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022]
Abstract
This mini-review summarizes the most recent progress concerning the use of surface-enhanced Raman spectroscopy (SERS) for the detection and characterization of antibiotic-resistant bacteria. We first discussed the design and synthesis of various types of nanomaterials that can be used as the SERS-active substrates for biosensing trace levels of antibiotic-resistant bacteria. We then reviewed the tandem-SERS strategy of integrating a separation element/platform with SERS sensing to achieve the detection of antibiotic-resistant bacteria in the environmental, agri-food, and clinical samples. Finally, we demonstrated the application of using SERS to investigate bacterial antibiotic resistance and susceptibility as well as the working mechanism of antibiotics based on spectral fingerprinting of the whole cells.
Collapse
Affiliation(s)
- Kaidi Wang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Shenmiao Li
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Marlen Petersen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300371, China.
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| |
Collapse
|
19
|
Szymborski T, Witkowska E, Niciński K, Majka Z, Krehlik T, Deskur T, Winkler K, Kamińska A. Steel Wire Mesh as a Thermally Resistant SERS Substrate. NANOMATERIALS 2018; 8:nano8090663. [PMID: 30149680 PMCID: PMC6163328 DOI: 10.3390/nano8090663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 01/20/2023]
Abstract
In this paper, we present novel type of Surface-enhanced Raman spectroscopy (SERS) platform, based on stainless steel wire mesh (SSWM) covered with thin silver layer. The stainless steel wire mesh, typically used in chemical engineering industry, is a cheap and versatile substrate for SERS platforms. SSWM consists of multiple steel wires with diameter of tens of micrometers, which gives periodical structure and high stiffness. Moreover, stainless steel provides great resistance towards organic and inorganic solvents and provides excellent heat dissipation. It is worth mentioning that continuous irradiation of the laser beam over the SERS substrate can be a source of significant increase in the local temperature of metallic nanostructures, which can lead to thermal degradation or fragmentation of the adsorbed analyte. Decomposition or fragmentation of the analysed sample usually causea a significant decrease in the intensity of recorded SERS bands, which either leads to false SERS responses or enables the analysis of spectral data. To our knowledge, we have developed for the first time the thermally resistant SERS platform. This type of SERS substrate, termed Ag/SSWM, exhibit high sensitivity (Enhancement Factor (EF) = 106) and reproducibility (Relative Standard Deviation (RSD) of 6.4%) towards detection of p-mercaptobenzoic acid (p-MBA). Besides, Ag/SSWM allows the specific detection and differentiation between Gram-positive and Gram-negative bacterial species: Escherichia coli and Bacillus subtilis in label-free and reproducible manner. The unique properties of designed substrate overcome the limitations associated with photo- and thermal degradation of sensitive bacterial samples. Thus, a distinctive SERS analysis of all kinds of chemical and biological samples at high sensitivity and selectivity can be performed on the developed SERS-active substrate.
Collapse
Affiliation(s)
- Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
- Soft Materials Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Evelin Witkowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Krzysztof Niciński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Zuzanna Majka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Tomasz Krehlik
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Tomiła Deskur
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Katarzyna Winkler
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
20
|
Großerhode C, Wehlage D, Grothe T, Grimmelsmann N, Fuchs S, Hartmann J, Mazur P, Reschke V, Siemens H, Rattenholl A, Vanessa Homburg S, Ehrmann A. Investigation of microalgae growth on electrospun nanofiber mats. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.3.376] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|