1
|
Aarya, Sebastian A, P K, Sen Mojumdar S. Probing the Self-Aggregation of l-Tryptophan into Spherical Microstructures and Their Selective Interactions with Bilirubin. ACS APPLIED BIO MATERIALS 2025; 8:1157-1166. [PMID: 39841508 DOI: 10.1021/acsabm.4c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The aggregation of proteins, peptides and amino acids has been a keen subject of interest owing to their implications in metabolic disorders. In this work, we investigated the self-aggregation of the unmodified aromatic amino acid l-tryptophan (Trp) into unusual spherical microstructures. Using fluorescence spectroscopy and field emission scanning electron microscopy (FE-SEM), we detail the time-dependent transformation of monomeric tryptophan into spherical aggregates with distinct fluorescence characteristics (λex = 345 nm, λem = 430 nm) compared to the monomer. Notably, the fluorescence intensity of these aggregates is selectively quenched in the presence of bilirubin, demonstrating exceptional sensitivity in the picomolar concentration range. The developed assay proved applicable and reliable for real sample analysis. Thermodynamic parameters derived from temperature-dependent fluorescence intensity measurements indicated that the aggregation process is spontaneous and driven by noncovalent interactions. Further evidence of bilirubin's strong association with the aggregates was obtained through competitive interaction studies with human serum albumin (HSA). This work offers insights into the aggregation behavior of single aromatic amino acids and their potential applications in detecting critical analytes.
Collapse
Affiliation(s)
- Aarya
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Anna Sebastian
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Kavya P
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Supratik Sen Mojumdar
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| |
Collapse
|
2
|
Vishwakarma S, Tiwari OS, Shukla R, Gazit E, Makam P. Amyloid inspired single amino acid (phenylalanine)-based supramolecular functional assemblies: from disease to device applications. Chem Soc Rev 2025; 54:465-483. [PMID: 39585081 DOI: 10.1039/d4cs00996g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
In the evolving landscape of biomolecular supramolecular chemistry, recent studies on phenylalanine (Phe) have revealed important insights into the versatile nature of this essential aromatic amino acid. Phe can spontaneously self-assemble into fibrils with amyloid-like properties linked to the neurological disorder phenylketonuria (PKU). Apart from its pathological implications, Phe also displays complex phase behavior and can undergo structural changes in response to external stimuli. Its ability to co-assemble with other amino acids opens up new possibilities for studying biomolecular interactions. Furthermore, Phe's coordination with metal ions has led to the development of enzyme-mimicking catalytic systems for applications in organic chemistry, environmental monitoring, and healthcare. Research on L and D enantiomers of Phe, particularly on bio-MOFs, has highlighted their potential in advanced technologies, including bioelectronic devices. This review provides a comprehensive overview of the advancements in Phe-based supramolecular assemblies, emphasizing their interdisciplinary relevance. The Phe assemblies show great potential for future therapeutic and functional biomaterial developments, from disease treatments to innovations in bionanozymes and bioelectronics. This review presents a compelling case for the ongoing exploration of Phe's biomolecular supramolecular chemistry as a fundamental framework for developing sustainable and efficient methodologies across various scientific disciplines.
Collapse
Affiliation(s)
- Subrat Vishwakarma
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
| | - Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ruchi Shukla
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Pandeeswar Makam
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
| |
Collapse
|
3
|
Zhou H, Liu Y, Jin C, Shi Z, Tang C, Zhang W, Zhu L, Liu G, Huo S, Kong Z. Fabrication of lignosulfonate-derived porous carbon via pH-tunable self-assembly strategy for efficient atrazine removal. Int J Biol Macromol 2024; 270:132148. [PMID: 38723800 DOI: 10.1016/j.ijbiomac.2024.132148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Herein, a straightforward protocol was developed for the one-pot synthesis of N-doped lignosulfonate-derived carbons (NLDCs) with a tunable porous structure using natural amino acids-templated self-assembly strategy. Specifically, histidine was employed as a template reagent, leading to the preparation of 10-NLDC-21 with remarkable characteristics, including the large specific surface area (SBET = 1844.5 m2/g), pore volume (Vmes = 1.22 cm3/g) and efficient adsorption for atrazine (ATZ) removal. The adsorption behavior of ATZ by NLDCs followed the Langmuir and pseudo-second-order models, suggesting a monolayer chemisorption nature of ATZ adsorption with the maximum adsorption capacity reached up to 265.77 mg/g. Furthermore, NLDCs exhibited excellent environmental adaptability and recycling performance. The robust affinity could be attributed to multi-interactions including pore filling, electrostatic attraction, hydrogen bonding and π-π stacking between the adsorbents and ATZ molecules. This approach offers a practical method for exploring innovative bio-carbon materials for sewage treatment.
Collapse
Affiliation(s)
- Hongyan Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yunlong Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Can Jin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China.
| | - Zhenyu Shi
- Environment Monitoring Center of Jiangsu Province, Nanjing 210036, China
| | - Chunmei Tang
- College of Mechanics and Engineering Sciences, Hohai University, Nanjing, Jiangsu 210098, China
| | - Wei Zhang
- College of Environment, Hohai University, Nanjing, Jiangsu 210098, China
| | - Liang Zhu
- College of Environment, Hohai University, Nanjing, Jiangsu 210098, China
| | - Guifeng Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China
| | - Shuping Huo
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China
| | - Zhenwu Kong
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China.
| |
Collapse
|
4
|
Bhatt P, Garad PS, Rayala VVSPK, Radhakrishnanand P, Sankaranarayanan K. Non-thermal plasma modulated l-tyrosine self-assemblies: a potential avenue for fabrication of supramolecular self-assembled biomaterials. RSC Adv 2024; 14:13984-13996. [PMID: 38686299 PMCID: PMC11056826 DOI: 10.1039/d4ra01891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Aromatic amino acids (AAs) have garnered particular interest due to their pivotal roles in numerous biological processes and disorders. Variations in AA self-assembly not only affect protein structures and functions, but their non-covalent interactions such as hydrogen bonding, van der Waals forces, and π-π stacking, yield versatile assemblies vital in bio-inspired material fabrication. Tyrosine (Tyr), a non-essential aromatic amino acid, holds multifaceted significance in the body as a protein building block, neurotransmitter precursor, thyroid hormone contributor, and melanin synthesis regulator. The proficiency of Cold Atmospheric Plasma (CAP) in generating a spectrum of reactive oxygen and nitrogen species has spurred innovative research avenues in the studies of biomolecular components, including its potential for targeted cancer cell ablation and biomolecule modification. In this work, we have assessed the chemical as well as the structural changes in Tyrosine-derived self-assembled structures arising from the CAP-induced reactive species. For a comprehensive understanding of the mechanism, different treatment times, feed gases, and the role of solvent acidification are compared using various spectroscopic and microscopic techniques. LC-ESI-QQQ mass spectra unveiled the emergence of oxygenated and nitro derivatives of l-tyrosine following its interaction with CAP-derived ROS/RNS. SEM and TEM images demonstrated an enhanced surface size of self-assembled structures and the formation of novel nanomaterial-shaped assemblies following CAP treatment. Overall, this study aims to explore CAP's interaction with a single-amino acid, hypothesizing the creation of novel supramolecular structures and scrutinizing CAP-instigated transformations in l-tyrosine self-assembled structures, potentially advancing biomimetic-attributed nanomaterial fabrication which might present a novel frontier in the field of designing functional biomaterials.
Collapse
Affiliation(s)
- Priya Bhatt
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
- Academy of Scientific and Innovative Research (AcSIR), Campus Postal Staff College Area Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Prajakta Sharad Garad
- Department of Medical Device, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - V V S Prasanna Kumari Rayala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - Kamatchi Sankaranarayanan
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| |
Collapse
|
5
|
Amiri-Zirtol L, Khabnadideh S. A novel heterogeneous biocatalyst based on graphene oxide for synthesis of pyran derivatives. Sci Rep 2024; 14:6957. [PMID: 38521879 PMCID: PMC10960842 DOI: 10.1038/s41598-024-57682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
Graphene oxide modified with tryptophan (GO-Trp) has been introduced as a new heterogeneous acid-base biocatalyst for synthesis of some pyran derivatives. GO was prepared according to the Hummer's method and tryptophan as a low-cost green amino acid is covalently bonded to the surface of GO without any organic or toxic reagents in a green way. The new catalyst was characterized by different spectroscopic methods such as Fourier transform infrared, X-ray diffraction (XRD), etc. …. The results of XRD patterns showed an increase in the distance between the GO plates in the presence of the modifying agent which specifies the presence of amino acid between the GO layers. XPS analysis also confirmed successful modification through the presence of C-N bonds in the structure of the catalyst. In addition, improvements in thermal stability and changes in the morphology of the samples were observed using thermogravimetric analysis and Field emission scanning electron microscopy analysis respectively. Evaluation of the catalyst performance in the synthesis of some benzo[b]pyran and pyrano[3,2-c] chromene derivatives showed presentable results. Seven benzo[b]pyran (4a-4g) and five pyrano[3,2-c] chromene (4h-4l) derivatives were synthesized. GO-Trp as a safe, natural and efficient catalyst, could be reused up to 5 runs for synthesis of pyran derivatives without any significant decrease in its potency. High purity of the products and desirable yields are other points that make the present work more attractive.
Collapse
Affiliation(s)
- Leila Amiri-Zirtol
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Khabnadideh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Hu T, Zhang Z, Reches M. A self-standing superhydrophobic material formed by the self-assembly of an individual amino acid. J Colloid Interface Sci 2024; 655:899-908. [PMID: 37979295 DOI: 10.1016/j.jcis.2023.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
HYPOTHESIS There is a growing interest in designing superhydrophobic materials for many applications including self-clean surfaces, separation systems, and antifouling solutions. Peptides and amino acids offer attractive building blocks for these materials since they are biocompatible and biodegradable and can self-assemble into complex ordered structures. EXPERIMENTS AND SIMULATIONS We designed a self-standing superhydrophobic material through the self-assembly of an individual functionalized aromatic amino acid, Cbz-Phe(4F). The self-assembly of Cbz-Phe(4F) was investigated by experimental and computational methods. Moreover, when drop-casted three times on a solid support, it formed a self-standing superhydrophobic material. The mechanical properties and chemical stability of this self-standing superhydrophobic material were demonstrated. FINDINGS The designed Cbz-Phe(4F) self-assembled into fibrous structures in solution. Molecular dynamics (MD) simulations revealed that the fibrous backbone of Cbz-Phe(4F) aggregations was stabilized through hydrogen bonds, whereas the isotropic growth of the aggregates was driven by hydrophobic interactions. Importantly, when drop-casted three times on a solid support, it formed a self-standing superhydrophobic material. Moreover, this material had a high mechanical strength, with a Young's modulus of 53 GPa, resistance to enzymatic degradation, and thermal stability up to 200 ℃. This study provides a simple strategy to generate smart and functional materials by the simple self-assembly of functional individual amino acids.
Collapse
Affiliation(s)
- Tan Hu
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhuo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
7
|
Nandi S, Sarkar N. Interactions between Lipid Vesicle Membranes and Single Amino Acid Fibrils: Probable Origin of Specific Neurological Disorders. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1971-1987. [PMID: 38240221 DOI: 10.1021/acs.langmuir.3c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Amyloid fibrils are known to be responsible for several neurological disorders, like Alzheimer's disease (AD), Parkinson's disease (PD), etc. For decades, mostly proteins and peptide-based amyloid fibrils have been focused on, and the topic has acknowledged the rise, development, understanding of, and controversy, as well. However, the single amino acid based amyloid fibrils, responsible for several disorders, such as phenylketonuria, tyrosenimia type II, hypermethioninemia, etc., have gotten scientific attention lately. To understand the molecular level pathogenesis of such disorders originated due to the accumulation of single amino acid-based amyloid fibrils, interaction of these fibrils with phospholipid vesicle membranes is found to be an excellent cell-free in vitro setup. Based on such an in vitro setup, these fibrils show a generic mechanism of membrane insertion driven by electrostatic and hydrophobic effects inside the membrane that reduces the integral rigidity of the membrane. Alteration of such fundamental properties of the membrane, therefore, might be referred to as one of the prime pathological factors for the development of these neurological disorders. Hence, such interactions must be investigated in cellular and intracellular compartments to design suitable therapeutic modulators against fibrils.
Collapse
Affiliation(s)
- Sourav Nandi
- Yale School of Medicine, Yale University, New Haven, Connecticut 06510, United States
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
8
|
Wang Y, Rencus-Lazar S, Zhou H, Yin Y, Jiang X, Cai K, Gazit E, Ji W. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications. ACS NANO 2024; 18:1257-1288. [PMID: 38157317 DOI: 10.1021/acsnano.3c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications. Herein, we propose a review paper to summarize the design strategies as well as research advances of amino acid based supramolecular assemblies as smart functional materials. We first briefly introduce bioinspired reductionist design strategies and assembly mechanism for amino acid based molecular assembly materials through noncovalent interactions in condensed states, including self-assembly, metal ion mediated coordination assembly, and coassembly. In the following part, we provide an overview of the properties and functions of amino acid based materials toward applications in nanotechnology and biomedicine. Finally, we give an overview of the remaining challenges and future perspectives on the fabrication of amino acid based supramolecular biomaterials with desired properties. We believe that this review will promote the prosperous development of innovative bioinspired functional materials formed by minimalistic building blocks.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
9
|
Akavaram V, Kumar K, Sriram S, Narra S, Kumawat A, Meena SK, Pushpavanam K. Self-Assembled Amino Acid Microstructures as Biocompatible Physically Unclonable Functions (BPUFs) for Authentication of Therapeutically Relevant Hydrogels. Macromol Biosci 2023; 23:e2300091. [PMID: 37357814 DOI: 10.1002/mabi.202300091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Counterfeited biomedical products result in significant economic losses and pose a public health hazard for over a million people yearly. Hydrogels, a class of biomedical products, are being investigated as alternatives to conventional biomedical products and are equally susceptible to counterfeiting. Here, a biocompatible, physically unclonable function (BPUF) to verify the authenticity of therapeutically relevant hydrogels are developed. The principle of BPUF relies on the self-assembly of tyrosine into fibril-like structures which are incorporated into therapeutically relevant hydrogels resulting in their random dispersion. This unclonable arrangement leads to distinctive optical micrographs captured using an optical microscope. These optical micrographs are transformed into a unique security code through cryptographic techniques which are then used to authenticate the hydrogel. The temporal stability of the BPUFs are demonstrated and additionally, exploit the dissolution propensity of the structures upon exposure to an adulterant to identify the tampering of the hydrogel. Finally, a platform to demonstrate the translational potential of this technology in validating and detecting tampering of therapeutically relevant hydrogels is developed. The potential of BPUFs to combat hydrogel counterfeiting is exemplified by its simplicity in production, ease of use, biocompatibility, and cost-effectiveness.
Collapse
Affiliation(s)
- Vishwas Akavaram
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Kush Kumar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory (N.C.L.), Dr. HomiBhabha Road, Pune, 411008, India
| | - Shreya Sriram
- Department of Computer Science and Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603110, India
| | - Saisrinath Narra
- Department of Computer Science and Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603110, India
| | - Akshant Kumawat
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Santosh Kumar Meena
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Karthik Pushpavanam
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| |
Collapse
|
10
|
Ajikumar A, Premkumar AKN, Narayanan SP. The self-assembly of L-histidine might be the cause of histidinemia. Sci Rep 2023; 13:17461. [PMID: 37838762 PMCID: PMC10576791 DOI: 10.1038/s41598-023-44749-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
L-Histidine is an essential amino acid with unique biochemical and physiological properties. Histidinemia is a disease condition caused by the elevated level of L-histidine in our blood. Mutations in the histidase, an enzyme for the breakdown of histidine, is the cause of the rise in histidine concentration. To our knowledge, no research has been done on why a high concentration of histidine causes histidinemia. In this study, we provide a potential explanation why the elevated levels of histidine in the human body causes histidinemia. In this study we have found that L-histidine self-assembled in water to form nano sheet structures at physiological pH and temperature, using 1D 1H NMR spectroscopy, diffusion ordered spectroscopy (DOSY) and scanning electron microscope (SEM) techniques. The kinetics of self-assembly has been studied using real time NMR spectroscopy. We observed that both the aromatic ring and aliphatic part are equally contributing to the self-assembly of L-histidine. The symptoms of histidinemia, neurological deficits and speech delays, are similar to that of the neurodegenerative diseases caused by the self-assembly of peptides and proteins. We speculate that the self-assembly of L-histidine might be the cause of histidinemia.
Collapse
Affiliation(s)
- Ajitha Ajikumar
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarshini Hills P. O., Kottayam, 686560, Kerala, India
| | - Anakha Kandara Nikarthil Premkumar
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarshini Hills P. O., Kottayam, 686560, Kerala, India
| | - Sunilkumar Puthenpurackal Narayanan
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarshini Hills P. O., Kottayam, 686560, Kerala, India.
| |
Collapse
|
11
|
Basumatary D, Bailung H, Jorvekar SB, Borkar RM, Sankaranarayanan K. Investigating the impact of inbuilt cold atmospheric pressure plasma on molecular assemblies of tryptophan enantiomers: in vitro fabrication of self-assembled supramolecular structures. RSC Adv 2023; 13:26640-26649. [PMID: 37681043 PMCID: PMC10480704 DOI: 10.1039/d3ra04086k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
The advancements in understanding the phenomenon of plasma interactions with matter, coupled with the development of CAPP devices, have resulted in an interdisciplinary research topic of significant importance. This has led to the integration of various fields of science, including plasma physics, chemistry, biomedical sciences, and engineering. The reactive oxygen species and reactive nitrogen species generated from cold atmospheric plasma on interaction with biomolecules like proteins and peptides form various supramolecular structures. CAPP treatment of amino acids, which are the fundamental building blocks of proteins, holds potential in creating self-assembled supramolecular architectures. In this work, we demonstrate the process of self-assembly of aromatic amino acid tryptophan (Trp) enantiomers (l-tryptophan and d-tryptophan) into ordered supramolecular assemblies induced by the reactive species generated by a cold atmospheric pressure helium plasma jet. These enantiomers of tryptophan form organized structures as evidenced by FE-SEM. To assess the impact of CAPP treatment on the observed assemblies, we employed various analytical techniques such as zeta potential, dynamic light scattering and FTIR spectroscopy. Also, photoluminescence and time-resolved lifetime measurements revealed the transfiguration of individual Trp enantiomers. The LC-ESI-QTOF-MS analysis demonstrated that CAPP irradiation led to the incorporation of oxygenated ions into the pure Trp molecule. These studies of the self-assembly of Trp due to ROS and RNS interactions will help us to understand the assembly environment. This knowledge may be utilized to artificially design and synthesize highly ordered functional supramolecular structures using CAPP.
Collapse
Affiliation(s)
- Deepjyoti Basumatary
- Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati 781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Heremba Bailung
- Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati 781035 Assam India
| | - Sachin B Jorvekar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Sila Katamur (Halugurisuk), PO: Changsari Kamrup Assam 781101 India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Sila Katamur (Halugurisuk), PO: Changsari Kamrup Assam 781101 India
| | - Kamatchi Sankaranarayanan
- Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati 781035 Assam India
| |
Collapse
|
12
|
Song X, He S, Zheng J, Yang S, Li Q, Zhang Y. One-Step Construction of Tryptophan-Derived Small Molecule Hydrogels for Antibacterial Materials. Molecules 2023; 28:molecules28083334. [PMID: 37110568 PMCID: PMC10141015 DOI: 10.3390/molecules28083334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Amino acid-based hydrogels have received widespread attention because of their wide range of sources, biodegradability, and biocompatibility. Despite considerable progress, the development of such hydrogels has been limited by critical problems such as bacterial infection and complex preparation. Herein, by using the non-toxic gluconolactone (GDL) to adjust the pH of the solution to induce the rapid self-assembly of N-[(benzyloxy)carbonyl]-L-tryptophan (ZW) to form a three-dimensional (3D) gel network, we developed a stable and effective self-assembled small-molecule hydrogel. Characterization assays and molecular dynamics studies indicate that π-π stacking and hydrogen bonding are the main drivers of self-assembly between ZW molecules. In vitro experiments further confirmed this material's sustained release properties, low cytotoxicity, and excellent antibacterial activity, particularly against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. This study provides a different and innovative perspective for the further development of antibacterial materials based on amino acid derivatives.
Collapse
Affiliation(s)
- Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shunmei He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shutong Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qiang Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
13
|
Tiwari OS, Aizen R, Meli M, Colombo G, Shimon LJW, Tal N, Gazit E. Entropically-Driven Co-assembly of l-Histidine and l-Phenylalanine to Form Supramolecular Materials. ACS NANO 2023; 17:3506-3517. [PMID: 36745579 DOI: 10.1021/acsnano.2c09872] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Molecular self- and co-assembly allow the formation of diverse and well-defined supramolecular structures with notable physical properties. Among the associating molecules, amino acids are especially attractive due to their inherent biocompatibility and simplicity. The biologically active enantiomer of l-histidine (l-His) plays structural and functional roles in proteins but does not self-assemble to form discrete nanostructures. In order to expand the structural space to include l-His-containing materials, we explored the co-assembly of l-His with all aromatic amino acids, including phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), all in both enantiomeric forms. In contrast to pristine l-His, the combination of this building block with all aromatic amino acids resulted in distinct morphologies including fibers, rods, and flake-like structures. Electrospray ionization mass spectrometry (ESI-MS) indicated the formation of supramolecular co-assemblies in all six combinations, but time-of-flight secondary-ion mass spectrometry (ToF-SIMS) indicated the best seamless co-assembly occurs between l-His and l-Phe while in the other cases, different degrees of phase separation could be observed. Indeed, isothermal titration calorimetry (ITC) suggested the highest affinity between l-His and l-Phe where the formation of co-assembled structures was driven by entropy. In accordance, among all the combinations, the co-assembly of l-His and l-Phe produced single crystals. The structure revealed the formation of a 3D network with nanocavities stabilized by hydrogen bonding between -N (l-His) and -NH (l-Phe). Taken together, using the co-assembly approach we expanded the field of amino acid nanomaterials and showed the ability to obtain discrete supramolecular nanostructures containing l-His based on its specific interactions with l-Phe.
Collapse
Affiliation(s)
- Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Ruth Aizen
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | | | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noam Tal
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| |
Collapse
|
14
|
Zhang Y, Li Q, Wu H, Wang Y, Wang Y, Rencus-Lazar S, Zhao Y, Wang J, Mei D, Xu H, Gazit E, Tao K. Racemic Amino Acid Assembly Enables Supramolecular β-Sheet Transition with Property Modulations. ACS NANO 2023; 17:2737-2744. [PMID: 36696300 DOI: 10.1021/acsnano.2c11006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Amino acids are the most simplistic bio-building blocks and perform a variety of functions in metabolic activities. Increasing publications report that amino acid-based superstructures present amyloid-like characteristics, arising from their supramolecular β-sheet secondary structures driven by hydrogen-bonding-connected supramolecular β-strands, which are formed by head-to-tail hydrogen bonds between terminal amino and carboxyl groups of the adjacent residues. Therefore, the establishment of the structure-function relationships is critical for exploring the properties and applications of amino acid assemblies. Among the naturally encoded self-assembling amino acids, tyrosine (Y)-based superstructures have been found to show diverse properties and functions including high rigidity, promoting melanin formations, mood regulations, and preventing anxiety, thus showing promising potential as next-generation functional biomaterials for biomedical and bio-machine interface applications. However, the development of Y-based organizations of functional features is severely limited due to the intrinsic difficulty of modulating the energetically stable supramolecular β-sheet structures. Herein, we report that by the racemic assembly of l-Y and d-Y, the supramolecular secondary structures are modulated from the antiparallel β-sheets in the enantiomeric assemblies to the parallel ones in the racemate counterparts, thus leading to higher degrees of freedom, which finally induce distinct organization kinetics and modulation of the physicochemical properties including the optical shifts, elastic softening, and the piezoelectric outputs of the superstructures.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Haoran Wu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311200, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou311200, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
| | - Yan Wang
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Sigal Rencus-Lazar
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou311200, China
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Yurong Zhao
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Jiqian Wang
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
| | - Hai Xu
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Ehud Gazit
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou311200, China
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Kai Tao
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311200, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou311200, China
| |
Collapse
|
15
|
Sahare S, Ghoderao P, Chan Y, Lee SL. Surface supramolecular assemblies tailored by chemical/physical and synergistic stimuli: a scanning tunneling microscopy study. NANOSCALE 2023; 15:1981-2002. [PMID: 36515142 DOI: 10.1039/d2nr05264d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular self-assemblies formed by various non-covalent interactions can produce diverse functional networks on solid surfaces. These networks have recently attracted much interest from both fundamental and application points of view. Unlike covalent organic frameworks (COFs), the properties of the assemblies differ from each other depending on the constituent motifs. These various motifs may find diverse applications such as in crystal engineering, surface modification, and molecular electronics. Significantly, these interactions between/among the molecular tectonics are relatively weak and reversible, which makes them responsive to external stimuli. Moreover, for a liquid-solid-interface environment, the dynamic processes are amenable to in situ observation using scanning tunneling microscopy (STM). In the literature, most review articles focus on supramolecular self-assembly interactions. This review summarizes the recent literature in which stimulation sources, including chemical, physical, and their combined stimuli, cooperatively tailor supramolecular assemblies on surfaces. The appropriate design and synthesis of functional molecules that can be integrated on different surfaces permits the use of nanostructured materials and devices for bottom-up nanotechnology. Finally, we discuss synergic effect on materials science.
Collapse
Affiliation(s)
- Sanjay Sahare
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
- Faculty of Physics, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Prachi Ghoderao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Yue Chan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
16
|
Subramaniyam V, Thangadurai DT, Ravi PV, Pichumani M. Do the acid/base modifiers in solvothermal synthetic conditions influence the formation of Zr-Tyr MOFs to be amorphous? J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Adhikari RY, Pujols JJ. Highly rigid & transparent supramolecular fibrils of tyrosine. NANO SELECT 2022. [DOI: 10.1002/nano.202200063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ramesh Y. Adhikari
- Department of Physics & Astronomy Colgate University Hamilton New York USA
| | - Jeiko J. Pujols
- Department of Physics & Astronomy Colgate University Hamilton New York USA
| |
Collapse
|
18
|
Liu Q, Wang J, Huang X, Wu H, Zong S, Cheng X, Hao H. Spatiotemporal control of l-phenyl-alanine crystallization in microemulsion: the role of water in mediating molecular self-assembly. IUCRJ 2022; 9:370-377. [PMID: 35546797 PMCID: PMC9067117 DOI: 10.1107/s2052252522003001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
Water confined or constrained in a cellular environment can exhibit a diverse structural and dynamical role and hence will affect the self-assembly behavior of biomolecules. Herein, the role of water in the formation of l-phenyl-alanine crystals and amyloid fibrils was investigated. A microemulsion biomimetic system with controllable water pool size was employed to provide a microenvironment with different types of water, which was characterized by small-angle X-ray scattering, attenuated total reflectance-Fourier transform infrared spectroscopy and differential scanning calorimetry. In a bound water environment, only plate-like l-phenyl-alanine crystals and their aggregates were formed, all of which are anhydrous crystal form I. However, when free water dominated, amyloid fibrils were observed. Free water not only stabilizes new oligomers in the initial nucleation stage but also forms bridged hydrogen bonds to induce vertical stacking to form a fibrous structure. The conformational changes of l-phenyl-alanine in different environments were detected by NMR. Different types of water trigger different nucleation and growth pathways, providing a new perspective for understanding molecular self-assembly in nanoconfinement.
Collapse
Affiliation(s)
- Qi Liu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hao Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Shuyi Zong
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xiaowei Cheng
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People’s Republic of China
| |
Collapse
|
19
|
Koshti B, Kshtriya V, Naskar S, Narode H, Gour N. Controlled aggregation properties of single amino acids modified with protecting groups. NEW J CHEM 2022. [DOI: 10.1039/d1nj05172e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The self-assembling properties of single amino acids modified with protecting groups under controlled conditions of temperature and concentration are illustrated.
Collapse
Affiliation(s)
- Bharti Koshti
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Vivekshinh Kshtriya
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Soumick Naskar
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Hanuman Narode
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| |
Collapse
|
20
|
Kaganovich M, Shlosman K, Goldman E, Benchisc M, Eitan T, Shemesh R, Gamliel A, Reches M. Fabrication of Antimicrobial Polymeric Films by Compression Molding of Peptide Assemblies and Polyethylene. Chem Commun (Camb) 2022; 58:9357-9360. [DOI: 10.1039/d2cc03018g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents compression molding of peptide assemblies with low-density polyethylene (LDPE) for the robust production of antimicrobial polymeric films. These films show a significant reduction of colony-forming units and...
Collapse
|
21
|
Erimban S, Daschakraborty S. How does excess phenylalanine affect the packing density and fluidity of a lipid membrane? Phys Chem Chem Phys 2021; 23:27294-27303. [PMID: 34850794 DOI: 10.1039/d1cp05004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenylketonuria (PKU) is an autosomal recessive error of phenylalanine (Phe) metabolism, where untreated Phe becomes cytotoxic. Previous experiments found that excess Phe decreases the packing density and increases the fluidity and permeability of a lipid membrane. It was proposed that Phe forms cytotoxic nanoscopic amyloid-like fibrils. In another study, the Phe fibrils were not visible near the lipid membrane. So, what leads to the deleterious effect of Phe on the lipid membrane? We put forward a molecular mechanism for the observed effect of excess Phe on the lipid membrane using all-atom molecular dynamics simulation. This study suggests that Phe monomers spontaneously intercalate into the membrane and form small hydrogen-bonded clusters, some of which locally perturb the membrane. These local effects result in an overall reduction in the membrane packing density, enhancement of membrane fluidity, and an increase of water permeability, observed in experiments. The present study does not observe any effect of the nanoscopic fibrillar structure of Phe on the membrane. This study, therefore, provides alternative insights into the excess Phe cytotoxicity in PKU disease.
Collapse
Affiliation(s)
- Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | | |
Collapse
|
22
|
Narang N, Sato T. Liquid-liquid phase separation and self-assembly of a lysine derivative Fmoc-L-lysine in water-DMSO mixtures. Polym J 2021. [DOI: 10.1038/s41428-021-00538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Gour N, Gazit E. Metabolite assemblies: A surprising extension to the amyloid hypothesis. Curr Opin Chem Biol 2021; 64:154-164. [PMID: 34482124 DOI: 10.1016/j.cbpa.2021.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/10/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022]
Abstract
The realization of the ability of metabolites to form self-assembled amyloid-like nanostructures was a surprising phenomenon. This discovery paved the way towards understanding the pathophysiology of the inborn error of metabolism disorders from a new perspective, relating them to amyloid-associated diseases that are characterized by the aggregation of proteins and polypeptides. Hence, a 'generic amyloid hypothesis' can be proposed. This theory implies that the formation of amyloid-like structures is a general phenomenon not limited to proteins and reflects a common etiology for both age-related amyloid-associated diseases and inborn error of metabolism disorders. Here, we present a comprehensive survey of the recent research related to metabolite amyloids including their structure formation through self-association, propagation, interactions, transmission, and their role in metabolic disorders and neurodegenerative diseases and their applications for the fabrication of novel materials which implicate metabolite assemblies as a surprising extension to the amyloid scheme.
Collapse
Affiliation(s)
- Nidhi Gour
- School of Science, Department of Chemistry, Indrashil University, Mehsana, Gujarat, 382740 India
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, 6997801, Israel; BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
24
|
Koshti B, Kshtriya V, Singh R, Walia S, Bhatia D, Joshi KB, Gour N. Unusual Aggregates Formed by the Self-Assembly of Proline, Hydroxyproline, and Lysine. ACS Chem Neurosci 2021; 12:3237-3249. [PMID: 34406754 DOI: 10.1021/acschemneuro.1c00427] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a plethora of significant research that illustrates toxic self-assemblies formed by the aggregation of single amino acids, such as phenylalanine, tyrosine, tryptophan, cysteine, and methionine, and their implication on the etiology of inborn errors of metabolisms (IEMs), such as phenylketonuria, tyrosinemia, hypertryptophanemia, cystinuria, and hypermethioninemia, respectively. Hence, studying the aggregation behavior of single amino acids is very crucial from the chemical neuroscience perspective to understanding the common etiology between single amino acid metabolite disorders and amyloid diseases like Alzheimer's and Parkinson's. Herein we report the aggregation properties of nonaromatic single amino acids l-proline (Pro), l-hydroxyproline (Hyp), and l-lysine hydrochloride (Lys). The morphologies of the self-assembled structures formed by Pro, Hyp, and Lys were extensively studied by various microscopic techniques, and controlled morphological transitions were observed under varied concentrations and aging times. The mechanism of structure formation was deciphered by concentration-dependent 1H NMR analysis, which revealed the crucial role of hydrogen bonding and hydrophobic interactions in the structure formation of Pro, Hyp, and Lys. MTT assays on neural (SHSY5Y) cell lines revealed that aggregates formed by Pro, Hyp, and Lys reduced cell viability in a dose-dependent manner. These results may have important implications in the understanding of the patho-physiology of disorders such as hyperprolinemia, hyperhydroxyprolinemia, and hyperlysinemia since all these IEMs are associated with severe neurodegenerative symptoms, including intellectual disability, seizures, and psychiatric problems. Our future studies will endeavor to study these biomolecular assemblies in greater detail by immuno-histochemical analysis and advanced biophysical assays.
Collapse
Affiliation(s)
- Bharti Koshti
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Vivekshinh Kshtriya
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Ramesh Singh
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Shanka Walia
- Biological Engineering Discipline, Indian Institute of Technology, Palaj, Gujarat 382355, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, Palaj, Gujarat 382355, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Nidhi Gour
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| |
Collapse
|
25
|
Koshti B, Kshtriya V, Nardin C, Gour N. Chemical Perspective of the Mechanism of Action of Antiamyloidogenic Compounds Using a Minimalistic Peptide as a Reductionist Model. ACS Chem Neurosci 2021; 12:2851-2864. [PMID: 34264635 DOI: 10.1021/acschemneuro.1c00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The diphenylalanine (FF) residue which is present at the 19 and 20 positions of the amyloid beta (1-42) (Aβ42) peptide sequence is considered as a reductionist model for studying Aβ42 aggregation. FF self-assembles into well-ordered tubular structures via aromatic π-π stacking. Herein the manuscript, we have presented a chemical perspective on the mechanism of action of antiamyloid compounds by assessing their interaction with FF. Therefore, we first coincubated FF fibers with single amino acids, since they are constituted of different R side chains yet have a common structural unit. This study revealed a crucial role of aromatic rings and functional groups like thiol (-SH) in causing destabilization of FF assembly via their interaction with π-electrons participating in π-π stacking present in FF. We further studied the interaction of different nonsteroidal anti-inflammatory drugs (NSAIDs), other known antiamyloidogenic compounds, and host-guest inclusion compounds like cyclodextrin (CD) to assess their mechanism of action and to decipher the functional moiety present in these compounds which could cause destabilization of π-π stacking. From the coincubation experiments, we could surmise a crucial role of aromatic rings present in these compounds for causing interference in aromatic stacking. We further consolidated our observations through microscopy analysis by various spectroscopic methods such as aggregation-induced emission enhancement (AIEE), fluorescence spectroscopy, solution-state 1H NMR, FTIR, and circular dichroism. The studies presented in the manuscript thus provide significant insights into the role of functional groups in imparting antiamyloid action and open new avenues for an efficient design of antiamyloid drugs in the future.
Collapse
Affiliation(s)
- Bharti Koshti
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Vivekshinh Kshtriya
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Corinne Nardin
- Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| | - Nidhi Gour
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
- Department of Medicinal Chemistry, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
26
|
Kshtriya V, Koshti B, Pandey DK, Kharbanda S, Kanth P C, Singh DK, Bhatia D, Gour N. Sequential and cellular detection of copper and lactic acid by disaggregation and reaggregation of the fluorescent panchromatic fibres of an acylthiourea based sensor. SOFT MATTER 2021; 17:4304-4316. [PMID: 33908562 DOI: 10.1039/d1sm00038a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report, for the first time, the self-assembly of an acyl-thiourea based sensor, N-{(6-methoxy-pyridine-2-yl) carbamothioyl}benzamide (NG1), with panchromatic fluorescent fibres and its dual-sensing properties for the sequential detection of Cu2+ ions and lactic acid. The panchromatic fibres formed by NG1 were disrupted in the presence of Cu2+ ions and this was accompanied by a visible colour change in the solution from colourless to yellow. The addition of lactic acid to the NG1 + Cu2+ solution, on the other hand, induced re-aggregation to fibrillar structures and the colour of the solution again changed to colourless. Hence, it may be surmised that the disaggregation and re-aggregation impart unique dual-sensing properties to NG1 for the sequential detection of Cu2+ ions and lactic acid. The application of NG1 as a selective sensor for Cu2+ ions and lactic acid has been assessed in detail by UV-visible and fluorescence spectroscopy. Furthermore, two structural variants of NG1, namely, NG2 and NG3, were synthesized, which suggest the crucial role of pyridine in imparting panchromatic emission properties and of both pyridine and acyl-thiourea side chain in the binding of Cu2+ ions. The O-methoxy group plays an important part in making NG1 the most sensitive probe of its structural analogs. Finally, the utility of NG1 for the sequential and cellular detection of Cu2+ ions and lactic acid was studied in human RPE cells. The experimental results of the interaction of NG1 with Cu2+ ions and lactic acid have also been validated theoretically by using quantum chemical calculations based on density functional theory (DFT). To the best of our knowledge, this is the first report wherein a dual sensor for Cu2+ ions and lactate ions is synthesized. More importantly, the aggregation properties of the sensor have been studied extensively and an interesting correlation of the photophysical properties of the probe with its self-assembling behavior has been elucidated.
Collapse
Affiliation(s)
- Vivekshinh Kshtriya
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat 382740, India.
| | - Bharti Koshti
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat 382740, India.
| | - Deepak K Pandey
- Department of Basic Sciences, Institute of Infrastructure Technology Research and Management, Ahmedabad, 380026, India
| | - Sumit Kharbanda
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Chandra Kanth P
- Department of Science, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India
| | - Dheeraj K Singh
- Department of Basic Sciences, Institute of Infrastructure Technology Research and Management, Ahmedabad, 380026, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat 382740, India.
| |
Collapse
|
27
|
Balasco N, Diaferia C, Morelli G, Vitagliano L, Accardo A. Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Front Bioeng Biotechnol 2021; 9:641372. [PMID: 33748087 PMCID: PMC7966729 DOI: 10.3389/fbioe.2021.641372] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
The discovery that the polypeptide chain has a remarkable and intrinsic propensity to form amyloid-like aggregates endowed with an extraordinary stability is one of the most relevant breakthroughs of the last decades in both protein/peptide chemistry and structural biology. This observation has fundamental implications, as the formation of these assemblies is systematically associated with the insurgence of severe neurodegenerative diseases. Although the ability of proteins to form aggregates rich in cross-β structure has been highlighted by recent studies of structural biology, the determination of the underlying atomic models has required immense efforts and inventiveness. Interestingly, the progressive molecular and structural characterization of these assemblies has opened new perspectives in apparently unrelated fields. Indeed, the self-assembling through the cross-β structure has been exploited to generate innovative biomaterials endowed with promising mechanical and spectroscopic properties. Therefore, this structural motif has become the fil rouge connecting these diversified research areas. In the present review, we report a chronological recapitulation, also performing a survey of the structural content of the Protein Data Bank, of the milestones achieved over the years in the characterization of cross-β assemblies involved in the insurgence of neurodegenerative diseases. A particular emphasis is given to the very recent successful elucidation of amyloid-like aggregates characterized by remarkable molecular and structural complexities. We also review the state of the art of the structural characterization of cross-β based biomaterials by highlighting the benefits of the osmosis of information between these two research areas. Finally, we underline the new promising perspectives that recent successful characterizations of disease-related amyloid-like assemblies can open in the biomaterial field.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
28
|
Zhang J, Liu S, Li H, Tian X, Li X. Tryptophan-Based Self-Assembling Peptides with Bacterial Flocculation and Antimicrobial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11316-11323. [PMID: 32907333 DOI: 10.1021/acs.langmuir.0c01957] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tryptophan as an aromatic amino acid with a hydrophobic indole group plays important roles in stabilizing protein structures and enhancing molecular bindings in nature, but was rarely used in the molecular design of self-assembling peptides or gelators. Therefore, we prepared a series of short peptides from Trp amino acids and examined the potential roles of Trp residues for regulating peptide self-assembly and gelation. The introduced Trp amino acids not only diversify the molecular structures of peptide gelators, but also promote aromatic and hydrogen-bonding interactions for supramolecular self-assembling and gelation, which generates self-assembled nanostructures with twisted helical morphologies and supramolecular hydrogels with low minimal gelation concentrations. More importantly, the self-assembling peptides with Trp residues displayed strong preference for interacting with the lipidic membranes of bacteria, which resulted in bacterial flocculation and the death of E. coli and S. aureus.
Collapse
Affiliation(s)
- Jikun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shengnan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hang Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xin Tian
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
29
|
Das R, Gayakvad B, Shinde SD, Rani J, Jain A, Sahu B. Ultrashort Peptides—A Glimpse into the Structural Modifications and Their Applications as Biomaterials. ACS APPLIED BIO MATERIALS 2020; 3:5474-5499. [DOI: 10.1021/acsabm.0c00544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bhavinkumar Gayakvad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Jyoti Rani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| |
Collapse
|
30
|
Singh P, Narang N, Sharma RK, Wangoo N. Interplay of Self-Assembling Aromatic Amino Acids and Functionalized Gold Nanoparticles Generating Supramolecular Structures. ACS APPLIED BIO MATERIALS 2020; 3:6196-6203. [DOI: 10.1021/acsabm.0c00736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Prabhjot Singh
- Centre for Nanoscience and Nanotechnology, Panjab University, Sector 14, Chandigarh 160014, India
| | - Nikesh Narang
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh 160014, India
| | - Rohit K. Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh 160014, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering and Technology (U.I.E.T.), Panjab University, Sector 25, Chandigarh 160014, India
| |
Collapse
|
31
|
Singh P, Manhas P, Sharma R, Pandey SK, Sharma RK, Katare OP, Wangoo N. Self-assembled dipeptide nanospheres as single component based delivery vehicle for ampicillin and doxorubicin. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020; 8:504. [PMID: 32548101 PMCID: PMC7273840 DOI: 10.3389/fbioe.2020.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
The translational therapies to promote interaction between cell and signal come with stringent eligibility criteria. The chemically defined, hierarchically organized, and simpler yet blessed with robust intermolecular association, the peptides, are privileged to make the cut-off for sensing the cell-signal for biologics delivery and tissue engineering. The signature service and insoluble network formation of the peptide self-assemblies as hydrogels have drawn a spell of research activity among the scientists all around the globe in the past decades. The therapeutic peptide market players are anticipating promising growth opportunities due to the ample technological advancements in this field. The presence of the other organic moieties, enzyme substrates and well-established protecting groups like Fmoc and Boc etc., bring the best of both worlds. Since the large sequences of peptides severely limit the purification and their isolation, this article reviews the account of last 5 years' efforts on novel approaches for formulation and development of single molecule amino acids, ultra-short peptide self-assemblies (di- and tri- peptides only) and their derivatives as drug/gene carriers and tissue-engineering systems.
Collapse
Affiliation(s)
- Seema Gupta
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Indu Singh
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashwani K. Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
33
|
Singh P, Wangoo N, Sharma RK. Phenylalanine dimer assembly structure as the basic building block of an amyloid like photoluminescent nanofibril network. SOFT MATTER 2020; 16:4105-4109. [PMID: 32319977 DOI: 10.1039/d0sm00387e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A phenylalanine dimer assembly (Phe-DA) is reported as a basic constituent of a light emitting β-amyloid type nanofibril network. The size and composition of the Phe-DA structure were characterized using various theoretical and experimental techniques. Further, the mechanism involved in the phenylalanine self-assembly process from Phe-DA to the nanofibril network was studied using optical spectroscopy and small angle X-ray scattering (SAXS). The discovery of Phe-DA and its unique optical properties may pave the way for design and development of novel theranostics against metabolite based pathalogical disorders. Further, the role of the Phe-DA structure as the elementary unit in the formation of a long range assembly structure may provide vital understanding for the development of functional materials using simple organic molecules.
Collapse
Affiliation(s)
- Prabhjot Singh
- Centre for Nanoscience and Nanotechnology, Panjab University, Sector 25, Chandigarh-160014, India
| | | | | |
Collapse
|
34
|
Banerjee P, Pyne A, Sarkar N. Understanding the Self-Assembling Behavior of Biological Building Block Molecules: A Spectroscopic and Microscopic Approach. J Phys Chem B 2020; 124:2065-2080. [PMID: 32081003 DOI: 10.1021/acs.jpcb.9b09123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
"Mother nature" utilizes molecular self-assembly as an efficient tool to design several fascinating supramolecular architectures from simple building blocks like amino acids, peptides, and nucleobases. The self-assembling behavior of various biologically important molecules, morphological outcomes, molecular mechanism of association, and finally their applications in the real world draw broad interest from chemical and biological point of views. In this present Feature Article, the amyloid hypothesis is extended to include nonproteinaceous single metabolites that invoke a new paradigm for the pathology of inborn metabolic disorders. In this scenario, we dedicate this paper to understanding the morphological consequences and mechanistic insight of the self-assembly of some important amino acids (e.g., l-phenylalanine, l-tyrosine, glycine, etc.) and nucleobases (adenine and eight uracil moiety derivatives). Using proper spectroscopic and microscopic tools, distinct assembling mechanisms of different amino acids and nucleobases have been established. Again, lanthanides, polyphenolic compounds such as crown ethers, and a worldwide drink, beer, are elegantly employed as inhibitors of the resulting fibrillar aggregated structures. As a consequence, this study will cover literally a vast region in the self-assembling outcomes of single biologically important molecules, and therefore, we expect that a detailed understanding of such morphological outcomes using spectroscopic and microscopic approaches may open a new paradigm in this burgeoning field.
Collapse
Affiliation(s)
- Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 WB, India
| | - Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 WB, India
| |
Collapse
|
35
|
Tuning the gelation behavior of short laminin derived peptides via solvent mediated self-assembly. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110483. [DOI: 10.1016/j.msec.2019.110483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
|
36
|
Bera S, Xue B, Rehak P, Jacoby G, Ji W, Shimon LJW, Beck R, Král P, Cao Y, Gazit E. Self-Assembly of Aromatic Amino Acid Enantiomers into Supramolecular Materials of High Rigidity. ACS NANO 2020; 14:1694-1706. [PMID: 31944667 PMCID: PMC7123433 DOI: 10.1021/acsnano.9b07307] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/16/2020] [Indexed: 05/12/2023]
Abstract
Most natural biomolecules may exist in either of two enantiomeric forms. Although in nature, amino acid biopolymers are characterized by l-type homochirality, incorporation of d-amino acids in the design of self-assembling peptide motifs has been shown to significantly alter enzyme stability, conformation, self-assembly behavior, cytotoxicity, and even therapeutic activity. However, while functional metabolite assemblies are ubiquitous throughout nature and play numerous important roles including physiological, structural, or catalytic functions, the effect of chirality on the self-assembly nature and function of single amino acids is not yet explored. Herein, we investigated the self-assembly mechanism of amyloid-like structure formation by two aromatic amino acids, phenylalanine (Phe) and tryptophan (Trp), both previously found as extremely important for the nucleation and self-assembly of aggregation-prone peptide regions into functional structures. Employing d-enantiomers, we demonstrate the critical role that amino acid chirality plays in their self-assembly process. The kinetics and morphology of pure enantiomers is completely altered upon their coassembly, allowing to fabricate different nanostructures that are mechanically more robust. Using diverse experimental techniques, we reveal the different molecular arrangement and self-assembly mechanism of the dl-racemic mixtures that resulted in the formation of advanced supramolecular materials. This study provides a simple yet sophisticated engineering model for the fabrication of attractive materials with bionanotechnological applications.
Collapse
Affiliation(s)
- Santu Bera
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Bin Xue
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Pavel Rehak
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Guy Jacoby
- The
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wei Ji
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Roy Beck
- The
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Petr Král
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
- Department
of Biopharmaceutical Sciences, University
of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yi Cao
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Ehud Gazit
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
37
|
Xia CP, Pan T, Zhang N, Guo JR, Yang BW, Zhang D, Li J, Xu K, Meng Z, He H. Sp1 promotes dental pulp stem cell osteoblastic differentiation through regulating noggin. Mol Cell Probes 2020; 50:101504. [PMID: 31904417 DOI: 10.1016/j.mcp.2019.101504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 02/08/2023]
Abstract
Based on the high self-renewal ability and osteoblastic differentiation capacity, dental pulp stem cells (DPSCs) are suggested to be promising cell source for osteogenesis. Therefore, illustrating the mechanism of osteoblastic differentiation of DPSCs is required. This current study aims to illustrate the role and mechanism of Sp1 in regulating osteoblastic differentiation of DPSCs. In this study, we downregulated Sp1 in DPSCs and evaluated the osteoblastic differentiation by measuring Runx2 and OCN expression with Western blot analysis and by Alizarin red staining. Furthermore, we investigated the mechanism of Sp1 regulating noggin with Firefly luciferase reporter gene assay and ChIP assay, and correspondingly evaluated the function of noggin in Sp1-regulated osteoblastic differentiation of DPSCs. We found that knockdown of Sp1 inhibits the expression of ALP, Runx2, COL1A1 and OCN, and decreases ALP staining, Alizarin red staining. Sp1 binds to noggin promoter and inhibits noggin expression, thus correspondingly regulates DPSCs osteoblastic differentiation. In conclusion, our study revealed that Sp1 regulates DPSCs osteoblastic differentiation through noggin and that Sp1/noggin can provide new perspective for enhancing DPSCs osteogenesis.
Collapse
Affiliation(s)
- Chun-Peng Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Rd., Wuhan, 430079, China; Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China; Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Rd, Wuhan, 430079, China
| | - Tao Pan
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Nan Zhang
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng People's Hospital, Liaocheng University, Liaocheng, 252000, China
| | - Jian-Ran Guo
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Bing-Wu Yang
- Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Di Zhang
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Jun Li
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Kai Xu
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Zhen Meng
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China.
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Rd., Wuhan, 430079, China; Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Rd, Wuhan, 430079, China.
| |
Collapse
|
38
|
Majumder L, Chatterjee M, Bera K, Maiti NC, Banerji B. Solvent-Assisted Tyrosine-Based Dipeptide Forms Low-Molecular Weight Gel: Preparation and Its Potential Use in Dye Removal and Oil Spillage Separation from Water. ACS OMEGA 2019; 4:14411-14419. [PMID: 31528794 PMCID: PMC6739715 DOI: 10.1021/acsomega.9b01301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Low-molecular weight gelators (supramolecular, or simply molecular gels) are highly important molecular frameworks because of their potential application in drug delivery, catalysis, pollutant removal, sensing materials, and so forth. Herein, a small dipeptide composed of N-(tert-butoxycarbonyl)pentafluoro-l-phenylalanine and O-benzyl-l-tyrosine methyl ester was synthesized, and its gelation ability was investigated in different solvent systems. It was found that the dipeptide was unable to form gel with a single solvent, but a mixture of solvent systems was found to be suitable for the gelation of this dipeptide. Interestingly, water was found to be essential for gelation with the polar protic solvent, and long-chain hydrocarbon units such as, petroleum ether, kerosene, and diesel, were important for gelation with aromatic solvents. The structural insights of these gels were characterized by field-emission scanning electronic microscopy, atomic force microscopy, Fourier transform infrared analysis, and X-ray diffraction studies, and their mechanical strengths were characterized by rheological experiments. Both of the gels obtained from these two solvent systems were thermoreversible in nature, and these translucent gels had potential application for the treatment of waste water. The gel obtained from dipeptides with methanol-water was used to remove toxic dyes (crystal violet, Eriochrome Black T, and rhodamine B) from water. Furthermore, the gel obtained from dipeptide with assistance from toluene-petroleum ether was used as a phase-selective gelator for oil-spill recovery.
Collapse
Affiliation(s)
- Leena Majumder
- Organic
and Medicinal Chemistry Division, Academy of Science and Industrial
Research, and Structural Biology and Bioinformatics Division, CSIR—Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Moumita Chatterjee
- Organic
and Medicinal Chemistry Division, Academy of Science and Industrial
Research, and Structural Biology and Bioinformatics Division, CSIR—Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Kaushik Bera
- Organic
and Medicinal Chemistry Division, Academy of Science and Industrial
Research, and Structural Biology and Bioinformatics Division, CSIR—Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Nakul Chandra Maiti
- Organic
and Medicinal Chemistry Division, Academy of Science and Industrial
Research, and Structural Biology and Bioinformatics Division, CSIR—Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Biswadip Banerji
- Organic
and Medicinal Chemistry Division, Academy of Science and Industrial
Research, and Structural Biology and Bioinformatics Division, CSIR—Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| |
Collapse
|
39
|
Dutta R, Sil S, Kundu S, Nandi S, Sarkar N. Multi-stimuli responsive fabrication of supramolecular assemblies using ionic self-assembly approach. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Tomar D, Chaudhary S, Jena KC. Self-assembly of l-phenylalanine amino acid: electrostatic induced hindrance of fibril formation. RSC Adv 2019; 9:12596-12605. [PMID: 35515878 PMCID: PMC9063664 DOI: 10.1039/c9ra00268e] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/11/2019] [Indexed: 11/21/2022] Open
Abstract
Nanostructure morphology originating from the self-assembly of molecules has attracted substantial attention due to its role in toxic amyloid fibril formation and immense potential in the design and fabrication of novel biomaterials. This study presents the role of intermolecular electrostatic interaction on the self-assembly process of l-phenylalanine (L-Phe) amino acid. We have employed attenuated total reflection Fourier transform infrared spectroscopy to probe the existence of different ionization states of the amino acid in various pH aqueous solutions. The self-assembly process of L-Phe in the aqueous phase is explored by using circular dichroism absorption and nuclear magnetic resonance spectroscopic tools. The observed spectral features have shown the signature of higher order structures and possible perturbation in the π-π stacking aromatic interactions for the cationic and anionic states of the amino acid. Scanning electron microscopy is used to probe the self-assembled morphology of the L-Phe amino acid dried samples prepared from the same pH aqueous solutions. We find that for the case of zwitterionic states the self-assembly nanostructures are dominated by the presence of fibrillar morphology, however interestingly for cationic and anionic states the morphology is dominated by the presence of flakes. Our finding demonstrates the potential influence of intermolecular electrostatic interaction over the aromatic π-π stacking interaction in hindering the fibril formation.
Collapse
Affiliation(s)
- Deepak Tomar
- Department of Physics, Indian Institute of Technology Ropar Rupnagar Punjab-140001 India +91-1881-242166
| | - Shilpi Chaudhary
- Department of Physics, Indian Institute of Technology Ropar Rupnagar Punjab-140001 India +91-1881-242166
| | - Kailash Chandra Jena
- Department of Physics, Indian Institute of Technology Ropar Rupnagar Punjab-140001 India +91-1881-242166
- Center for Biomedical Engineering, Indian Institute of Technology Ropar Rupnagar Punjab-140001 India
| |
Collapse
|
41
|
Meli M, Engel H, Laor D, Gazit E, Colombo G. Mechanisms of Metabolite Amyloid Formation: Computational Studies for Drug Design against Metabolic Disorders. ACS Med Chem Lett 2019; 10:666-670. [PMID: 30996815 DOI: 10.1021/acsmedchemlett.9b00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
Ordered self-organization of polypeptides into fibrillar assemblies has been associated with a number of pathological conditions linked to degenerative diseases. Recent experimental observations have demonstrated that even small-molecule metabolites can aggregate into supramolecular arrangements with structural and functional properties reminiscent of peptide-based amyloids. The molecular determinants of such mechanisms, however, are not clear yet. Herein, we examine the process of formation of ordered aggregates by adenine in aqueous solution by molecular dynamics simulations. We also investigate the effects of an inhibiting polyphenol, namely, epigallocatechin gallate (EGCG), on this mechanism. We show that, while adenine alone is able to form extended amyloid-like oligomers, EGCG interferes with the supramolecular organization process. Interestingly, acetylsalicylic acid is shown not to interfere with ordered aggregation, consistent with experiments. The results of these mechanistic studies indicate the main pharmacophoric determinants that a drug-like inhibitor should possess to effectively interfere with metabolite amyloid formation.
Collapse
Affiliation(s)
- Massimiliano Meli
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano 20131, Italy
| | - Hamutal Engel
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Laor
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ehud Gazit
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano 20131, Italy
- Università di Pavia, Dipartimento di Chimica, via Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
42
|
Yang X, Yang B, Wang Y, Qi W, Xing Q, Zhang L, Liu X, Hu Q, Su R, He Z. In situ fabrication of multifunctional gold-amino acid superstructures based on self-assembly. Chem Commun (Camb) 2019; 55:3967-3970. [PMID: 30874693 DOI: 10.1039/c9cc01025d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facial strategy to construct multifunctional gold-amino acid superstructures is reported. The ferrocene-tryptophan conjugate could self-assemble into three-dimensional microflowers. What's more, gold nanoparticles could be biomineralized on the surface of the microflowers, achieving gold-amino acid superstructures. The formed superstructures exhibited significant photothermal effects and catalytic activity.
Collapse
Affiliation(s)
- Xuejiao Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Bohao Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China and The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, P. R. China
| | - Qiguo Xing
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Lei Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Xinyu Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Qing Hu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China and The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
43
|
Gour N, Kanth P. C, Koshti B, Kshtriya V, Shah D, Patel S, Agrawal-Rajput R, Pandey MK. Amyloid-like Structures Formed by Single Amino Acid Self-Assemblies of Cysteine and Methionine. ACS Chem Neurosci 2019; 10:1230-1239. [PMID: 30380833 DOI: 10.1021/acschemneuro.8b00310] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We report for the very first time the discovery of amyloid-like self-assemblies formed by the nonaromatic single amino acids cysteine (Cys) and methionine (Met) under neutral aqueous conditions. The structure formation was assessed and characterized by various microscopic and spectroscopic techniques such as optical microscopy, phase contrast microscopy, scanning electron microscopy, and transmission electron microscopy. The mechanism of self-assembly and the role of hydrogen bonding and thiol interactions of Cys and Met were assessed by Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, and solid state NMR along with various control experiments. In addition, molecular dynamics simulations were carried out to gain insight into assembly initiation. Further, Thioflavin T and Congo red binding assays with Cys and Met structures indicated that these single amino acid assemblies may have amyloid-like characteristics. To understand the biological significance of the Cys and Met structures, cytotoxicity assays of the assemblies were performed on human neuroblastoma IMR-32 cells and monkey kidney cells (COS-7). The results revealed that both Cys and Met fibers were cytotoxic. The cell viability assay further supported the hypothesis that aggregation of single amino acid may contribute to the etiology of metabolic disorders like cystinuria and hypermethioninemia. The results presented in this study are striking, and to the best of our knowledge this is the first report which demonstrates that nonaromatic amino acids like Cys and Met can undergo spontaneous self-assembly to form amyloidogenic aggregates. The results presented are also consistent with the established generic amyloid hypothesis and support a new paradigm for the study of the etiology of single amino acid initiated metabolic disorders in amyloid related diseases.
Collapse
Affiliation(s)
- Nidhi Gour
- Centre of Engineering and Enterprise, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Chandra Kanth P.
- Department of Science, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat 382007, India
| | - Bharti Koshti
- Centre of Engineering and Enterprise, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Vivekshinh Kshtriya
- Centre of Engineering and Enterprise, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Dhruvi Shah
- School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Sunita Patel
- UM-DAE Centre for Excellence in Basic Sciences, Mumbai University Campus, Mumbai, Maharashtra 400098, India
| | - Reena Agrawal-Rajput
- School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Manoj K. Pandey
- Department of Science, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat 382007, India
| |
Collapse
|
44
|
Sade D, Shaham-Niv S, Arnon ZA, Tavassoly O, Gazit E. Seeding of proteins into amyloid structures by metabolite assemblies may clarify certain unexplained epidemiological associations. Open Biol 2019; 8:rsob.170229. [PMID: 29367352 PMCID: PMC5795054 DOI: 10.1098/rsob.170229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
The accumulation of various metabolites appears to be associated with diverse human diseases. However, the aetiological link between metabolic alteration and the observed diseases is still elusive. This includes the correlation between the abnormally high levels of homocysteine and quinolinic acid in Alzheimer's disease, as well as the accumulation of oncometabolites in malignant processes. Here, we suggest and discuss a possible mechanistic insight into metabolite accumulation in conditions such as neurodegenerative diseases and cancer. Our hypothesis is based on the demonstrated ability of metabolites to form amyloid-like structures in inborn error of metabolism disorders and the potential of such metabolite amyloids to promote protein aggregation. This notion can provide a new paradigm for neurodegeneration and cancer, as both conditions were linked to loss of function due to protein aggregation. Similar to the well-established observation of amyloid formation in many degenerative disorders, the formation of amyloids by tumour-suppressor proteins, including p53, was demonstrated in malignant states. Moreover, this new paradigm could fill the gap in understanding the high occurrence of specific types of cancer among genetic error of metabolism patients. This hypothesis offers a fresh view on the aetiology of some of the most abundant human maladies and may redirect the efforts towards new therapeutic developments.
Collapse
Affiliation(s)
- Dorin Sade
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shira Shaham-Niv
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zohar A Arnon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Omid Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel .,Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv 6997801, Israel.,Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
45
|
Bera S, Mondal S, Tang Y, Jacoby G, Arad E, Guterman T, Jelinek R, Beck R, Wei G, Gazit E. Deciphering the Rules for Amino Acid Co-Assembly Based on Interlayer Distances. ACS NANO 2019; 13:1703-1712. [PMID: 30673213 PMCID: PMC7616932 DOI: 10.1021/acsnano.8b07775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metabolite materials are extremely useful to obtain functional bioinspired assemblies with unique physical properties for various applications in the fields of material science, engineering, and medicine by self-assembly of the simplest biological building blocks. Supramolecular co-assembly has recently emerged as a promising extended approach to further expand the conformational space of metabolite assemblies in terms of structural and functional complexity. Yet, the design of synergistically co-assembled amino acids to produce tailor-made functional architectures is still challenging. Herein, we propose a design rule to predict the supramolecular co-assembly of naturally occurring amino acids based on their interlayer separation distances observed in single crystals. Using diverse experimental techniques, we demonstrate that amino acids with comparable interlayer separation strongly interact and co-assemble to produce structural composites distinctly different from their individual properties. However, such an interaction is hampered in a mixture of differentially layer-separated amino acids, which self-sort to generate individual characteristic structures. This study provides a different paradigm for the modular design of supramolecular assemblies based on amino acids with predictable properties.
Collapse
Affiliation(s)
- Santu Bera
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sudipta Mondal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai 200433, People’s Republic of China
| | - Guy Jacoby
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elad Arad
- Department of Chemistry, Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Tom Guterman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raz Jelinek
- Department of Chemistry, Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Roy Beck
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai 200433, People’s Republic of China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
46
|
Qin J, Luo T, Kiick KL. Self-Assembly of Stable Nanoscale Platelets from Designed Elastin-like Peptide–Collagen-like Peptide Bioconjugates. Biomacromolecules 2019; 20:1514-1521. [DOI: 10.1021/acs.biomac.8b01681] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jingya Qin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology
Institute, Newark, Delaware 19711, United States
| |
Collapse
|
47
|
Laor D, Sade D, Shaham-Niv S, Zaguri D, Gartner M, Basavalingappa V, Raveh A, Pichinuk E, Engel H, Iwasaki K, Yamamoto T, Noothalapati H, Gazit E. Fibril formation and therapeutic targeting of amyloid-like structures in a yeast model of adenine accumulation. Nat Commun 2019; 10:62. [PMID: 30622276 PMCID: PMC6325136 DOI: 10.1038/s41467-018-07966-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
The extension of the amyloid hypothesis to include non-protein metabolite assemblies invokes a paradigm for the pathology of inborn error of metabolism disorders. However, a direct demonstration of the assembly of metabolite amyloid-like structures has so far been provided only in vitro. Here, we established an in vivo model of adenine self-assembly in yeast, in which toxicity is associated with intracellular accumulation of the metabolite. Using a strain blocked in the enzymatic pathway downstream to adenine, we observed a non-linear dose-dependent growth inhibition. Both the staining with an indicative amyloid dye and anti-adenine assemblies antibodies demonstrated the accumulation of adenine amyloid-like structures, which were eliminated by lowering the supplied adenine levels. Treatment with a polyphenol inhibitor reduced the occurrence of amyloid-like structures while not affecting the dramatic increase in intracellular adenine concentration, resulting in inhibition of cytotoxicity, further supporting the notion that toxicity is triggered by adenine assemblies. Small molecule metabolites like phenylalanine can form amyloid-like structures but so far this has only been demonstrated in vitro. Here the authors generate a yeast in vivo model of adenine self-assembly and characterize the adenine assemblies in cells by indicative amyloid dye and anti-adenine assemblies antibodies.
Collapse
Affiliation(s)
- Dana Laor
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Dorin Sade
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Shira Shaham-Niv
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Dor Zaguri
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Myra Gartner
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Vasantha Basavalingappa
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Avi Raveh
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Edward Pichinuk
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Hamutal Engel
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Keita Iwasaki
- Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Japan
| | - Tatsuyuki Yamamoto
- Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Japan.,Raman Center for Medical and Biological Applications, Shimane University, Matsue, 690-8504, Japan
| | - Hemanth Noothalapati
- Raman Center for Medical and Biological Applications, Shimane University, Matsue, 690-8504, Japan
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel. .,BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, 6997801, Tel Aviv, Israel. .,Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
48
|
Kanti De S, Chakraborty A. Interaction of monomeric and self-assembled aromatic amino acids with model membranes: self-reproduction phenomena. Chem Commun (Camb) 2019; 55:15109-15112. [DOI: 10.1039/c9cc08495a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The spontaneous formation of amyloid structures of proteins is responsible for several major human neurodegenerative diseases.
Collapse
Affiliation(s)
- Soumya Kanti De
- Discipline of Chemistry
- Indian Institute of Technology
- Indore 453552
- India
| | - Anjan Chakraborty
- Discipline of Chemistry
- Indian Institute of Technology
- Indore 453552
- India
| |
Collapse
|
49
|
Chakraborty P, Gazit E. Amino Acid Based Self-assembled Nanostructures: Complex Structures from Remarkably Simple Building Blocks. CHEMNANOMAT : CHEMISTRY OF NANOMATERIALS FOR ENERGY, BIOLOGY AND MORE 2018; 4:730-740. [PMID: 30713827 PMCID: PMC6352958 DOI: 10.1002/cnma.201800147] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Amino acids are the simplest biological building blocks capable of forming discreet nanostructures by supramolecular self-assembly. The understanding of the process of organization of amino acid nanostructures is of fundamental importance for the study of metabolic diseases as well as for materials science applications. Although peptide self-assembled structures have been the topic of many review articles, much less attention has been devoted to the ability of amino acid building blocks, both natural and synthetic, to form ordered assemblies with defined architectures and notable physical properties, by the process of self-association. Herein, we try to shed light on amino acid based nanostructures, their fabrication and implications. We discuss self-assembled nanostructures, including hydrogels with nanoscale order, obtained from both modified and unmodified single amino acids. We also envision some future prospects in this emerging field.
Collapse
Affiliation(s)
- Priyadarshi Chakraborty
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
50
|
Arnon ZA, Pinotsi D, Schmidt M, Gilead S, Guterman T, Sadhanala A, Ahmad S, Levin A, Walther P, Kaminski CF, Fändrich M, Schierle GSK, Adler-Abramovich L, Shimon LJW, Gazit E. Opal-like Multicolor Appearance of Self-Assembled Photonic Array. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20783-20789. [PMID: 29842782 PMCID: PMC6358003 DOI: 10.1021/acsami.8b04912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Molecular self-assembly of short peptide building blocks leads to the formation of various material architectures that may possess unique physical properties. Recent studies had confirmed the key role of biaromaticity in peptide self-assembly, with the diphenylalanine (FF) structural family as an archetypal model. Another significant direction in the molecular engineering of peptide building blocks is the use of fluorenylmethoxycarbonyl (Fmoc) modification, which promotes the assembly process and may result in nanostructures with distinctive features and macroscopic hydrogel with supramolecular features and nanoscale order. Here, we explored the self-assembly of the protected, noncoded fluorenylmethoxycarbonyl-β,β-diphenyl-Ala-OH (Fmoc-Dip) amino acid. This process results in the formation of elongated needle-like crystals with notable aromatic continuity. By altering the assembly conditions, arrays of spherical particles were formed that exhibit strong light scattering. These arrays display vivid coloration, strongly resembling the appearance of opal gemstones. However, unlike the Rayleigh scattering effect produced by the arrangement of opal, the described optical phenomenon is attributed to Mie scattering. Moreover, by controlling the solution evaporation rate, i.e., the assembly kinetics, we were able to manipulate the resulting coloration. This work demonstrates a bottom-up approach, utilizing self-assembly of a protected amino acid minimal building block, to create arrays of organic, light-scattering colorful surfaces.
Collapse
Affiliation(s)
- Zohar A. Arnon
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dorothea Pinotsi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, Ulm 89081, Germany
| | - Sharon Gilead
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tom Guterman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Aditya Sadhanala
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Shahab Ahmad
- Institute for Manufacturing, Department of Engineering, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Aviad Levin
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm 89081, Germany
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm 89081, Germany
| | | | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Linda J. W. Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|