1
|
Pan B, Zhang Z, Wu X, Xian G, Hu X, Gu M, Zheng L, Li X, Long L, Chen W, Sheng P. Macrophages-derived exosomes modulates wear particle-induced osteolysis via miR-3470b targeting TAB3/NF-κB signaling. Bioact Mater 2023; 26:181-193. [PMID: 36911207 PMCID: PMC9999169 DOI: 10.1016/j.bioactmat.2023.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023] Open
Abstract
Image 1.
Collapse
Key Words
- APL, Aseptic prothesis loosening
- Aseptic prothesis loosening
- Bglap, Osteocalcin
- CTSK, Cathepsin K
- Exosome
- Inflammatory osteolysis
- Macrophage
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NFATc-1, Nuclear factor of activated T-cells, cytoplasmic 1
- Non-coding RNA
- OB, Osteoblast
- OC, Osteoclast
- P-P65, phospho-P65
- P65, NF-κB signaling
- Runx2, Runt-related transcription factor 2
- TAB3, TGF-β-activated kinase 1 (MAP3K7) binding protein 3
- ncRNA, non-coding RNA
Collapse
Affiliation(s)
- Baiqi Pan
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Xiaoyu Wu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Guoyan Xian
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China.,Université de Paris, CNRS, INSERM, B3OA, Paris, France
| | - Xuantao Hu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Minghui Gu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Linli Zheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China.,Department of Spine Surgery, The first affiliated hospital of Sun Yat-sen University, China
| | - Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Weishen Chen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| |
Collapse
|
2
|
Mechanical and Tribological Performance of HDPE Matrix Reinforced by Hybrid Gr/TiO2 NPs for Hip Joint Replacement. J Funct Biomater 2023; 14:jfb14030140. [PMID: 36976064 PMCID: PMC10059748 DOI: 10.3390/jfb14030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Hip joint collapse is a very common health problem. Many cases need a joint replacement, so nano-polymeric composites are an ideal alternative solution. Due to its mechanical properties and wear resistance, HDPE might be considered a suitable alternative to frictional materials. The current research focuses on using hybrid nanofiller TiO2 NPs and nano-graphene with various loading compositions to evaluate the best loading amount. The compressive strength, modules of elasticity, and hardness were examined via experiments. The COF and wear resistance were evaluated via a pin-on-disk tribometer. The worn surfaces were analyzed based on 3D topography and SEM images. The HDPE samples with various compositions of 0.5%, 1.0%, 1.5%, and 2.0 wt.% filling content of TiO2 NPs and Gr (with a ratio of 1:1) were analyzed. Results revealed that hybrid nanofiller with a composition of 1.5 wt.% exhibits superior mechanical properties compared to other filling compositions. Moreover, the COF and wear rate decreased by 27.5% and 36.3%, respectively.
Collapse
|
3
|
Su J, Wang J, Yan S, Zhang M, Zhang N, Luan Y, Cheng CK. Wear Analysis of Tibial Inserts Made of Highly Cross-Linked Polyethylene Supplemented with Dodecyl Gallate before and after Accelerated Aging. Polymers (Basel) 2022; 14:polym14235281. [PMID: 36501675 PMCID: PMC9737456 DOI: 10.3390/polym14235281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The wear of the tibial insert is one of the primary factors leading to the failure of total knee arthroplasty. As materials age, their wear performance often degrades. Supplementing highly cross-linked polyethylene (HXLPE) with dodecyl gallate (DG) can improve the oxidation stability of tibial inserts for use in total knee arthroplasty (TKA). This study aimed to evaluate the wear resistance of HXLPE supplemented with DG (HXLPE-DG) tibial inserts before and after accelerated aging. HXLPE-DG tibial inserts were subjected to wear testing of up to 5 million loading cycles according to ISO 14243, and the resulting wear particles were analyzed according to ISO 17853. The wear rate, number, size, and shape of the wear particles were analyzed. The average wear rate of the unaged samples was 4.39 ± 0.75 mg/million cycles and was 3.22 ± 1.49 mg/million cycles for the aged samples. The unaged tibial inserts generated about 2.80 × 107 particles/mL following the wear test, but this was considerably lower for the aged samples at about 1.35 × 107 particles/mL. The average equivalent circle diameter (ECD) of the wear particles from the unaged samples was 0.13 μm (max: 0.80 μm; min: 0.04 μm), and it was 0.14 μm (max: 0.66 μm; min: 0.06 μm) from the aged samples. Moreover, 22.1% of the wear particles from the unaged samples had an aspect ratio (AR) of >4 (slender shape), while this was 15.4% for the aged samples. HXLPE-DG improves the wear performance of the material over time. HXLPE-DG is a novel material that has been demonstrated to have antiaging properties and high wear resistance, making it a promising candidate for use in TKA. Nevertheless, the results are preliminary and will be clarified in further studies.
Collapse
Affiliation(s)
- Jian Su
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Institute of Medical Device Testing, Beijing 101111, China
| | - Jianjun Wang
- Beijing Institute of Medical Device Testing, Beijing 101111, China
| | - Shitong Yan
- Beijing Institute of Medical Device Testing, Beijing 101111, China
| | - Min Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Ningze Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yichao Luan
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Cheng-Kung Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
4
|
Nayak C, Singh P, Balani K. Contact stress and sliding wear damage tolerance of hydroxyapatite and carbon nanotube reinforced polyethylene cup liner against zirconia femoral head. J Mech Behav Biomed Mater 2022; 136:105435. [PMID: 36244327 DOI: 10.1016/j.jmbbm.2022.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
A finite element modeling (FEM) approach is carried out to estimate the contact stresses such as von-Mises and shear stress on the acetabular cup liner, made up of ultra-high molecular weight polyethylene (UHMWPE)-hydroxyapatite (HAp)-carbon nanotubes (CNT) based composites. The highlights of this work include the effects of liners' material (UHMWPE-HAp-CNT composites), radial clearance (0.05 to 1 mm), and liners' wall thickness (3 to 8 mm) on contact stresses. The thick liner (thickness: 8 mm) with conformal geometry (radial clearance 0.05 mm) produced the lowest contact stresses (von-Mises: 13.8-17.5 MPa and shear stress: 2.3-3.3 MPa). In contrast, the thin liner (thickness: 3 mm) with higher radial clearance (1 mm) showed the highest von-Mises stress (78.6-131.0 MPa) and shear stress (17.0-23.3 MPa). According to ISO 7206-1, nearly 6-7 times reduced contact stresses were observed because of the wider articulating contact area provided by thick cup liner and its conformity with respect to the femoral head. The UHMWPE-2 wt % CNT composite (UC) showed low von-Mises stress (16.1 MPa) and lowest shear stress (2.3 MPa); thus, it is the most damage tolerant material (wear rate: 2.6 × 10-7 mm3/Nm). The excellent mechanical properties such as hardness (165 MPa), elastic modulus (2.28 GPa), and tensile strength (36.7 MPa) are reasoned to elicit an increased sliding-wear resistance of UC. Thus, CNT-based UHMWPE composite can be the potential acetabular cup liner with a thickness of 8 mm and clearance of 0.05 mm without plastic deformation.
Collapse
Affiliation(s)
- Chinmayee Nayak
- Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur, Kanpur, 208016, India; Department of Mechanical and Materials Engineering, University of Turku, Turku, 20500, Finland
| | - Priyansh Singh
- Department of Mechanical Engineering, Delhi Technological University, Delhi, 110042, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur, Kanpur, 208016, India; Advanced Centre for Materials Science, Indian Institute of Technology, Kanpur, Kanpur, 208016, India.
| |
Collapse
|
5
|
Zhang H, Guo Y, Tian F, Qiao Y, Tang Z, Zhu C, Xu J. Discussion of Orientation and Performance of Crosslinked Ultrahigh-Molecular-Weight Polyethylene Used for Artificial Joints. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29230-29237. [PMID: 35700194 DOI: 10.1021/acsami.2c05549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Previously, the orientation structure of ultrahigh-molecular-weight polyethylene (UHMWPE) for artificial joints was considered to be unchanged after irradiation crosslinking. Therefore, much of the research related to the long-term failure of artificial joints has focused on material improvements. In this study, ultrasmall-angle X-ray scattering (USAXS) and the small/wide-angle X-ray scattering (SAXS-WAXS) combined technique reveal that the orientation structures of UHMWPE materials at all scales (nanoscale to microscale) are responsible for the long-term failure of artificial joints. To further illustrate the formation of these hierarchical oriented structures, a simple model is presented. In this model, first, the migration of free radicals plays a vital role, and the different steric hindrances in different directions directly lead to uneven migration behavior of free radicals. Second, the uneven migration of free radicals contributes to an inhomogeneous concentration of free radicals, thus resulting in observable crosslinking nonuniformities. Finally, all the hierarchical structural nonuniformities promote long-term failure of artificial joints after long-term wear.
Collapse
Affiliation(s)
- Hao Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Yuhai Guo
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feng Tian
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yongna Qiao
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Zheng Tang
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Caizhen Zhu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Jian Xu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Belhamdi H, Kouini B, Grasso A, Scolaro C, Sili A, Visco A. Tribological behavior of biomedical grade
UHMWPE
with graphite‐based fillers against
EBM‐Ti6Al4V pin
under various lubricating conditions. J Appl Polym Sci 2022. [DOI: 10.1002/app.52313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hossem Belhamdi
- Research Unit: Materials, Processes, and Environment (RU/MPE) M'Hamed Bougara University Boumerdes Algeria
- Department of Engineering University of Messina Messina Italy
| | - Benalia Kouini
- Laboratory of Coatings, Materials, and Environment M'Hamed Bougara University Boumerdes Algeria
| | - Antonio Grasso
- Department of Engineering University of Messina Messina Italy
- Institute for Polymers Composites and Biomaterials ‐ CNR IPCB Catania Italy
| | | | - Andrea Sili
- Department of Engineering University of Messina Messina Italy
| | - Annamaria Visco
- Department of Engineering University of Messina Messina Italy
- Institute for Polymers Composites and Biomaterials ‐ CNR IPCB Catania Italy
| |
Collapse
|
7
|
Wang X, Han X, Li C, Chen Z, Huang H, Chen J, Wu C, Fan T, Li T, Huang W, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zheng F, Al-Sehemi AG, Wang G, Xie Z, Zhang H. 2D materials for bone therapy. Adv Drug Deliv Rev 2021; 178:113970. [PMID: 34509576 DOI: 10.1016/j.addr.2021.113970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Due to their prominent physicochemical properties, 2D materials are broadly applied in biomedicine. Currently, 2D materials have achieved great success in treating many diseases such as cancer and tissue engineering as well as bone therapy. Based on their different characteristics, 2D materials could function in various ways in different bone diseases. Herein, the application of 2D materials in bone tissue engineering, joint lubrication, infection of orthopedic implants, bone tumors, and osteoarthritis are firstly reviewed comprehensively together. Meanwhile, different mechanisms by which 2D materials function in each disease reviewed below are also reviewed in detail, which in turn reveals the versatile functions and application of 2D materials. At last, the outlook on how to further broaden applications of 2D materials in bone therapies based on their excellent properties is also discussed.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Xianjing Han
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chaozhou Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhi Chen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Huang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jindong Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chenshuo Wu
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Taojian Fan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Tianzhong Li
- Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fei Zheng
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Abdullah G Al-Sehemi
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Guiqing Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, Guangdong, PR China; Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
8
|
Silva LEJ, Volnistem EA, Dias GS, Cótica LF, Santos IA, Fiorentin ER, de Oliveira MA, Witchemichen DH, Freitas VF, Bonadio TGM. Polyvinylidene fluoride - Hydroxyapatite 0-3 biocomposite filaments processed by twin-screw extrusion. J Mech Behav Biomed Mater 2021; 125:104891. [PMID: 34689030 DOI: 10.1016/j.jmbbm.2021.104891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Polyvinylidene fluoride - hydroxyapatite composite filaments were processed by twin-screw extrusion at different processing angular velocities and characterized by scanning electron and atomic force microscopies, differential scanning calorimetry and tensile tests. Polymer-ceramic composites with a 0-3 connectivity were successfully obtained. Regardless of the used processing parameters, all composite filaments present very similar melting (∼152°C) and solidification (∼139°C) points and elastic moduli (∼1.0 GPa) for hydroxyapatite as dispersed phase in the composite with concentrations up to 25 wt%, indicating that they are adequate for twin-screw extrusion and 3D printing. However, the yield strength (∼29 MPa), ultimate tensile strength (∼36 MPa) and tensile point (∼29 MPa) parameters are similar only for hydroxyapatite concentrations up to 15 wt%, once higher concentrations of hydroxyapatite as dispersed phase result in fragile samples (∼50% lower for each studied property).
Collapse
Affiliation(s)
- L E J Silva
- Graduate Program in Mechanical Engineering, State University of Maringá, Av. Colombo 5790, Maringá, PR, Brazil
| | - E A Volnistem
- Department of Physics, State University of Maringá, Av. Colombo 5790, Maringá, PR, Brazil
| | - G S Dias
- Department of Physics, State University of Maringá, Av. Colombo 5790, Maringá, PR, Brazil
| | - L F Cótica
- Department of Physics, State University of Maringá, Av. Colombo 5790, Maringá, PR, Brazil
| | - I A Santos
- Graduate Program in Mechanical Engineering, State University of Maringá, Av. Colombo 5790, Maringá, PR, Brazil; Department of Physics, State University of Maringá, Av. Colombo 5790, Maringá, PR, Brazil.
| | - E R Fiorentin
- Department of Physics, Midwestern Paraná State University, Al. Élio A. D. Vecchia 838, Guarapuava, PR, Brazil
| | - M A de Oliveira
- Department of Physics, Midwestern Paraná State University, Al. Élio A. D. Vecchia 838, Guarapuava, PR, Brazil
| | - D H Witchemichen
- Department of Physics, Midwestern Paraná State University, Al. Élio A. D. Vecchia 838, Guarapuava, PR, Brazil
| | - V F Freitas
- Department of Physics, Midwestern Paraná State University, Al. Élio A. D. Vecchia 838, Guarapuava, PR, Brazil
| | - T G M Bonadio
- Department of Physics, Midwestern Paraná State University, Al. Élio A. D. Vecchia 838, Guarapuava, PR, Brazil
| |
Collapse
|
9
|
Da Silva Chagas NP, De Fátima Vieira Marques M. Effect of polyalphaolefin oils as a solvent in gel‐spinning of ultra‐high molecular weight polyethylene fibers. J Appl Polym Sci 2021. [DOI: 10.1002/app.51372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Naiara Pirahi Da Silva Chagas
- Instituto de Macromoléculas Professora Eloisa Mano (IMA) Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | |
Collapse
|
10
|
|
11
|
Wear Assessment of Tibial Inserts Made of Highly Cross-Linked Polyethylene Supplemented with Dodecyl Gallate in the Total Knee Arthroplasty. Polymers (Basel) 2021; 13:polym13111847. [PMID: 34199509 PMCID: PMC8199669 DOI: 10.3390/polym13111847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background: the wear of tibial insert is still one of primary factors leading to failure of total knee arthroplasty (TKA). Dodecyl gallate (DG) has shown improvements in the oxidation stability of highly cross-linked polyethylene (HXLPE). This study aimed to assess the application of HXLPE supplemented with DG (HXLPE-DG) on the tibial insert in TKA concerning the wear resistance and the potential impact on implant fixation; Methods: tibial inserts made of HXLPE-DG were subjected to a 3 million loading-cycle wear test following ISO 14243-1:2009. The loss of mass and wear rate of the tibial inserts were calculated. The quantity, size,- and shape of wear particles were recorded; Results: the test specimens lost an average mass of 16.00 mg ± 0.94 mg, and were on an average wear rate of 3.92 mg/million cycles ± 0.19 mg/million cycles. The content of wear particles in the calf serum medium was 3.94 × 108 particles/mL ± 3.93 × 107 particles/mL, 96.66% ± 0.77% of the particles had an equivalent circular diameter less than 0.5 μm. The aspect ratio of wear particles was 1.40 (min: 1.01; max: 6.42). Conclusions: HXLPE-DG displayed advantages over the commonly used materials for tibial inserts and presented the potential of application in TKA.
Collapse
|
12
|
Visco A, Grasso A, Recca G, Carbone DC, Pistone A. Mechanical, Wear and Thermal Behavior of Polyethylene Blended with Graphite Treated in Ball Milling. Polymers (Basel) 2021; 13:polym13060975. [PMID: 33810111 PMCID: PMC8004640 DOI: 10.3390/polym13060975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Additive manufacturing, civil, and biomechanical applications are among the most important sectors, where the filler’s presence can significantly improve the quality of polymeric products blends. The high market demand of new low-cost material to be used as shock absorbers and mechanical joints arouses our curiosity to study a relatively common commercial polymer and filler. The possible improvement by blending high-density polyethylene (HDPE) and graphite was investigated for these sectors. To achieve this objective, we have prepared HDPE/graphite nanocomposites following mechanical treatment to understand which parameter provides the researched properties. As widely reported in the literature, milling treatment leads to the decrease of the particle size and the exfoliation of graphitic layers. Therefore, graphite has been previously treated with a ball mill for different times (1–16 h) to enhance its lubricating action. We checked an improvement in stiffness, yielding strength, thermal stability, and, in particularly, wear resistance that increased by 65% with respect to that of polyethylene (PE). A treatment time of eight hours in ball milling could be enough to give an appreciable improvement. The wear behavior of HDPE with treated graphite has not been deeply investigated so far, and it could be important because HDPE is considered a “carrier polymer” for different low-friction applications.
Collapse
Affiliation(s)
- Annamaria Visco
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy;
- Institute for Polymers, Composites and Biomaterials-CNR IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.R.); (D.C.C.)
- Correspondence: (A.V.); (A.P.); Tel.: +39-090-676-5249 (A.V.); +39-090-676-5506 (A.P.)
| | - Antonio Grasso
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy;
- Institute for Polymers, Composites and Biomaterials-CNR IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.R.); (D.C.C.)
| | - Giuseppe Recca
- Institute for Polymers, Composites and Biomaterials-CNR IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.R.); (D.C.C.)
| | - Domenico Carmelo Carbone
- Institute for Polymers, Composites and Biomaterials-CNR IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.R.); (D.C.C.)
| | - Alessandro Pistone
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy;
- Correspondence: (A.V.); (A.P.); Tel.: +39-090-676-5249 (A.V.); +39-090-676-5506 (A.P.)
| |
Collapse
|
13
|
Jafari I, Shakiba M, Khosravi F, Ramakrishna S, Abasi E, Teo YS, Kalaee M, Abdouss M, Ramazani S. A A, Moradi O, Rezvani Ghomi E. Thermal Degradation Kinetics and Modeling Study of Ultra High Molecular Weight Polyethylene (UHMWP)/Graphene Nanocomposite. Molecules 2021; 26:1597. [PMID: 33805845 PMCID: PMC8000268 DOI: 10.3390/molecules26061597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/05/2022] Open
Abstract
The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE's molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE's thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa-Flynn-Wall (OFW), Kissinger, and Augis and Bennett's. The "Model-Fitting Method" showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.
Collapse
Affiliation(s)
- Iman Jafari
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore; (I.J.); (Y.S.T.)
| | - Mohamadreza Shakiba
- Department of Chemistry, Amirkabir University of Technology, Tehran 15875-4413, Iran; (M.S.); (M.A.)
| | - Fatemeh Khosravi
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Ehsan Abasi
- Department of Polymer and Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran 17776-13651, Iran;
| | - Ying Shen Teo
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore; (I.J.); (Y.S.T.)
| | - Mohammadreza Kalaee
- Department of Polymer and Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran 17776-13651, Iran;
- Nanotechnology Research Centre, Tehran South Branch, Islamic Azad University, Tehran 15847-43311, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran 15875-4413, Iran; (M.S.); (M.A.)
| | - Ahmad Ramazani S. A
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-9465, Iran;
| | - Omid Moradi
- Department of Chemistry, Shahre-Qods Branch, Islamic Azad University, Shahre-Qods 37515-374, Iran;
| | - Erfan Rezvani Ghomi
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore 117581, Singapore;
| |
Collapse
|
14
|
Abstract
Some treatment options available to repair bone defects are the use of autogenous and allogeneic bone grafts. The drawback of the first one is the donor site’s limitation and the need for a second operation on the same patient. In the allograft method, the problems are associated with transmitted diseases and high susceptibility to rejection. As an alternative to biological grafts, polymers can be used in bone repair. Some polymers used in the orthopedic field are poly(methyl methacrylate), poly(ether-ether-ketone), and ultra-high molecular weight polyethylene (UHMWPE). UHMWPE has drawn much attention since it combines low friction coefficient and high wear and impact resistance. However, UHMWPE is a bioinert material, which means that it does not interact with the bone tissue. UHMWPE composites and nanocomposites with hydroxyapatite (HA) are widely studied in the literature to mitigate these issues. HA is the main component of the inorganic phase in the natural bone, and the addition of this bioactive filler to the polymeric matrix aims to mimic bone composition. This brief review discusses some polymers used in orthopedic applications, focusing on the UHMWPE/HA composites as a potential bone substitute.
Collapse
|
15
|
Catauro M, Scolaro C, Dal Poggetto G, Pacifico S, Visco A. Wear Resistant Nanocomposites Based on Biomedical Grade UHMWPE Paraffin Oil and Carbon Nano-Filler: Preliminary Biocompatibility and Antibacterial Activity Investigation. Polymers (Basel) 2020; 12:polym12040978. [PMID: 32331367 PMCID: PMC7240565 DOI: 10.3390/polym12040978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 02/01/2023] Open
Abstract
In the present paper, we investigate the effectiveness of nanocomposites (composed of ultra-high molecular weight polyethylene (UHMWPE) mixed with carbon nano-filler (CNF) and medical grade paraffin oil (PO), from the biological point of view. Wear measurements were carried out without (air) and with lubricant (distilled water, natural, and artificial lubricant), and antibacterial activity and cytotoxicity were evaluated. The results highlighted that the presence of CNF is important in the nanocomposite formulation because it reduces the wear rate and prevents oxidative degradation during its processing. An amount of 1.0 wt % of CNF is best because it reaches the optimal distribution within the polymeric matrix, resulting in the best wear resistant, bio-active, and anti-bacterial nanocomposite among all investigated samples.
Collapse
Affiliation(s)
- Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, I-81031 Aversa, Italy
- Correspondence: (M.C.); (A.V.); Tel.: +39-082/5010360 (M.C.); Tel.: +39-090-676-5249/3808 (A.V.)
| | - Cristina Scolaro
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy;
| | | | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies; University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Annamaria Visco
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy;
- Istituto per i Polimeri, Compositi e Biomateriali - CNR IPCB, Via Paolo Gaifami 18, 9-95126 Catania, Italy
- Correspondence: (M.C.); (A.V.); Tel.: +39-082/5010360 (M.C.); Tel.: +39-090-676-5249/3808 (A.V.)
| |
Collapse
|
16
|
Yousef S, Sarwar Z, Šereika J, Striūgas N, Krugly E, Danilovas PP, Martuzevicius D. A New Industrial Technology for Mass Production of Graphene/PEBA Membranes for CO 2/CH 4 Selectivity with High Dispersion, Thermal and Mechanical Performance. Polymers (Basel) 2020; 12:E831. [PMID: 32260569 PMCID: PMC7240517 DOI: 10.3390/polym12040831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 11/16/2022] Open
Abstract
Polyether block amide (PEBA) nanocomposite membranes, including Graphene (GA)/PEBA membranes are considered to be a promising emerging technology for removing CO2 from natural gas and biogas. However, poor dispersion of GA in the produced membranes at industrial scale still forms the main barrier to commercialize. Within this frame, this research aims to develop a new industrial approach to produce GA/PEBA granules that could be used as a feedstock material for mass production of GA/PEBA membranes. The developed approach consists of three sequential phases. The first stage was concentrated on production of GA/PEBA granules using extrusion process (at 170-210 °C, depending on GA concentration) in the presence of Paraffin Liquid (PL) as an adhesive layer (between GA and PEBA) and assisted melting of PEBA. The second phase was devoted to production of GA/PEBA membranes using a solution casting method. The last phase was focused on evaluation of CO2/CH4 selectivity of the fabricated membranes at low and high temperatures (25 and 55 °C) at a constant feeding pressure (2 bar) using a test rig built especially for that purpose. The granules and membranes were prepared with different concentrations of GA in the range 0.05 to 0.5 wt.% and constant amount of PL (2 wt.%). Also, the morphology, physical, chemical, thermal, and mechanical behaviors of the synthesized membranes were analyzed with the help of SEM, TEM, XRD, FTIR, TGA-DTG, and universal testing machine. The results showed that incorporation of GA with PEBA using the developed approach resulted in significant improvements in dispersion, thermal, and mechanical properties (higher elasticity increased by ~10%). Also, ideal CO2/CH4 selectivity was improved by 29% at 25 °C and 32% at 55 °C.
Collapse
Affiliation(s)
- Samy Yousef
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, LT-51424 Kaunas, Lithuania
- Department of Materials Science, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia
| | - Zahid Sarwar
- Faculty of Chemical Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (Z.S.); (E.K.); (P.P.D.); (D.M.)
| | - Justas Šereika
- Lithuanian Energy Institute, Laboratory of Heat Equipment Research and Testing, Breslaujos 3, LT-44403 Kaunas, Lithuania;
| | - Nerijus Striūgas
- Lithuanian Energy Institute, Laboratory of Combustion Processes, Breslaujos 3, LT-44403 Kaunas, Lithuania;
| | - Edvinas Krugly
- Faculty of Chemical Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (Z.S.); (E.K.); (P.P.D.); (D.M.)
| | - Paulius Pavelas Danilovas
- Faculty of Chemical Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (Z.S.); (E.K.); (P.P.D.); (D.M.)
| | - Dainius Martuzevicius
- Faculty of Chemical Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (Z.S.); (E.K.); (P.P.D.); (D.M.)
| |
Collapse
|
17
|
|
18
|
Wegner N, Scholz R, Knyazeva M, Walther F. Service life characterization of orthopedic implant material made of ultra-high molecular weight polyethylene under physiological conditions. J Mech Behav Biomed Mater 2020; 104:103617. [PMID: 32174385 DOI: 10.1016/j.jmbbm.2020.103617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/13/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Affiliation(s)
- Nils Wegner
- Department of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, 44227, Dortmund, Germany.
| | - Ronja Scholz
- Department of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, 44227, Dortmund, Germany
| | - Marina Knyazeva
- Department of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, 44227, Dortmund, Germany
| | - Frank Walther
- Department of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, 44227, Dortmund, Germany.
| |
Collapse
|
19
|
Sarwar Z, Yousef S, Tatariants M, Krugly E, Čiužas D, Danilovas PP, Baltusnikas A, Martuzevicius D. Fibrous PEBA-graphene nanocomposite filaments and membranes fabricated by extrusion and additive manufacturing. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Manoj Kumar R, Rajesh K, Haldar S, Gupta P, Murali K, Roy P, Lahiri D. Surface modification of CNT reinforced UHMWPE composite for sustained drug delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Cao Z, Shi G, Yan X, Wang Q. In situ
fabrication of CuO/UHMWPE nanocomposites and their tribological performance. J Appl Polym Sci 2019. [DOI: 10.1002/app.47925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen Cao
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 Jiangsu Province People's Republic of China
| | - Guojun Shi
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 Jiangsu Province People's Republic of China
| | - Xiaotian Yan
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 Jiangsu Province People's Republic of China
| | - Qiuyi Wang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 Jiangsu Province People's Republic of China
| |
Collapse
|
22
|
Fabrication of Novel CeO2/GO/CNTs Ternary Nanocomposites with Enhanced Tribological Performance. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9010170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Increasing demands of multi-functional lubricant materials with well distributed nanoparticles has been generated in the field of oil lubrication. In this study, one-dimensional (1-D) acidified multi-walled carbon nanotubes (CNTs) and two-dimensional (2-D) graphene oxide (GO) sheets were dispersed together under an ultra-sonication condition to form CNTs/GO hybrids and the corresponding CNTs/GO hybrids decorated with uniform zero-dimensional (0-D) cerium oxide (CeO2) nanoparticles were prepared via a facile hydrothermal method. The tribological performance of CeO2/CNTs/GO ternary nanocomposite was systematically investigated using a MS-T3000 ball-on-disk tester. The results demonstrated that CeO2/GO/CNTs nanocomposites can effectively reduce the friction of sliding pairs in paraffin oil. Moreover, the oil with 1 wt% of CeO2/GO/CNTs exhibited the best lubrication properties with the lowest friction coefficient and wear scar diameters (WSD) compared with adding only GO nanosheet, CeO2, and CeO2/CNTs hybrid nanocomposite as lubricant additives. It is concluded that due to the synergistic effect of 0D CeO2, 1D CNTs, and 2D GO during sliding process, a dimensionally mixed CeO2/GO/CNTs nanocomposite exhibits excellent lubricating properties, providing innovative and effective additives for application in the field of lubrication.
Collapse
|
23
|
Wang J, Gao H, Gao L, Cui Y, Song Z. Ratcheting behavior of UHMWPE reinforced by carbon nanofibers (CNF) and hydroxyapatite (HA): Experiment and simulation. J Mech Behav Biomed Mater 2018; 88:176-184. [DOI: 10.1016/j.jmbbm.2018.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/13/2018] [Accepted: 08/19/2018] [Indexed: 12/26/2022]
|
24
|
Visco A, Yousef S, Scolaro C, Espro C, Cristani M. Tribological Behavior of Nanocomposites Based on UHMWPE Aged in Simulated Synovial Fluid. Polymers (Basel) 2018; 10:E1291. [PMID: 30961216 PMCID: PMC6401863 DOI: 10.3390/polym10111291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022] Open
Abstract
Ultra High molecular weight polyethylene (UHMWPE) suffers wear degradation in total joint replacements and it needs to be improved. Thus, we enhanced wear resistance of UHMWPE with carbon nanofiller and paraffin oil and studied its tribological behavior in Simulated Synovial Fluid (SSF) for 60 days at 37 °C to reproduce the conditions of a real joint. Ageing in biological fluid accelerates the wear action but nanocomposite exhibited a higher wear resistance compared to UHMWPE because of its higher structural homogeneity. Carbon nanofiller closes the porosity of UHMWPE hindering SSF to penetrate inside. Wear resistance of the nanocomposite with 1.0 wt.% of CNF improved of 65% (before ageing) and of 70% (after 60 days in SSF) with respect to pure UHMWPE.
Collapse
Affiliation(s)
- Annamaria Visco
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy.
- Institute for Chemical-Physical Processes CNR-IPCF, Viale Ferdinando Stagno d'Alcontres, 37, 98158 Messina, Italy.
| | - Samy Yousef
- Department of Production Engineering and Printing Technology, Akhbar Elyom Academy 6th of October, Giza 12511, Egypt.
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, 51424 Kaunas, Lithuania.
| | - Cristina Scolaro
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy.
| | - Claudia Espro
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy.
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, V. Annunziata, 98168 Messina, Italy.
| |
Collapse
|
25
|
Scholz R, Knyazeva M, Porchetta D, Wegner N, Senatov F, Salimon A, Kaloshkin S, Walther F. Development of biomimetic in vitro fatigue assessment for UHMWPE implant materials. J Mech Behav Biomed Mater 2018; 85:94-101. [DOI: 10.1016/j.jmbbm.2018.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 11/26/2022]
|
26
|
Yousef S, Ali S, Abdelnaby MA, Christova D, Hassan Y, Samir D, Kamel B. Synthesis and characterization of CNTs/POM nanocomposite acetabular hip cup. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1362641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Samy Yousef
- Department of Manufacturing Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Kaunas, Lithuania
- Department of Production Engineering and Printing Technology, Akhbar Elyom Academy Egypt, Giza, Egypt
| | - Shady Ali
- Department of Mechatronics, Canadian International College, Fifth Settlement, New Cairo, Egypt
| | - Mohammed Ali Abdelnaby
- Department of Production Engineering and Printing Technology, Akhbar Elyom Academy Egypt, Giza, Egypt
| | - D. Christova
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Y. Hassan
- Department of Production Engineering and Printing Technology, Akhbar Elyom Academy Egypt, Giza, Egypt
| | - D. Samir
- Department of Production Engineering and Printing Technology, Akhbar Elyom Academy Egypt, Giza, Egypt
| | - B. Kamel
- Department of Production Engineering and Printing Technology, Akhbar Elyom Academy Egypt, Giza, Egypt
| |
Collapse
|
27
|
Kausar A. Polylactic acid-based polyurethane/polyamide 6,12 and graphene nanocomposite: Structure and physical property study for packaging application. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2017. [DOI: 10.1080/1023666x.2017.1312746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ayesha Kausar
- Nanoscience and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|