1
|
Ullah R, Tuzen M, Hazer B. Novel silver-morphine-functionalized polypropylene (AgPP-mrp) nanocomposite for the degradation of dye removal by multivariate optimization approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79904-79915. [PMID: 37286840 DOI: 10.1007/s11356-023-27959-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
As a novel adsorbent, an opioid silver-morphine-functionalized polypropylene was synthesized through a one-pot reaction at room temperature and successfully used for the simple one-pot photocatalytic degradation catalyst of methyl orange removal from wastewater. UV spectral analysis reveals a special reference to the excitation of surface plasmon resonance as the main characteristic of the polymer-Ag nanocomposite in toluene solution peak at 420 nm in AgPP-mrp catalyst. The 1H NMR spectrum showed no sign of Ag NP peaks revealing small size distribution in the channels of morphine-functionalized polypropylene polymer. The morphology of silver nanoparticle-doped polymer through scanning electron microscopy (SEM-EDX) reveals PP-mrp with continuous matrix and Ag NPs (0.87 wt%). Furthermore, photocatalytic degradation of methyl orange was investigated on AgPP-mrp catalyst spectrophotometrically under solar irradiation in waste effluent, demonstrating high degradation efficiency. According to experimental findings, silver nanoparticles (AgPP-mrp) achieved high degradation capacities of 139 mg/g equivalent to 97.4% of photodegradation in a little period of time (35 min), as associated with previously stated materials and follow pseudo-second-order kinetic degradation tail of a high regression coefficient (R2 = 0.992). The suggested techniques offer a linear reaction for MO over the pH range of 1.5 to 5 and a degradation temperature of 25 to 60 °C. Central composite design and response surface methodology statistics recommend pH of the reaction medium and time as important variables for methyl orange degradation on AgPP-mrp photocatalytic. AgPP-mrp on the photocatalytic phenomenon based on heterojunction catalytic design producing electron holes (e-), as well as superoxides for the successful degradation of methyl orange.
Collapse
Affiliation(s)
- Rooh Ullah
- Chemistry Department, Faculty of Science and Arts, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
- Department of Chemistry, University of Turbat, Balochistan, Pakistan
| | - Mustafa Tuzen
- Chemistry Department, Faculty of Science and Arts, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey.
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey
- Department of Nano Technology Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
| |
Collapse
|
2
|
Yuan Y, Shang Y, Zhou Y, Guo J, Yan F. Enabling Antibacterial and Antifouling Coating via Grafting of a Nitric Oxide-Releasing Ionic Liquid on Silicone Rubber. Biomacromolecules 2022; 23:2329-2341. [PMID: 35652936 DOI: 10.1021/acs.biomac.2c00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infections caused by bacteria and biofilms on the surfaces of biomedical devices and implants pose serious threats to public health. Herein, a nitric oxide (NO) gas-releasing quaternary ammonium-type ionic liquid (IL)-based coating on polydimethylsiloxane (PDMS), PDIL-NO, with effective and long-acting antibacterial and antifouling properties was prepared. N-(2-((2, 3-Dimethylbut-3-enoyl)oxy)ethyl)-N, N-dimethyloctan-1-aminium bromide (IL-Br), and 2-methyl-2-propenoic acid 2-(2-methoxyethoxy) ethyl ester were covalently grafted onto the surfaces of PDMS by a thiol-ene click chemical reaction, followed by incorporation of l-proline anions (Pro-) through anion exchange with Br- to adsorb NO gas. The prepared PDIL-NO showed a prolonged NO-releasing time (>1440 min) and a relatively high concentration (88 μM). Additionally, PDIL-NO possessed good and long-term antimicrobial activity, and could effectively reduce the adsorption of bovine serum albumin and adhesion of bacteria, as well as inhibit wound infection and reduce inflammation in vivo due to the synergetic effect of IL and the released NO. This study may provide a new approach to combat bacterial infections associated with biomedical devices and implants.
Collapse
Affiliation(s)
- Yinghui Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yating Shang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.,Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Feng B, Zhang S, Wang D, Li Y, Zheng P, Gao L, Huo D, Cheng L, Wei S. Study on antibacterial wood coatings with soybean protein isolate nano-silver hydrosol. PROGRESS IN ORGANIC COATINGS 2022; 165:106766. [PMID: 35185260 PMCID: PMC8841168 DOI: 10.1016/j.porgcoat.2022.106766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 05/08/2023]
Abstract
As the new coronavirus pneumonia swept the world in 2020, the demand for antibacterial products significantly increased. In this study, a soy protein isolate nano-silver hydrosol was prepared using an environmentally friendly Ag+ in situ reduction process, where the soy protein was ultrasonically blended with polyacrylic resin to obtain a polyacrylate-nano silver antibacterial wood coating. The structure of the soy protein isolate nano-silver hydrosol was assessed, and the structure and antibacterial and mechanical properties of the film were characterized. The results showed that the silver nanoparticles (AgNPs) exhibited good crystallinity and were evenly distributed in the emulsion. The composite film had good antibacterial properties against gram-negative bacteria represented by Escherichia coli and gram-positive bacteria represented by Staphylococcus aureus. With increased nano-silver content, the diameter of the inhibition zone increased from 0 to 30 mm, and from 18 to 50 mm for the two bacteria, respectively. Moreover, the elastic modulus of the film increased from 8.173 to 97.912 MPa, and the elongation at break decreased from 240.601 to 41.038% as the content of AgNPs changed from 0.1 to 1%, respectively. Thus, this study provides a new method for preparing waterborne polyacrylate coatings with excellent antibacterial properties.
Collapse
Affiliation(s)
- Bin Feng
- Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Harbin 150040, China
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Sibo Zhang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Di Wang
- Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Harbin 150040, China
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yalong Li
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Pai Zheng
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Long Gao
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Da Huo
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Lei Cheng
- Guangdong Haishun New Material Technology Co., Ltd., China
| | - Shuangying Wei
- Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Harbin 150040, China
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
4
|
Erdem Ç, Isık T, Horzum N, Hazer B, Demir MM. Electrospinning of Fatty Acid‐Based and Metal Incorporated Polymers for the Fabrication of Eco‐Friendly Fibers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Çaǧlar Erdem
- Department of Materials Science and Engineering İzmir Institute of Technology İzmir Turkey
| | - Tuǧba Isık
- Department of Mineral Analysis and Technologies General Directorate of Mineral Research and Exploration Ankara Turkey
| | - Nesrin Horzum
- Department of Engineering Sciences İzmir Katip Celebi University İzmir Turkey
| | - Baki Hazer
- Department of Aircraft Airflame Engine Maintenance Kapadokya University Ürgüp Nevşehir Turkey
- Zonguldak Bülent Ecevit University Department of Chemistry Zonguldak Turkey
| | - Mustafa M. Demir
- Department of Materials Science and Engineering İzmir Institute of Technology İzmir Turkey
| |
Collapse
|
5
|
Tuzen M, Altunay N, Hazer B, Mogaddam MRA. Synthesis of polystyrene-polyricinoleic acid copolymer containing silver nano particles for dispersive solid phase microextraction of molybdenum in water and food samples. Food Chem 2022; 369:130973. [PMID: 34507087 DOI: 10.1016/j.foodchem.2021.130973] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023]
Abstract
Polystyrene-polyricinoleic acid copolymer containing silver nano particles (AgPSrici) was synthesized and used in separation of molybdenum from different aqueous and foodstuff samples during a dispersive-µ-solid phase extraction approach. The synthesized nano particles were verified using Fourier transform infraredspectroscopy. An electrothermal atomic absorption spectrometry has been used for measurement of the studied ions. AgPSrici amount pH, sample volume, elution solvent kind, and the time of extraction were the effective parameters that were optimized by one-variable-at-one-time method. Analytical data of the method was calculated and limit of detection, relative standard deviation, limit of quantification were 0.022 µg L-1, 2.9%, 150, and 0.066 µg L-1, respectively. The synthesized adsorption capacity was obtained 170 mg g-1.Accuracy of the method was studied by performing the method on certified reference materials and the presence of different interfering ions was studied. Molybdenum content of different water and foodstuffs was determined by the introduced method.
Collapse
Affiliation(s)
- Mustafa Tuzen
- Tokat Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat, Turkey; King Fahd University of Petroleum and Minerals, Research Institute, Center for Environment and Water, Dhahran 31261, Saudi Arabia.
| | - Nail Altunay
- Sivas Cumhuriyet University, Department of Chemistry, TR-58140 Sivas, Turkey
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey; Zonguldak Bülent Ecevit University, Department of Chemistry, 67100 Zonguldak, Turkey
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
6
|
Karahaliloğlu Z, Kilicay E, Hazer B. Herceptin-conjugated magnetic polystyrene-Agsbox nanoparticles as a theranostic agent for breast cancer. J Biomater Appl 2022; 36:1599-1616. [PMID: 35043697 DOI: 10.1177/08853282211065085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Breast cancer is a malignant tumor, which has derived from cells of the breast. Further, a relatively rapid metastasis, and resistance development against all the conventional drug combinations are major clinical issues in breast cancer patients as well as limitations like toxicity, genetic mutation, and metastasis make difficult the use of conventional therapy methods such as chemotherapy, radiotherapy, and local surgery. Therefore, considering the urgent needs, and high death rate in breast cancer cases, the development of new diagnosis and treatment regimens which diagnosed at the early stage and protected normal tissues required for clinical applications. Recently, the combination of tumor diagnosis and treatment within a single platform is a novel perspective, and magnetic nanoparticles are potential candidate owing to their low toxic effect, biocompatibility, biological degradability, superior magnetic properties, and targeting ability to overcome the problems of conventional diagnosis and therapy techniques. Considering these restrictions and requirements, the goal of this research was to investigate the potential of an innovative theranostic agent, which is soybean oil-based polystyrene (PS)-g-soybean oil graft copolymer containing AgNPs (PS-Agsbox) for treatment and MRI-based diagnosis of cancer. Herein, we designed targeted magnetic PS-Agsbox nanoparticles carrying thymoquinone (TQ) that is known for its anticancer potential against breast cancer, and herceptin (HER), which is to bind to the HER2 receptor protein on the surface of HER2-positive tumor cells, and acts by blocking the effects of it. We have successfully demonstrated selective binding, effective uptake of HER-conjugated magnetic PS-Agsbox nanoparticles into MDA-MB-231 (human breast carcinoma cells, a HER2-underexpressing cell line) and SKBR-3 (human breast cancer cells, a HER2-overexpressing breast cancer cell line) cell lines while no effect against L929 (mouse fibroblast cell line). Moreover, the magnetic resonance (MRI) properties of HER-conjugated magnetic PS-Agsbox nanoparticles were also confirmed.
Collapse
Affiliation(s)
- Zeynep Karahaliloğlu
- Department of Biology, Faculty of Science, 175169Aksaray University, Aksaray, Turkey
| | - Ebru Kilicay
- Vocational High School of Eldivan Health Care Services, 175171Karatekin University, Cankiri, Turkey
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, 518002Kapadokya University, Nevsehir, Turkey.,Department of Chemistry, 518002Bülent Ecevit University, Zonguldak, Turkey.,Department of Nanotechnology Engineering, 518002Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
7
|
Oliani WL, Pusceddu FH, Parra DF. Silver-titanium polymeric nanocomposite non ecotoxic with bactericide activity. Polym Bull (Berl) 2022; 79:10949-10968. [PMID: 35035006 PMCID: PMC8753336 DOI: 10.1007/s00289-021-04036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
In view of the intense interest in applications of silver nanoparticles in products for the medical field and in food preservation packaging due to their antimicrobial properties, the ecotoxicology of silver nanocomposites was evaluated in films. Test with the sea urchin Echinometra lucunter, to evaluate embryonic development and contamination by the action of silver and titanium nanoparticles in polyethylene nanocomposite films presents new results. The silver nanoparticle’s stability in polymeric materials can be enhanced by adding carriers, such as titanium dioxide and montmorillonite clay (MMT) without to producing one unfriendly material. For this research, low-density polyethylene (LDPE)/linear low-density polyethylene (LLDPE) were used processed in a twin-screw extruder, followed by gamma irradiation with 25 kGy and characterized by ecotoxicology assays, field emission scanning electron microscopy (FESEM), scanning electron microscopy and energy dispersive spectroscopy (SEM–EDX), differential scanning calorimetry (DSC), thermogravimetric analysis (TG), Raman spectroscopy (SERS) and mechanical properties. The antibacterial properties of the LDPE films were investigated against Escherichia coli and Staphylococcus aureus. The gamma irradiation had an important effect in the synthesis of silver nanoparticles resulting in bactericidal activity and the death of 100% of the tested bacteria. The evaluation of the environment was considered with the ecotoxicological investigation carried out. The results indicated that the polymeric films with silver nanoparticles and TiO2 do not contaminate the environment and neither interfere with the larval development of Echinometra lucunter. The obtained materials can be used in various applications with antimicrobial properties.
Collapse
Affiliation(s)
- Washington Luiz Oliani
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, Pinheiros, São Paulo 2242 Brazil
| | - Fabio Hermes Pusceddu
- Ecotoxicology Laboratory, University Santa Cecilia - UNISANTA, Oswaldo Cruz Street, 266, block B, room 02, Boqueirão, Santos, São Paulo Brazil
| | - Duclerc Fernandes Parra
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, Pinheiros, São Paulo 2242 Brazil
| |
Collapse
|
8
|
Koc H, Kilicay E, Karahaliloglu Z, Hazer B, Denkbas EB. Prevention of urinary infection through the incorporation of silver-ricinoleic acid-polystyrene nanoparticles on the catheter surface. J Biomater Appl 2021; 36:385-405. [PMID: 33530824 DOI: 10.1177/0885328220983552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nosocominal infections associated with biofilm formation on urinary catheters cause serious complications. The aim of this study was to investigate the feasibility of the polyurethane (PU) catheter modified with tetracycline hydrochloride (TCH) attached Ag nanoparticles embedded PolyRicinoleic acid-Polystyrene Nanoparticles (PU-TCH-AgNPs-PRici-PS NPs) and the influence on antimicrobial and antibiofilm activity of urinary catheters infected by Escherichia coli and Staphylococcus aureus. For this purpose, AgNPs embedded PRici graft PS graft copolymers (AgNPs-PRici-g-PS) were synthesized via free radical polymerization and characterized by FTIR, HNMR and DSC. AgNPs-PRici-PS NPs were prepared and optimized by the different parameters and the optimized size of nanoparticle was found as about 150 ± 1 nm. The characterization of the nanoparticles and the morphological evaluation were carried out by FTIR and SEM. Short term stability of nanoparticles was realised at 4°C for 30 days. In vitro release profiles of TCH and Ag NPs were also investigated. The formation of biofilm on PU modified TCH-Ag NPs-PRici-PS NPs, was evaluated and the biocompatibility test of the nanoparticles was realized via the mouse fibroblast (L929) and mouse urinary bladder cells (G/G An1). This is the first time that TCH-AgNPs-PRici-PS NPs used in the modification of PU catheter demonstrated high antimicrobial and antibiofilm activities against the urinary tract infection.
Collapse
Affiliation(s)
- Hazal Koc
- Nanotechnology Engineering Department, Institute of Science, Bülent Ecevit University, Zonguldak, Turkey
| | - Ebru Kilicay
- Vocational School of Eldivan Health Services, Karatekin University, Cankiri, Turkey
| | | | - Baki Hazer
- Department of Aircraft Airflame Engine Maintenance, Kapadokya University, Ürgüp, Turkey.,Department of Chemistry, Bulent Ecevit University, Zonguldak, Turkey
| | - Emir B Denkbas
- Bioengineering Division, Institute of Pure and Applied Sciences, Hacettepe University, Ankara, Turkey.,Faculty of Engineering, Department of Biomedical Engineering, Başkent University, Ankara, Turkey
| |
Collapse
|
9
|
Alarcon RT, Lamb KJ, Bannach G, North M. Opportunities for the Use of Brazilian Biomass to Produce Renewable Chemicals and Materials. CHEMSUSCHEM 2021; 14:169-188. [PMID: 32975380 DOI: 10.1002/cssc.202001726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Indexed: 06/11/2023]
Abstract
This Review highlights the principal crops of Brazil and how their harvest waste can be used in the chemicals and materials industries. The Review covers various plants; with grains, fruits, trees and nuts all being discussed. Native and adopted plants are included and studies on using these plants as a source of chemicals and materials for industrial applications, polymer synthesis, medicinal use and in chemical research are discussed. The main aim of the Review is to highlight the principal Brazilian agricultural resources; such as sugarcane, oranges and soybean, as well as secondary resources, such as andiroba brazil nut, buriti and others, which should be explored further for scientific and technological applications. Furthermore, vegetable oils, carbohydrates (starch, cellulose, hemicellulose, lignocellulose and pectin), flavones and essential oils are described as well as their potential applications.
Collapse
Affiliation(s)
- Rafael T Alarcon
- School of Sciences, Department of Chemistry, UNESP- São Paulo State University, Bauru, 17033-260, SP, Brazil
| | - Katie J Lamb
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | - Gilbert Bannach
- School of Sciences, Department of Chemistry, UNESP- São Paulo State University, Bauru, 17033-260, SP, Brazil
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
10
|
In situ synthesis of silver nanoparticles on modified poly(ethylene terephthalate) fibers by grafting for obtaining versatile antimicrobial materials. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03486-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Hazer B, Ashby RD. Synthesis of a novel tannic acid-functionalized polypropylene as antioxidant active-packaging materials. Food Chem 2020; 344:128644. [PMID: 33246682 DOI: 10.1016/j.foodchem.2020.128644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
This work focuses on the synthesis of novel tannin-functionalized polypropylene copolymers that are designed to inhibit the oxidation of vegetable oils for potential use as packaging materials. An empty glass Petri dish (control), a chlorinated polypropylene-coated glass Petri dish (control) and a series of the tannin-functionalized polypropylene coated glass Petri dishes overlaid with linseed oil were exposed to air and additional white light. Oligomerization of the oxidized linseed oil was assessed by measuring the flow properties of the exposed oil using a viscometer. The antioxidant effect of the tannic acid grafted polypropylene copolymers (PP-Tann) retarded oligomerization of the linseed oil. The molar mass of the linoleic acid overlaid onto the PP-Tann films was the lowest among the tested samples after each time period indicating that tannin-grafted polypropylene may be a promising packaging material for vegetable oils.
Collapse
Affiliation(s)
- Baki Hazer
- Kapadokya University, Department of Aircraft Airflame Engine Maintenance, Mustafapaşa, Kasabası 50420, Ürgüp, Turkey; Zonguldak Bülent Ecevit University, Department of Chemistry, 67100 Zonguldak, Turkey.
| | - Richard D Ashby
- USDA ARS, East. Reg. Res. Ctr, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| |
Collapse
|
12
|
Nandimath M, Bhajantri RF, Naik J. Spectroscopic and color chromaticity analysis of rhodamine 6G dye-doped PVA polymer composites for color tuning applications. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03332-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Shi M, Cheng T, Zou H, Zhang N, Huang J, Xian M. The Preparation and Biomedical Application of Biopolyesters. Mini Rev Med Chem 2019; 20:331-340. [PMID: 31644401 DOI: 10.2174/1389557519666191015211156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022]
Abstract
Biopolyesters represent a large family that can be obtained by polymerization of variable bio-derived hydroxyalkanoic acids. The monomer composition, molecular weight of the biopolyesters can affect the properties and applications of the polyesters. The majority of biopolyesters can either be biosynthesized from natural biofeedstocks or semi-synthesized (biopreparation of monomers followed by the chemical polymerization of the monomers). With the fast development of synthetic biology and biosynthesis techniques, the biosynthesis of unnatural biopolyesters (like lactate containing and aromatic biopolyesters) with improved performance and function has been a tendency. The presence of novel preparation methods, novel monomer composition has also significantly affected the properties, functions and applications of the biopolyesters. Due to the properties of biodegradability and biocompatibility, biopolyesters have great potential in biomedical applications (as implanting or covering biomaterials, drug carriers). Moreover, biopolyesters can be fused with other functional ingredients to achieve novel applications or improved functions. This study summarizes and compares the updated preparation methods of representative biopolyesters, also introduces the current status and future trends of their applications in biomedical fields.
Collapse
Affiliation(s)
- Mengxun Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, The University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Tao Cheng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huibin Zou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Nan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingling Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
14
|
Xia Y, Xiao M, Zhao M, Xu T, Guo M, Wang C, Li Y, Zhu B, Liu H. Doxorubicin-loaded functionalized selenium nanoparticles for enhanced antitumor efficacy in cervical carcinoma therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110100. [PMID: 31753388 DOI: 10.1016/j.msec.2019.110100] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/05/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022]
Abstract
Development of novel tumor-targeted drug vehicles for cancer therapy is very important and has become one of major topics for designing nanoscale chemotherapeutics delivery systems. In the present study, selenium nanoparticles (SeNPs) was decorated with hyaluronic acid (HA) to prepare HA-SeNPs nanoparticles which were used to load doxorubicin (DOX) to fabricate tumor-targeted functionalized selenium nanoparticles HA-Se@DOX. In vitro and in vivo antitumor activities of HA-Se@DOX in human cervical carcinoma treatment were investigated. HA-Se@DOX showed selective cellular uptakes between cervical cancer HeLa cells and human umbilical vein endothelial cells (HUVEC). In vitro release result indicated that DOX was released from HA-SeNPs faster in acidic environment in comparison with normal physiological environment and 76.9% DOX was released in pH 5.4 during initial 30 h. HA-Se@DOX showed high activity to inhibit HeLa cell proliferation and triggered HeLa cell apoptosis via activating Bcl-2 signaling pathway. In vivo antitumor study showed that HA-Se@DOX inhibited tumor growth through suppressing cancer cells proliferation and inducing cancer cells apoptosis. Interestingly, HA-Se@DOX exhibited stronger anticancer activity than free DOX and Se@DOX in vitro and in vivo. Additionally, HA-Se@DOX did not cause damage to major organs at the used dose. HA-Se@DOX is a promising antitumor agent for human cervical carcinoma treatment and this research provides a novel therapeutic strategy for cancer therapy.
Collapse
Affiliation(s)
- Yu Xia
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Misi Xiao
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Mingqi Zhao
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Tiantian Xu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Min Guo
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Changbing Wang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yinghua Li
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Bing Zhu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China.
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
15
|
Hazer B, Eren M. Ecofriendly Autoxidation of Castor Oil/Ricinoleic Acid. Multifunctional Macroperoxide Initiators for Multi Block/Graft Copolymers. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Baki Hazer
- Department of Aircraft Airframe Engine MaintenanceKapadokya University, Mustafapasa kasabası, Üniversite Meydanı 50420, Ürgüp, Nevsehir Turkey
- Department of ChemistryBülent Ecevit University, Üniversite Caddesi 67100, Zonguldak Turkey
- Department of Metallurgical and Materials EngineeringBülent Ecevit University, Üniversite Caddesi 67100, Zonguldak Turkey
- Department of Nano Technology EngineeringBülent Ecevit University, Üniversite Caddesi 67100, Zonguldak Turkey
| | - Melike Eren
- Department of ChemistryBülent Ecevit University, Üniversite Caddesi 67100, Zonguldak Turkey
| |
Collapse
|
16
|
Silver nanoparticles coated with dodecanethiol used as fillers in non-cytotoxic and antifungal PBAT surface based on nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:800-807. [PMID: 30813086 DOI: 10.1016/j.msec.2019.01.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/16/2018] [Accepted: 01/10/2019] [Indexed: 12/29/2022]
Abstract
In the present study, we report the preparation of antifungal and non-cytotoxic polymer nanocomposites with potential application in biomedical materials. Dodecanethiol-protected silver nanoparticles (AgNPs-DDT) were synthesized by a reduction/precipitation method and dispersed in chloroform to obtain stable colloidal dispersions. PBAT-based nanocomposites containing 0.25, 0.5 and 2 wt% AgNPs-DDT were prepared by casting method. The incorporation of AgNPs-DDT in PBAT matrix resulted in nanocomposites which combine improved mechanical performance and antifungal properties with a non-cytotoxic characteristic.
Collapse
|
17
|
Yu LP, Zhang X, Wei DX, Wu Q, Jiang XR, Chen GQ. Highly Efficient Fluorescent Material Based on Rare-Earth-Modified Polyhydroxyalkanoates. Biomacromolecules 2019; 20:3233-3241. [DOI: 10.1021/acs.biomac.8b01722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin-Ping Yu
- Center of Synthetic
and Systems Biology, School of Life Science, Tsinghua-Peking Center
for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Zhang
- Center of Synthetic
and Systems Biology, School of Life Science, Tsinghua-Peking Center
for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dai-Xu Wei
- Center of Synthetic
and Systems Biology, School of Life Science, Tsinghua-Peking Center
for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- Center of Synthetic
and Systems Biology, School of Life Science, Tsinghua-Peking Center
for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Ran Jiang
- Center of Synthetic
and Systems Biology, School of Life Science, Tsinghua-Peking Center
for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- Center of Synthetic
and Systems Biology, School of Life Science, Tsinghua-Peking Center
for Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Nano-
and MicroMechanics, Tsinghua University, Beijing 100084, China
- MOE Key Lab for
Industrial Biocatalysis, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Bakht Khosh Hagh H, Farshi Azhar F. Reinforcing materials for polymeric tissue engineering scaffolds: A review. J Biomed Mater Res B Appl Biomater 2018; 107:1560-1575. [DOI: 10.1002/jbm.b.34248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/11/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Haleh Bakht Khosh Hagh
- Polymer Composite Research Laboratory, Department of Applied ChemistryFaculty of Chemistry, University of Tabriz Tabriz 5166614766 Iran
| | - Fahimeh Farshi Azhar
- Applied Chemistry Research Laboratory, Department of ChemistryFaculty of Sciences, Azarbaijan Shahid Madani University Tabriz 5375171379 Iran
| |
Collapse
|
19
|
Solid phase microextraction method using a novel polystyrene oleic acid imidazole polymer in micropipette tip of syringe system for speciation and determination of antimony in environmental and food samples. Talanta 2018; 184:115-121. [DOI: 10.1016/j.talanta.2018.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 11/20/2022]
|
20
|
Tsagkalias IS, Papadopoulou S, Verros GD, Achilias DS. Polymerization Kinetics of n-Butyl Methacrylate in the Presence of Graphene Oxide Prepared by Two Different Oxidation Methods with or without Functionalization. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b03781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ioannis S. Tsagkalias
- Laboratory of Polymer and
Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Symela Papadopoulou
- Laboratory of Polymer and
Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - George D. Verros
- Laboratory of Polymer and
Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitris S. Achilias
- Laboratory of Polymer and
Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
21
|
Synthesis of PNIPAM–PEG Double Hydrophilic Polymers Using Oleic Acid Macro Peroxide Initiator. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-3020-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Gao RJ, Yao Y, Wu H, Wang L. Effect of amphoteric dispersant on the dispersion properties of nano-SiO2
particles. J Appl Polym Sci 2017. [DOI: 10.1002/app.45075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rui-Jun Gao
- State Key Laboratory of Green Building Materials; China Building Materials Academy; Beijing 100024 China
| | - Yan Yao
- State Key Laboratory of Green Building Materials; China Building Materials Academy; Beijing 100024 China
| | - Hao Wu
- State Key Laboratory of Green Building Materials; China Building Materials Academy; Beijing 100024 China
| | - Ling Wang
- State Key Laboratory of Green Building Materials; China Building Materials Academy; Beijing 100024 China
| |
Collapse
|